Marine Microalgae–Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Mechanisms of Interaction in Microbial Consortia
3.1. Metabolite Exchange
3.2. Chemical Interactions
3.3. Metabolomics of Nannochloropsis
4. Co-Culture of Nannochloropsis with Microorganisms
4.1. Microalgae and Microalgae
4.2. Microalgae and Bacteria
4.3. Microalgae and Fungi
Microalgae and Yeasts
4.4. Co-Culture of Other Microalgae with Microorganisms
5. Nannochloropsis sp. in Food and Feed
5.1. Microalgae in Food and Feed
5.2. The Potential of Nannochloropsis in the Alternative Protein World
5.3. Toxicology, Safety, and Regulatory Aspects of Nannochloropsis sp.
6. Current Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DHA | docosahexaenoic acid |
DW | dry weight |
EPA | eicosapentaenoic acid |
EPS | extracellular polymeric substance |
EU | European Union |
FA | fatty acid |
IAA | indole-3-acetic acid |
MUFA | monounsaturated fatty acid |
PUFA | polyunsaturated fatty acid |
SFA | saturated fatty acid |
TAG | triacylglycerol |
QS | quorum sensing |
WWT | wastewater treatment |
References
- Wu, J.; Gu, X.; Yang, D.; Xu, S.; Wang, S.; Chen, X.; Wang, Z. Bioactive substances and potentiality of marine microalgae. Food Sci. Nutr. 2021, 9, 5279–5292. [Google Scholar] [CrossRef] [PubMed]
- Anusree, M.K.; Leela, K.M.; Sreehari, M.; Raj, S.; Sreenikethanam, A.; Bajhaiya, A.K. Marine microalgae: An emerging source of pharmaceuticals and bioactive compounds. In New Horizons in Natural Compound Research; Academic Press: Cambridge, MA, USA, 2023; pp. 251–265. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Lee, J.C.; Hou, M.F.; Huang, H.W.; Chang, F.R.; Yeh, C.C.; Tang, J.Y.; Chang, H.W. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Cadoret, J.-P.; Morant-Manceau, A.; Schoefs, B. The Potential of Microalgae for the Production of Bioactive Molecules of Pharmaceutical Interest. Curr. Pharm. Biotechnol. 2012, 13, 2733–2750. [Google Scholar] [CrossRef]
- Das, P.K.; Rani, J.; Rawat, S.; Kumar, S. Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. BioEnergy Res. 2021, 15, 1–26. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, M.; Yu, L.; Sun, H.; Liu, J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar. Drugs 2024, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Z.; Yu, C.; Yin, Y.; Zhou, G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 2014, 167, 503–509. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, R.; Du, Z.; Liu, Y. Current Status and Prospects of Biodiesel Production from Microalgae. Energies 2012, 5, 2667–2682. [Google Scholar] [CrossRef]
- Celi, C.; Fino, D.; Savorani, F. Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies. Bioresour. Technol. Rep. 2022, 19, 101122. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Mishra, N.; Mishra, N. Exploring the biologically active metabolites of isochrysis galbana in pharmaceutical interest: An overview. Int. J. Pharm. Sci. Res. 2018, 9, 2162–2174. [Google Scholar] [CrossRef]
- Lee, W.-K.; Ryu, Y.-K.; Choi, W.-Y.; Kim, T.; Park, A.; Lee, Y.-J.; Jeong, Y.; Lee, C.-G.; Kang, D.-H. Year-Round Cultivation of Tetraselmis sp. for Essential Lipid Production in a Semi-Open Raceway System. Mar. Drugs 2021, 19, 314. [Google Scholar] [CrossRef]
- Mehariya, S.; Annamalai, S.N.; Thaher, M.I.; Quadir, M.A.; Khan, S.; Rahmanpoor, A.; Kashem, A.; Faisal, M.; Sayadi, S.; Al Hawari, A.; et al. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. J. Environ. Manag. 2024, 365, 121520. [Google Scholar] [CrossRef]
- Celente, G.d.S.; Rizzetti, T.M.; Sui, Y.; Schneider, R.d.C.d.S. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass-Bioenergy 2022, 167, 106647. [Google Scholar] [CrossRef]
- Chi, G.; Xu, Y.; Cao, X.; Li, Z.; Cao, M.; Chisti, Y.; He, N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol. Adv. 2022, 55, 107897. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 2011, 102, 10–16. [Google Scholar] [CrossRef]
