Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Vignola Cherry Ethanolic (VCE) Extract
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoid Content (TFC)
2.5. Determination of Reducing Power
2.6. ABTS+ Free-Radical Scavenging Activity
2.7. DPPH Free-Radical Scavenging Activity
2.8. UHPLC-ESI-MS/MS
2.9. In Vitro Anti-Inflammatory Activity on RAW 264.7 Cells
2.9.1. Cell Cultures
2.9.2. Cell Viability
2.9.3. Cell Stimulation
2.9.4. Quantification of Intracellular ROS Generation
2.9.5. Determination of NO Production
2.9.6. Protein Extraction
2.9.7. Western Blotting
2.9.8. Immunofluorescence Study
2.10. Antimutagenicity in DNA Oxidative Damage
2.11. Statistical Analysis
2.12. In Silico Studies
3. Results
3.1. Extraction and Chemical Composition of P. avium Extract
3.2. VCE Reduces LPS-Induced Inflammatory Markers in RAW 264.7 Cells
3.3. VCE Modulates MAPK and NF-κB Inflammatory Pathways in LPS Stimulated RAW 264.7 Cells
3.4. VCE Protects Plasmidic DNA in Fenton-Induced Oxidation
3.5. In Silico Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VCE | Vignola Cherry Extract |
TPC | Total Phenolic Content |
TFC | Total Flavonoid Content |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
ROS | Reactive Oxygen Species |
NO | Nitric Oxide |
iNOS | Inducible Nitric Oxide Synthase |
COX-2 | Cyclooxygenase-2 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
MAPK | Mitogen-Activated Protein Kinase |
UHPLC-ESI-MS/MS | Ultra-High Performance Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
DNA | Deoxyribonucleic Acid |
DMEM | Dulbecco’s Modified Eagle’s Medium |
DMSO | Dimethyl Sulfoxide |
FBS | Fetal Bovine Serum |
CCK-8 | Cell Counting Kit-8 |
LPS | Lipopolysaccharide |
DCFH2-DA | 2′,7′-Dichlorodihydrofluorescein Diacetate |
RT | Room Temperature |
HRP | Horseradish Peroxidase |
ECL | Enhanced Chemiluminescence |
TAE | Tris-Acetate-EDTA |
DAPI | 4′,6-Diamidino-2-Phenylindole |
PBS | Phosphate-Buffered Saline |
SDS–PAGE | Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis |
BCA | Bicinchoninic Acid |
NGS | Normal Goat Serum |
TE | Trolox Equivalents |
References
- D’Amato, D.; Veijonaho, S.; Toppinen, A. Towards Sustainability? Forest-Based Circular Bioeconomy Business Models in Finnish SMEs. For. Policy Econ. 2020, 110, 101848. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Travaglia, F.; Giovannelli, L.; Picco, A.; Oz, E.; Oz, F.; Bordiga, M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B.; et al. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Front. Bioeng. Biotechnol. 2021, 8, 619066. [Google Scholar] [CrossRef]
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food Waste: Challenges and Opportunities for Enhancing the Emerging Bio-Economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- Barletta, R.; Trezza, A.; Geminiani, M.; Frusciante, L.; Olmastroni, T.; Sannio, F.; Docquier, J.-D.; Santucci, A. Chaetomorpha Linum Extract as a Source of Antimicrobial Compounds: A Circular Bioeconomy Approach. Mar. Drugs 2024, 22, 511. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Bioactivity and Cell Metabolism of in Vitro Digested Sweet Cherry (Prunus avium) Phenolic Compounds. Int. J. Food Sci. Nutr. 2019, 70, 335–348. [Google Scholar] [CrossRef]