- Meireles, L.A.; Guedes, A.C.; Malcata, F.X. Lipid Class Composition of the Microalga Pavlova lutheri: Eicosapentaenoic and Docosahexaenoic Acids. J. Agric. Food Chem. 2003, 51, 2237–2241. [Google Scholar] [CrossRef]
- Australian Government. The Biology of Nannochloropsis Oceanica Suda & Miyashita (a Microalga); Australian Government: Canberra, ACT, Australia, 2019. [Google Scholar]
- Fawley, M.W.; Jameson, I.; Fawley, K.P. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 2015, 54, 545–552. [Google Scholar] [CrossRef]
- Brown, M.R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1991, 145, 79–99. [Google Scholar] [CrossRef]
- Scholz, M.J.; Weiss, T.L.; Jinkerson, R.E.; Jing, J.; Roth, R.; Goodenough, U.; Posewitz, M.C.; Gerken, H.G. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall. Eukaryot. Cell 2014, 13, 1450–1464. [Google Scholar] [CrossRef]
- Rebolloso-Fuentes, M.M.; Navarro-Pérez, A.; García-Camacho, F.; Ramos-Miras, J.J.; Guil-Guerrero, J.L. Biomass Nutrient Profiles of the MicroalgaNannochloropsis. J. Agric. Food Chem. 2001, 49, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Padmaperuma, G.; Kapoore, R.V.; Gilmour, D.J.; Vaidyanathan, S. Microbial consortia: A critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 2018, 38, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Goers, L.; Freemont, P.; Polizzi, K.M. Co-culture systems and technologies: Taking synthetic biology to the next level. J. R. Soc. Interface 2014, 11, 20140065. [Google Scholar] [CrossRef]
- Corcoran, A.A.; Boeing, W.J. Biodiversity Increases the Productivity and Stability of Phytoplankton Communities. PLoS ONE 2012, 7, e49397. [Google Scholar] [CrossRef]
- Christie-Oleza, J.A.; Sousoni, D.; Lloyd, M.; Armengaud, J.; Scanlan, D.J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2017, 2, 17100. [Google Scholar] [CrossRef]
- Selegato, D.M.; Castro-Gamboa, I. Enhancing chemical and biological diversity by co-cultivation. Front. Microbiol. 2023, 14, 1117559. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.; Reis, A. Microalgal symbiosis in biotechnology. Appl. Microbiol. Biotechnol. 2014, 98, 5839–5846. [Google Scholar] [CrossRef]
- Uratani, J.M.; Kumaraswamy, R.; Rodríguez, J. A systematic strain selection approach for halotolerant and halophilic bioprocess development: A review. Extremophiles 2014, 18, 629–639. [Google Scholar] [CrossRef]
- Baker, S.C.; Ferguson, S.J.; Ludwig, B.; Page, M.D.; Richter, O.-M.H.; van Spanning, R.J.M. Molecular Genetics of the Genus Paracoccus: Metabolically Versatile Bacteria with Bioenergetic Flexibility. Microbiol. Mol. Biol. Rev. 1998, 62, 1046–1078. [Google Scholar] [CrossRef]
- Lian, J.; Schimmel, P.; Sanchez-Garcia, S.; Wijffels, R.H.; Smidt, H.; Sipkema, D. Different co-occurring bacteria enhance or decrease the growth of the microalga Nannochloropsis sp. CCAP211/Microb. Biotechnol. 2021, 14, 1159–1170. [Google Scholar] [CrossRef]
- Daly, G.; Ghini, V.; Adessi, A.; Fondi, M.; Buchan, A.; Viti, C. Towards a mechanistic understanding of microalgae–bacteria interactions: Integration of metabolomic analysis and computational models. FEMS Microbiol. Rev. 2022, 46, fuac020. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-Del-Valle, M.; Vílchez, C. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds. Mar. Drugs 2016, 14, 100. [Google Scholar] [CrossRef]
- Chaïb, S.; Pistevos, J.C.; Bertrand, C.; Bonnard, I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Res. 2021, 54, 102213. [Google Scholar] [CrossRef]
- Montgomery, K.; Charlesworth, J.C.; LeBard, R.; Visscher, P.T.; Burns, B.P. Quorum Sensing in Extreme Environments. Life 2013, 3, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lyu, Y.; Richlen, M.L.; Anderson, D.M.; Cai, Z. Quorum Sensing Is a Language of Chemical Signals and Plays an Ecological Role in Algal-Bacterial Interactions. Crit. Rev. Plant Sci. 2016, 35, 81–105. [Google Scholar] [CrossRef]
- Segev, E.; Wyche, T.P.; Kim, K.H.; Petersen, J.; Ellebrandt, C.; Vlamakis, H.; Barteneva, N.; Paulson, J.N.; Chai, L.; Clardy, J.; et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 2016, 5, e17473. [Google Scholar] [CrossRef]
- Amin, S.A.; Hmelo, L.R.; Van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef]
- Li, J.; Han, D.; Wang, D.; Ning, K.; Jia, J.; Wei, L.; Jing, X.; Huang, S.; Chen, J.; Li, Y.; et al. Choreography of Transcriptomes and Lipidomes of Nannochloropsis Reveals the Mechanisms of Oil Synthesis in Microalgae. Plant Cell 2014, 26, 1645–1665. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Pan, Y.; Maréchal, E.; Amato, A.; Liu, M.; Gong, Y.; Li, Y.; Hu, H. PDAT regulates PE as transient carbon sink alternative to triacylglycerol in Nannochloropsis. Plant Physiol. 2022, 189, 1345–1362. [Google Scholar] [CrossRef]
- Razali, W.A.W.; Evans, C.A.; Pandhal, J. Comparative Proteomics Reveals Evidence of Enhanced EPA Trafficking in a Mutant Strain of Nannochloropsis oculata. Front. Bioeng. Biotechnol. 2022, 10, 838445. [Google Scholar] [CrossRef]
- Morris, M.M.; Kimbrel, J.A.; Geng, H.; Tran-Gyamfi, M.B.; Yu, E.T.; Sale, K.L.; Lane, T.W.; Mayali, X. Bacterial Community Assembly, Succession, and Metabolic Function During Nannochloropsis Salina Outdoor Cultivation. 2021. Available online: https://www.osti.gov/servlets/purl/1876956 (accessed on 29 March 2025).
- Subasankari, K.; Thanappan, V.; Jeyapragash, D.; Anantharaman, P.; RK, S. Growth promoting studies on co-culturing Nannochloropsis oceanica with Halomonas aquamarina actively enhance the algal biomass and lipid production. Biocatal. Agric. Biotechnol. 2020, 29, 101790. [Google Scholar] [CrossRef]
- Ferrer-Ledo, N.; Stegemüller, L.; Janssen, M.; Wijffels, R.H.; Barbosa, M.J. Growth and fatty acid distribution over lipid classes in Nannochloropsis oceanica acclimated to different temperatures. Front. Plant Sci. 2023, 14, 1078998. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.; Lin, Q.; Li, G.; Tan, Y.; Huang, L.; Lin, J. Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng. Life Sci. 2012, 12, 631–637. [Google Scholar] [CrossRef]
- Sukenik, A.; Carmeli, Y.; Berner, T. Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp. 1. J. Phycol. 1989, 25, 686–692. [Google Scholar] [CrossRef]
- Kim, C.W.; Sung, M.-G.; Nam, K.; Moon, M.; Kwon, J.-H.; Yang, J.-W. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol. 2014, 159, 30–35. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, X.; Wang, Q. Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with azotobacter chroococcum. Front. Plant Sci. 2018, 9, 338772. [Google Scholar] [CrossRef]
- Leyva, L.A.; Bashan, Y.; de-Bashan, L.E. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann. Microbiol. 2015, 65, 339–349. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, V.; Kumar, S.S.; Malyan, S.K.; Mathimani, T.; Bishnoi, N.R.; Pugazhendhi, A. Microalgal consortia for municipal wastewater treatment—Lipid augmentation and fatty acid profiling for biodiesel production. J. Photochem. Photobiol. B Biol. 2020, 202, 111638. [Google Scholar] [CrossRef]
- Davis, R.W.; Siccardi, A.J.; Huysman, N.D.; Wyatt, N.B.; Hewson, J.C.; Lane, T.W. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresour. Technol. 2015, 198, 577–585. [Google Scholar] [CrossRef]
- Maglie, M.; Baldisserotto, C.; Guerrini, A.; Sabia, A.; Ferroni, L.; Pancaldi, S. A co-cultivation process of Nannochloropsis oculata and Tisochrysis lutea induces morpho-physiological and biochemical variations potentially useful for biotechnological purposes. J. Appl. Phycol. 2021, 33, 2817–2832. [Google Scholar] [CrossRef]
- Thurn, A.-L.; Schobel, J.; Weuster-Botz, D. Photoautotrophic Production of Docosahexaenoic Acid- and Eicosapentaenoic Acid-Enriched Biomass by Co-Culturing Golden-Brown and Green Microalgae. Fermentation 2024, 10, 220. [Google Scholar] [CrossRef]
- Tran, N.A.T.; Tamburic, B.; Evenhuis, C.R.; Seymour, J.R. Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica. J. Appl. Phycol. 2020, 32, 3735–3748. [Google Scholar] [CrossRef]