- Gençdağ, E.; Görgüç, A.; Yılmaz, F.M. Valorization of Sweet Cherry (Prunus avium) Wastes as a Source of Advanced Bioactive Compounds. In Mediterranean Fruits Bio-Wastes; Springer International Publishing: Cham, Switzerland, 2022; pp. 559–579. [Google Scholar]
- Pollard, Z.A.; Goldfarb, J.L. Valorization of Cherry Pits: Great Lakes Agro-Industrial Waste to Mediate Great Lakes Water Quality. Environ. Pollut. 2021, 270, 116073. [Google Scholar] [CrossRef]
- Boskov, D.; Milatovic, D.; Rakonjac, V.; Zec, G.; Hudina, M.; Veberic, R.; Mikulic-Petkovsek, M. The Phenolic Profile of Sweet Cherry Fruits Influenced by Cultivar/Rootstock Combination. Plants 2022, 12, 103. [Google Scholar] [CrossRef]
- Chezanoglou, E.; Mourtzinos, I.; Goula, A.M. Sweet Cherry and Its By-Products as Sources of Valuable Phenolic Compounds. Trends Food Sci. Technol. 2024, 145, 104367. [Google Scholar] [CrossRef]
- Milea, A.; Ștefania; Vasile, A.M.; Cîrciumaru, A.; Dumitrașcu, L.; Barbu, V.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Valorizations of Sweet Cherries Skins Phytochemicals by Extraction, Microencapsulation and Development of Value-Added Food Products. Foods 2019, 8, 188. [Google Scholar] [CrossRef]
- Vignati, E.; Lipska, M.; Dunwell, J.M.; Caccamo, M.; Simkin, A.J. Fruit Development in Sweet Cherry. Plants 2022, 11, 1531. [Google Scholar] [CrossRef] [PubMed]
- Keane, K.M.; George, T.W.; Constantinou, C.L.; Brown, M.A.; Clifford, T.; Howatson, G. Effects of Montmorency Tart Cherry (Prunus cerasus L.) Consumption on Vascular Function in Men with Early Hypertension. Am. J. Clin. Nutr. 2016, 103, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Flores-Félix, J.D.; Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R. Anti-Inflammatory and Antimicrobial Activities of Portuguese Prunus avium L. (Sweet Cherry) By-Products Extracts. Nutrients 2022, 14, 4576. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Segliņa, D. Composition of Bioactive Compounds in Kernel Oils Recovered from Sour Cherry (Prunus cerasus L.) by-Products: Impact of the Cultivar on Potential Applications. Ind. Crops Prod. 2016, 82, 44–50. [Google Scholar] [CrossRef]
- Roversi, A.; Malvicini, G.L.; Porro, D.; Plessi, C. Sweet Cherry Leaf Composition as Influenced by Genotype, Rootstock and Orchard Management. Acta Hortic. 2010, 868, 243–246. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Olmastroni, T.; Mastroeni, P.; Trezza, A.; Salvini, L.; Lamponi, S.; Spiga, O.; Santucci, A. Repurposing Castanea Sativa Spiny Burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life 2024, 14, 763. [Google Scholar] [CrossRef]
- Huang, R.; Wu, W.; Shen, S.; Fan, J.; Chang, Y.; Chen, S.; Ye, X. Evaluation of Colorimetric Methods for Quantification of Citrus Flavonoids to Avoid Misuse. Anal. Methods 2018, 10, 2575–2587. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Shabab, B.; Olmastroni, T.; Roncucci, N.; Mastroeni, P.; Salvini, L.; Lamponi, S.; Trezza, A.; Santucci, A. Enhancing Industrial Hemp (Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications. Int. J. Mol. Sci. 2025, 26, 548. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Shabab, B.; Olmastroni, T.; Scavello, G.; Rossi, M.; Mastroeni, P.; Nyong’a, C.N.; Salvini, L.; Lamponi, S.; et al. Exploring the Antioxidant and Anti-Inflammatory Potential of Saffron (Crocus sativus) Tepals Extract within the Circular Bioeconomy. Antioxidants 2024, 13, 1082. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Trezza, A.; Olmastroni, T.; Mastroeni, P.; Salvini, L.; Lamponi, S.; Bernini, A.; Grasso, D.; Dreassi, E.; et al. Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha Linum Extract. Mar. Drugs 2024, 22, 226. [Google Scholar] [CrossRef] [PubMed]
- Gubitosa, F.; Fraternale, D.; Benayada, L.; De Bellis, R.; Gorassini, A.; Saltarelli, R.; Donati Zeppa, S.; Potenza, L. Anti-Inflammatory, Antioxidant, and Genoprotective Effects of Callus Cultures Obtained from the Pulp of Malus pumila Cv Miller (Annurca Campana Apple). Foods 2024, 13, 2036. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.J.; O’Donovan, C.; Magrane, M.; Alpi, E.; Antunes, R.; Bely, B.; Bingley, M.; Bonilla, C.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Janson, G.; Paiardini, A. PyMod 3: A Complete Suite for Structural Bioinformatics in PyMOL. Bioinformatics 2021, 37, 1471–1472. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Stompor, M. A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients 2020, 12, 513. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Carullo, G.; Saponara, S.; Ahmed, A.; Gorelli, B.; Mazzotta, S.; Trezza, A.; Gianibbi, B.; Campiani, G.; Fusi, F.; Aiello, F. Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits CaV1.2 and Stimulates KCa1.1 Channels. Mar. Drugs 2022, 20, 515. [Google Scholar] [CrossRef]
- Rosignoli, S.; Paiardini, A. DockingPie: A Consensus Docking Plugin for PyMOL. Bioinformatics 2022, 38, 4233–4234. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Koebel, M.R.; Schmadeke, G.; Posner, R.G.; Sirimulla, S. AutoDock VinaXB: Implementation of XBSF, New Empirical Halogen Bond Scoring Function, into AutoDock Vina. J. Cheminform. 2016, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Cuong, N.M.; Son, N.T.; Nhan, N.T.; Khanh, P.N.; Huong, T.T.; Tram, N.T.T.; Sgaragli, G.; Ahmed, A.; Trezza, A.; Spiga, O.; et al. Vasorelaxing Activity of R-(−)-3′-Hydroxy-2,4,5-Trimethoxydalbergiquinol from Dalbergia Tonkinensis: Involvement of Smooth Muscle CaV1.2 Channels. Planta Med. 2020, 86, 284–293. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Sharif, O.; Bolshakov, V.N.; Raines, S.; Newham, P.; Perkins, N.D. Transcriptional Profiling of the LPS Induced NF-ΚB Response in Macrophages. BMC Immunol. 2007, 8, 1. [Google Scholar] [CrossRef]
- Shiroma, Y.; Fujita, G.; Yamamoto, T.; Takahashi, R.; Kumar, A.; Zhang, K.Y.J.; Ito, A.; Osada, H.; Yoshida, M.; Tahara, H. Identification of a Selective RelA Inhibitor Based on DSE-FRET Screening Methods. Int. J. Mol. Sci. 2020, 21, 9150. [Google Scholar] [CrossRef]
- Scapin, G.; Patel, S.B.; Lisnock, J.; Becker, J.W.; LoGrasso, P.V. The Structure of JNK3 in Complex with Small Molecule Inhibitors. Chem. Biol. 2003, 10, 705–712. [Google Scholar] [CrossRef]
- Kinoshita, T.; Yoshida, I.; Nakae, S.; Okita, K.; Gouda, M.; Matsubara, M.; Yokota, K.; Ishiguro, H.; Tada, T. Crystal Structure of Human Mono-Phosphorylated ERK1 at Tyr204. Biochem. Biophys. Res. Commun. 2008, 377, 1123–1127. [Google Scholar] [CrossRef]
- Wang, Z.; Canagarajah, B.J.; Boehm, J.C.; Kassisà, S.; Cobb, M.H.; Young, P.R.; Abdel-Meguid, S.; Adams, J.L.; Goldsmith, E.J. Structural Basis of Inhibitor Selectivity in MAP Kinases. Structure 1998, 6, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Trezza, A.; Barletta, R.; Geminiani, M.; Frusciante, L.; Olmastroni, T.; Sannio, F.; Docquier, J.-D.; Santucci, A. Chestnut Burrs as Natural Source of Antimicrobial Bioactive Compounds: A Valorization of Agri-Food Waste. Appl. Sci. 2024, 14, 6552. [Google Scholar] [CrossRef]
- Sahiner, M.; Yilmaz, A.S.; Gungor, B.; Ayoubi, Y.; Sahiner, N. Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022, 27, 6225. [Google Scholar] [CrossRef]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kim, M.-Y.; Cho, J.Y. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2023, 24, 1498. [Google Scholar] [CrossRef]
- Nguyen, M.H.T.; Jung, W.-K.; Kim, S.-K. Marine Algae Possess Therapeutic Potential for Ca-Mineralization via Osteoblastic Differentiation. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2011; pp. 429–441. [Google Scholar]
- Trezza, A.; Geminiani, M.; Cutrera, G.; Dreassi, E.; Frusciante, L.; Lamponi, S.; Spiga, O.; Santucci, A. A Drug Discovery Approach to a Reveal Novel Antioxidant Natural Source: The Case of Chestnut Burr Biomass. Int. J. Mol. Sci. 2024, 25, 2517. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, L.; Chen, W.; Xu, S. The NF-ΚB Activation Pathways, Emerging Molecular Targets for Cancer Prevention and Therapy. Expert. Opin. Ther. Targets 2010, 14, 45–55. [Google Scholar] [CrossRef]
- Chagas, M.d.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Med. Cell. Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef]
- Amaro, H.M.; Pagels, F.; Tavares, T.G.; Costa, I.; Sousa-Pinto, I.; Guedes, A.C. Antioxidant and Anti-Inflammatory Potential of Seaweed Extracts as Functional Ingredients. Hydrobiology 2022, 1, 469–482. [Google Scholar] [CrossRef]
- Jesus, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Exploring the Phenolic Profile, Antioxidant, Antidiabetic and Anti-Hemolytic Potential of Prunus avium Vegetal Parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef]
- Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption. Foods 2020, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Czank, C.; Woodward, G.M.; Cassidy, A.; Kay, C.D. Phenolic Metabolites of Anthocyanins Modulate Mechanisms of Endothelial Function. J. Agric. Food Chem. 2015, 63, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Cantini, C.; Romi, M.; Hausman, J.-F.; Guerriero, G.; Cai, G. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. Int. J. Mol. Sci. 2018, 19, 2248. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.R.S.; Silva, G.R.; Luís, Â.; Cardoso, H.J.; Correia, S.; Vaz, C.V.; Duarte, A.P.; Socorro, S. Sweet Cherries as Anti-Cancer Agents: From Bioactive Compounds to Function. Molecules 2021, 26, 2941. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The Profile and Content of Polyphenols and Carotenoids in Local and Commercial Sweet Cherry Fruits (Prunus avium L.) and Their Antioxidant Activity In Vitro. Antioxidants 2019, 8, 534. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Serra, A.T.; Seabra, I.J.; Braga, M.E.M.; Bronze, M.R.; de Sousa, H.C.; Duarte, C.M.M. Processing Cherries (Prunus avium) Using Supercritical Fluid Technology. Part 1: Recovery of Extract Fractions Rich in Bioactive Compounds. J. Supercrit. Fluids 2010, 55, 184–191. [Google Scholar] [CrossRef]