- Corcoran, A.A.; Ohan, J.; Hanschen, E.R.; Granite, A.; Martinez, H.; Holguin, F.; Hovde, B.T.; Starkenburg, S.R. Scale-dependent enhancement of productivity and stability in xenic Nannochloropsis cultures. Algal Res. 2022, 68, 102892. [Google Scholar] [CrossRef]
- Powell, R.J.; Hill, R.T. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137. Appl. Environ. Microbiol. 2013, 79, 6093–6101. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Hidalgo, C.; Zapata, M.; Jeison, D.; Riquelme, C.; Rivas, M. Use of Cellulolytic Marine Bacteria for Enzymatic Pretreatment in Microalgal Biogas Production. Appl. Environ. Microbiol. 2014, 80, 4199–4206. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Alvaro, J.; Hyden, B.; Zienkiewicz, K.; Benning, N.; Zienkiewicz, A.; Bonito, G.; Benning, C. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol. Biofuels 2018, 11, 174. [Google Scholar] [CrossRef]
- Wrede, D.; Taha, M.; Miranda, A.F.; Kadali, K.; Stevenson, T.; Ball, A.S.; Mouradov, A. Co-Cultivation of Fungal and Microalgal Cells as an Efficient System for Harvesting Microalgal Cells, Lipid Production and Wastewater Treatment. PLoS ONE 2014, 9, e113497. [Google Scholar] [CrossRef]
- Ishika, T.; Moheimani, N.R.; Bahri, P.A. Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2017, 78, 356–368. [Google Scholar] [CrossRef]
- Thurn, A.-L.; Stock, A.; Gerwald, S.; Weuster-Botz, D. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. Bioresour. Bioprocess. 2022, 9, 130. [Google Scholar] [CrossRef]
- Ray, A.; Nayak, M.; Ghosh, A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Sci. Total. Environ. 2022, 802, 149765. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhou, X.; He, M.; Jin, W.; Chen, Y.; Sun, J. Pollutant removal and resource recovery of co-cultivated microalgae Chlorella sp. and Phaeodactylum tricornutum for marine aquaculture wastewater. J. Water Process. Eng. 2024, 67, 106182. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Piasai, C.; Tamzil, M.S. Construction of co-culture of microalgae with microorganisms for enhancing biomass production and wastewater treatment: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 623, 012024. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Xu, S.-M.; Cao, J.-Y.; Wu, M.-N.; Lin, J.-H.; Zhou, C.-X.; Zhang, L.; Zhou, H.-B.; Li, Y.-R.; Xu, J.-L.; et al. Co-cultivation of Isochrysis galbana and Marinobacter sp. can enhance algal growth and docosahexaenoic acid production. Aquaculture 2022, 556, 738248. [Google Scholar] [CrossRef]
- Chorazyczewski, A.M.; Huang, I.; Abdulla, H.; Mayali, X.; Zimba, P.V. The Influence of Bacteria on the Growth, Lipid Production, and Extracellular Metabolite Accumulation by Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 2021, 57, 931–940. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Hajjar, R.; Ambaraghassi, G.; Sebajang, H.; Schwenter, F.; Su, S.-H. Raoultella ornithinolytica: Emergence and Resistance. Infect. Drug Resist. 2020, 13, 1091–1104. [Google Scholar] [CrossRef]
- Dias, C.; Santos, J.; Reis, A.; da Silva, T.L. Yeast and microalgal symbiotic cultures using low-cost substrates for lipid production. Bioresour. Technol. Rep. 2019, 7, 100261. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Mehtani, J.; A Pruthi, P.; Pruthi, V.; Poluri, K.M. Co-culturing of oleaginous microalgae and yeast: Paradigm shift towards enhanced lipid productivity. Environ. Sci. Pollut. Res. 2019, 26, 16952–16973. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, R.K.; Simpson, Z.F.; Oosthuizen, J.R.; Bauer, F.F. Nutrient Exchange of Carbon and Nitrogen Promotes the Formation of Stable Mutualisms Between Chlorella sorokiniana and Saccharomyces cerevisiae Under Engineered Synthetic Growth Conditions. Front. Microbiol. 2019, 10, 609. [Google Scholar] [CrossRef]
- Ling, J.; Nip, S.; Cheok, W.L.; de Toledo, R.A.; Shim, H. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 2014, 173, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Reis, A.; Santos, J.A.; Gouveia, L.; da Silva, T.L. Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production. Process. Biochem. 2022, 113, 71–86. [Google Scholar] [CrossRef]