- Yüksekkaya, Ş.; Başyiğit, B.; Sağlam, H.; Pekmez, H.; Cansu, Ü.; Karaaslan, A.; Karaaslan, M. Valorization of Fruit Processing By-Products: Free, Esterified, and Insoluble Bound Phytochemical Extraction from Cherry (Prunus avium) Tissues and Their Biological Activities. J. Food Meas. Charact. 2021, 15, 1092–1107. [Google Scholar] [CrossRef]
- Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical Characterisation and Bioactive Properties of Prunus avium L.: The Widely Studied Fruits and the Unexplored Stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry Antioxidants: From Farm to Table. Molecules 2010, 15, 6993–7005. [Google Scholar] [CrossRef]
- Fratantonio, D.; Cimino, F.; Molonia, M.S.; Ferrari, D.; Saija, A.; Virgili, F.; Speciale, A. Cyanidin-3-O-Glucoside Ameliorates Palmitate-Induced Insulin Resistance by Modulating IRS-1 Phosphorylation and Release of Endothelial Derived Vasoactive Factors. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2017, 1862, 351–357. [Google Scholar] [CrossRef]
- Xue, F.; Nie, X.; Shi, J.; Liu, Q.; Wang, Z.; Li, X.; Zhou, J.; Su, J.; Xue, M.; Chen, W.-D.; et al. Quercetin Inhibits LPS-Induced Inflammation and Ox-LDL-Induced Lipid Deposition. Front. Pharmacol. 2017, 8, 40. [Google Scholar] [CrossRef]
- Perkins, N.D. Integrating Cell-Signalling Pathways with NF-ΚB and IKK Function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-C.; Chang, J.-H.; Jin, J. Regulation of Nuclear Factor-ΚB in Autoimmunity. Trends Immunol. 2013, 34, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Figuera-Losada, M.; Rojas, C.; Slusher, B.S. Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery. SLAS Discov. 2014, 19, 17–31. [Google Scholar] [CrossRef]
- Ruiz, P.A.; Haller, D. Functional Diversity of Flavonoids in the Inhibition of the Proinflammatory NF-ΚB, IRF, and Akt Signaling Pathways in Murine Intestinal Epithelial Cells. J. Nutr. 2006, 136, 664–671. [Google Scholar] [CrossRef]
- Boesch-Saadatmandi, C.; Loboda, A.; Wagner, A.E.; Stachurska, A.; Jozkowicz, A.; Dulak, J.; Döring, F.; Wolffram, S.; Rimbach, G. Effect of Quercetin and Its Metabolites Isorhamnetin and Quercetin-3-Glucuronide on Inflammatory Gene Expression: Role of MiR-155. J. Nutr. Biochem. 2011, 22, 293–299. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Costa, A.R.; Flores-Félix, J.D.; Falcão, A.; Alves, G.; Silva, L.R. Anti-Inflammatory and Antiproliferative Properties of Sweet Cherry Phenolic-Rich Extracts. Molecules 2022, 27, 268. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- He, W.-J.; Lv, C.-H.; Chen, Z.; Shi, M.; Zeng, C.-X.; Hou, D.-X.; Qin, S. The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants 2023, 12, 236. [Google Scholar] [CrossRef]
- Kelley, D.S.; Rasooly, R.; Jacob, R.A.; Kader, A.A.; Mackey, B.E. Consumption of Bing Sweet Cherries Lowers Circulating Concentrations of Inflammation Markers in Healthy Men and Women. J. Nutr. 2006, 136, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Neogi, T.; Chen, C.; Chaisson, C.; Hunter, D.J.; Choi, H.K. Cherry Consumption and Decreased Risk of Recurrent Gout Attacks. Arthritis Rheum. 2012, 64, 4004–4011. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Arbizu, S.; Mertens-Talcott, S.U.; Talcott, S.; Noratto, G.D. Dark Sweet Cherry (Prunus avium) Supplementation Reduced Blood Pressure and Pro-Inflammatory Interferon Gamma (IFNγ) in Obese Adults without Affecting Lipid Profile, Glucose Levels and Liver Enzymes. Nutrients 2023, 15, 681. [Google Scholar] [CrossRef]
- Vírgen Gen, J.J.; Guzmán-Gerónimo, R.I.; Martínez-Flores, K.; Martínez-Nava, G.A.; Fernández-Torres, J.; Zamudio-Cuevas, Y. Cherry Extracts Attenuate Inflammation and Oxidative Stress Triggered by Monosodium Urate Crystals in THP-1 Cells. J. Food Biochem. 2020, 44, e13403. [Google Scholar] [CrossRef]
- Faienza, M.F.; Corbo, F.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Grano, M.; Wang, D.Q.-H.; D’Amato, G.; Muraglia, M.; Franchini, C.; et al. Novel Insights in Health-Promoting Properties of Sweet Cherries. J. Funct. Foods 2020, 69, 103945. [Google Scholar] [CrossRef]
Antioxidant Capacity | |||||
---|---|---|---|---|---|
TPC (mg GAE/g) | TFC (mg QE/g) | TRP (mg AAE/g) | ABTS+ (mg TE/g) | DPPH (mg TE/g) | |
VCE | 14.6 ± 1.3 | 24.8 ± 3.4 | 11.9 ± 1.1 | 54.3 ± 6.4 | 16.8 ± 1.6 |
Name | Retention Time (Min) | Formula | Calculated MW | Molecular Ion [M−H]−/[M+H]+ | Mass Error (ppm) |
---|---|---|---|---|---|
Sakuranin | 21.93 | C22H24O10 | 448.1362 | 447.1289 [M−H]– | −1.69 |
Aequinetin | 20.45 | C21H20O9 | 416.1102 | 415.1029 [M−H]– | −1.32 |
Dihydrowogonin | 21.94 | C16H14O5 | 286.0837 | 285.0765 [M−H]– | −1.4 |
2,3-Oxiranedioctanoic acid | 23.23 | C18H32O5 | 328.2249 | 327.2176 [M−H]– | −0.23 |
Quercetin 3-rutinoside | 15.32 | C27H30O16 | 610.1519 | 609.1447 [M−H]– | −2.38 |
Quercetin | 20.02 | C15H10O7 | 302.0423 | 301.035 [M−H]– | −1.23 |
Kaempferol 3-rutinoside | 11.86 | C27H30O15 | 594.1574 | 593.1502 [M−H]– | −1.76 |
Pelargonidin | 21.93 | C15H11O5 | 271.0602 | 270.0529 [M−H]– | −1.68 |
Chrysin | 27.85 | C15H10O4 | 254.0577 | 253.0504 [M−H]– | −0.97 |
4-Ethylcatechol | 22.10 | C8H10O2 | 138.0677 | 139.075 [M+H]+ | −2.93 |
4-O-p-Coumaroylquinic acid | 12.91 | C16H18O8 | 338.0999 | 337.0927 [M−H]– | −0.71 |
9,10,18-Trihydroxyoctadecanoic acid | 28.69 | C18H36O5 | 332.2562 | 331.2489 [M−H]– | −0.27 |
4-Ethylphenol | 13.25 | C8H10O | 122.0728 | 123.0801 [M+H]+ | −2.79 |
Naringenin 7-O-beta-D-glucoside | 20.59 | C21H22O10 | 434.1207 | 433.1134 [M−H]– | −1.42 |
(-)-Epicatechin | 11.98 | C15H14O6 | 290.0783 | 289.071 [M−H]– | −2.68 |
(+)-Naringenin | 22.59 | C15H12O5 | 272.0684 | 271.0611 [M−H]– | −0.26 |
Quercetin 3-rutinoside-4′-glucoside | 13.79 | C33H40O21 | 772.205 | 771.1978 [M−H]– | −1.52 |
Genistein 7-O-glucoside | 15.49 | C21H20O10 | 432.1051 | 431.0978 [M−H]– | −1.3 |
Oleanolic acid | 44.28 | C30H48O3 | 456.36 | 455.3526 [M−H]– | −0.86 |
Spiraeoside | 15.81 | C21H20O12 | 464.095 | 463.0877 [M−H]– | −1.13 |
Linoleic acid | 46.69 | C18H32O2 | 280.24 | 279.2327 [M−H]– | −0.92 |
p-Coumaric acid 4-O-glucoside | 12.13 | C15H18O8 | 326.0996 | 325.0923 [M−H]– | −1.76 |
Dihydroquercetin | 16.21 | C15H12O7 | 304.058 | 303.0508 [M−H]– | −0.91 |
16-Hydroxyhexadecanoic acid | 44.47 | C16H32O3 | 272.2351 | 271.2278 [M−H]– | −0.09 |
Isorhoifolin | 12.54 | C27H30O14 | 578.1648 | 579.1721 [M+H]+ | 2.23 |
Apigenin | 22.51 | C15H10O5 | 270.0526 | 269.0454 [M−H]– | −0.73 |
Dihydromyricetin 3-O-rhamnoside | 15.07 | C21H22O12 | 466.1102 | 465.103 [M−H]– | −1.89 |
Diosmin | 12.79 | C28H32O15 | 608.1727 | 607.1655 [M−H]– | −2.26 |
7-Hydroxysecoisolariciresinol | 37.45 | C22H30O5 | 374.2091 | 373.2018 [M−H]– | −0.55 |
3-Methylcatechol | 12.54 | C7H8O2 | 124.0521 | 125.0594 [M+H]+ | −2.75 |
3-O-Feruloylquinic acid | 12.11 | C17H20O9 | 368.1099 | 367.1027 [M−H]– | −2.16 |
Oleic acid | 49.53 | C18H34O2 | 282.2557 | 281.2484 [M−H]– | −0.67 |
Biochanin A | 21.39 | C16H12O5 | 284.0681 | 283.0609 [M−H]– | −1.21 |
Malvidin 3-O-glucoside | 12.84 | C23H25O12 | 493.1342 | 492.127 [M−H]– | −0.73 |
Benzenemethanol | 15.45 | C7H8O | 108.0575 | 109.0647 [M+H]+ | −0.45 |
Caffeic acid 4-O-glucoside | 11.70 | C15H18O9 | 342.0942 | 341.0869 [M−H]– | −2.69 |
Palmitic acid | 49.16 | C16H32O2 | 256.24 | 255.2327 [M−H]– | −1.0 |
(Z)-beta-Damascenone | 17.14 | C13H18O | 190.1352 | 191.1425 [M+H]+ | −2.84 |
5-Caffeoylquinic acid | 11.94 | C16H18O9 | 354.0945 | 353.0872 [M−H]– | −1.66 |
Dihydrochrysin | 21.88 | C15H12O4 | 256.073 | 255.0657 [M−H]– | −2.14 |
Dicaffeoylquinic acid | 16.61 | C25H24O12 | 516.1255 | 515.1182 [M−H]– | −2.47 |
5-Pentadecylresorcinol | 41.45 | C21H36O2 | 320.2709 | 321.2782 [M+H]+ | −2.0 |
p-Cymen-8-ol | 16.47 | C10H14O | 150.1041 | 151.1113 [M+H]+ | −2.65 |
Gibberellin A5 | 19.36 | C19H22O5 | 330.1458 | 331.1531 [M+H]+ | −2.71 |
7-O-Methylaromadendrin | 22.51 | C16H14O6 | 302.0788 | 301.0715 [M−H]– | −0.86 |
Pelargonidin 3-O-galactoside | 21.94 | C21H21O10 | 433.1126 | 432.1053 [M−H]– | −2.03 |
Dihydroquercetin 3-O-rhamnoside | 17.90 | C21H22O11 | 450.1156 | 449.1083 [M−H]– | −1.33 |
6-Methoxykaempferol | 23.31 | C16H12O7 | 316.0584 | 315.0511 [M−H]– | 0.19 |
9,10-Epoxy-18-hydroxy-octadecanoic acid | 32.84 | C18H34O4 | 314.2458 | 313.2385 [M−H]– | 0.14 |
Isorhamnetin 3-O-rutinoside | 16.57 | C28H32O16 | 624.1688 | 623.1616 [M−H]– | −0.32 |
Ellagic acid | 15.30 | C14H6O8 | 302.0058 | 300.9985 [M−H]– | −1.61 |
2,3-Dihydro-2,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one | 20.35 | C15H12O6 | 288.0633 | 287.056 [M−H]– | −0.39 |
Kaempferol 4′-glucoside | 11.65 | C21H20O11 | 448.0994 | 447.0921 [M−H]– | −2.64 |
Kaempferol 3-rutinoside-4′-glucoside | 13.92 | C33H40O20 | 756.2106 | 755.2029 [M−H]– | −0.94 |
Cinnamic acid | 33.05 | C9H8O2 | 148.0523 | 149.0595 [M+H]+ | −1.23 |
Hexadecane-1,16-dioic acid | 31.97 | C16H30O4 | 286.2143 | 285.207 [M−H]– | −0.33 |
p-Coumaric acid ethyl ester | 12.66 | C11H12O3 | 192.0781 | 193.0854 [M+H]+ | −2.69 |
Malvidin | 14.23 | C17H15O7 | 331.0817 | 330.0744 [M−H]– | −0.21 |
alpha-Linolenic acid | 44.12 | C18H30O2 | 278.2242 | 277.2169 [M−H]– | −1.38 |
Octadecanoic acid | 46.75 | C18H36O2 | 284.2714 | 283.2641 [M−H]– | −0.54 |
5,7,4′-Trihydroxy-3,6-dimethoxyflavone | 24.12 | C17H14O7 | 330.074 | 329.0667 [M−H]– | 0.11 |
Anethole | 23.22 | C10H12O | 148.0885 | 149.0957 [M+H]+ | −2.42 |
Procyanidin C1 | 13.74 | C45H38O18 | 866.2039 | 865.1966 [M−H]– | −2.24 |
Eriocitrin | 12.97 | C27H32O15 | 596.174 | 595.1667 [M−H]– | −0.26 |
Naringin | 20.46 | C27H32O14 | 580.1785 | 579.1716 [M−H]– | −1.22 |
Methoxyphenylacetic acid | 19.12 | C9H10O3 | 166.0625 | 167.0698 [M+H]+ | −2.96 |
Patuletin 3-O-(2″-feruloylglucosyl)(1- > 6)-[apiosyl(1- > 2)]-glucoside | 13.49 | C43H48O25 | 964.2466 | 963.2393 [M−H]– | −1.94 |
Kaempferol | 22.38 | C15H10O6 | 286.0477 | 285.0404 [M−H]– | −0.26 |
Bisdemethoxycurcumin | 21.20 | C19H16O4 | 308.1048 | 307.0975 [M−H]– | −0.16 |
Prodelphinidin dimer B3 | 19.13 | C30H26O14 | 610.1311 | 609.1238 [M−H]– | −1.87 |
Isorhamnetin 3-O-galactoside | 17.51 | C22H22O12 | 478.111 | 477.1037 [M−H]– | −0.31 |
Episesamin | 22.49 | C20H18O6 | 354.1093 | 355.1166 [M+H]+ | −2.93 |
Sinapaldehyde | 17.65 | C11H12O4 | 208.0731 | 207.0658 [M−H]– | −2.34 |
Sinensetin | 20.39 | C20H20O7 | 372.1206 | 371.1133 [M−H]– | −0.84 |
Lariciresinol-sesquilignan | 18.95 | C30H36O10 | 556.2301 | 555.2228 [M−H]– | −1.31 |
Conidendrin | 21.57 | C20H20O6 | 356.1256 | 355.1184 [M−H]– | −1.02 |
alpha-Ionone | 17.78 | C13H20O | 192.1509 | 193.1582 [M+H]+ | −2.46 |
3-Hydroxyphloretin 2′-O-glucoside | 11.03 | C21H24O11 | 452.1307 | 451.1234 [M−H]– | −2.59 |
Apigenin 7-O-glucoside | 17.46 | C21H24O9 | 420.1419 | 419.1346 [M−H]– | −0.41 |
Salicylaldehyde | 26.92 | C7H6O2 | 122.0367 | 123.0439 [M+H]+ | −0.97 |
Glycitin | 20.76 | C22H22O10 | 446.1209 | 445.1133 [M−H]– | −0.87 |
Chrysoeriol 7-O-glucoside | 21.63 | C22H22O11 | 462.1168 | 461.1095 [M−H]– | 1.22 |
Procyanidin B2 | 15.62 | C30H26O12 | 578.1414 | 577.1341 [M−H]– | −1.83 |
Ferulic acid 4-O-glucoside | 13.48 | C16H20O9 | 356.1102 | 355.1029 [M−H]– | −1.63 |
Arctigenin | 24.96 | C21H24O6 | 372.1574 | 371.1502 [M−H]– | 0.36 |
Arachidic acid | 50.82 | C20H40O2 | 312.3025 | 311.2953 [M−H]– | −0.95 |
Hesperidin | 14.38 | C28H34O15 | 610.1895 | 609.1823 [M−H]– | −0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frusciante, L.; Nyong’a, C.N.; Trezza, A.; Shabab, B.; Olmastroni, T.; Barletta, R.; Mastroeni, P.; Visibelli, A.; Orlandini, M.; Raucci, L.; et al. Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications. Foods 2025, 14, 1523. https://doi.org/10.3390/foods14091523
Frusciante L, Nyong’a CN, Trezza A, Shabab B, Olmastroni T, Barletta R, Mastroeni P, Visibelli A, Orlandini M, Raucci L, et al. Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications. Foods. 2025; 14(9):1523. https://doi.org/10.3390/foods14091523
Chicago/Turabian StyleFrusciante, Luisa, Collins Nyaberi Nyong’a, Alfonso Trezza, Behnaz Shabab, Tommaso Olmastroni, Roberta Barletta, Pierfrancesco Mastroeni, Anna Visibelli, Maurizio Orlandini, Luisa Raucci, and et al. 2025. "Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications" Foods 14, no. 9: 1523. https://doi.org/10.3390/foods14091523
APA StyleFrusciante, L., Nyong’a, C. N., Trezza, A., Shabab, B., Olmastroni, T., Barletta, R., Mastroeni, P., Visibelli, A., Orlandini, M., Raucci, L., Geminiani, M., & Santucci, A. (2025). Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications. Foods, 14(9), 1523. https://doi.org/10.3390/foods14091523