- Bahafid, W.; Tahri Joutey, N.; Sayel, H.; Boularab, I.; EL Ghachtouli, N. Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. J. Appl. Microbiol. 2013, 115, 727–734. [Google Scholar] [CrossRef]
- Cai, S.; Hu, C.; Du, S. Comparisons of Growth and Biochemical Composition between Mixed Culture of Alga and Yeast and Monocultures. J. Biosci. Bioeng. 2007, 104, 391–397. [Google Scholar] [CrossRef]
- Azarpour, A.; Zendehboudi, S.; Mohammadzadeh, O.; Rajabzadeh, A.R.; Chatzis, I. A review on microalgal biomass and biodiesel production through Co-cultivation strategy. Energy Convers. Manag. 2022, 267, 115757. [Google Scholar] [CrossRef]
- Leng, L.; Li, W.; Chen, J.; Leng, S.; Chen, J.; Wei, L.; Peng, H.; Li, J.; Zhou, W.; Huang, H. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Bioresour. Technol. 2021, 330, 125008. [Google Scholar] [CrossRef]
- Tong, C.; Honda, K.; Derek, C. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ. Res. 2023, 228, 115872. [Google Scholar] [CrossRef]
- Rasheed, R.N.; Pourbakhtiar, A.; Allaf, M.M.; Baharlooeian, M.; Rafiei, N.; Aratboni, H.A.; Morones-Ramirez, J.R.; Winck, F.V. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front. Bioeng. Biotechnol. 2023, 11, 1193424. [Google Scholar] [CrossRef]
- Huang, W.-W.; Dong, B.-Z.; Cai, Z.-P.; Duan, S.-S. Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations. Afr. J. Biotechnol. 2011, 10, 13164–13174. [Google Scholar] [CrossRef]
- Kadalag, N.L.; Pawar, P.R.; Prakash, G. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production. Bioresour. Technol. 2022, 346, 126544. [Google Scholar] [CrossRef]
- Škufca, D.; Božič, D.; Hočevar, M.; Jeran, M.; Zavec, A.B.; Kisovec, M.; Podobnik, M.; Matos, T.; Tomazin, R.; Iglič, A.; et al. Interaction between Microalgae P. tricornutum and Bacteria Thalassospira sp. for Removal of Bisphenols from Conditioned Media. Int. J. Mol. Sci. 2022, 23, 8447. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.T.; Kwon, B.-R.; Eom, J.-I.; Shin, B.-K.; Kim, S.M. Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids. J. Appl. Phycol. 2020, 32, 71–82. [Google Scholar] [CrossRef]
- Phatarpekar, P.; Sreepada, R.; Pednekar, C.; Achuthankutty, C. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture 2000, 181, 141–155. [Google Scholar] [CrossRef]
- Wang, H.; Qi, M.; Bo, Y.; Zhou, C.; Yan, X.; Wang, G.; Cheng, P. Treatment of fishery wastewater by co-culture of Thalassiosira pseudonana with Isochrysis galbana and evaluation of their active components. Algal Res. 2021, 60, 102498. [Google Scholar] [CrossRef]
- Sandhya, S.V.; Vijayan, K.K. Symbiotic association among marine microalgae and bacterial flora: A study with special reference to commercially important Isochrysis galbana culture. J. Appl. Phycol. 2019, 31, 2259–2266. [Google Scholar] [CrossRef]
- Kawaroe, M.; Prartono, T.; Sunuddin, A.; Saputra, D. Marine Microalgae Tetraselmis suecica as Flocculant Agent of Bio-flocculation Method. Hayati J. Biosci. 2016, 23, 62–66. [Google Scholar] [CrossRef]
- Park, J.; Park, B.S.; Wang, P.; Patidar, S.K.; Kim, J.H.; Kim, S.-H.; Han, M.-S. Phycospheric Native Bacteria Pelagibaca bermudensis and Stappia sp. Ameliorate Biomass Productivity of Tetraselmis striata (KCTC1432BP) in Co-cultivation System through Mutualistic Interaction. Front. Plant Sci. 2017, 8, 289. [Google Scholar] [CrossRef]
- Han, J.; Zhang, L.; Wang, S.; Yang, G.; Zhao, L.; Pan, K. Co-culturing bacteria and microalgae in organic carbon containing medium. J. Biol. Res. 2016, 23, 8. [Google Scholar] [CrossRef]
- Muradov, N.; Taha, M.; Miranda, A.F.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.S.; Mouradov, A. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnol. Biofuels 2015, 8, 24. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, B.; Tang, T. Effect of co-culture with Halomonas mongoliensis on Dunaliella salina growth and phenol degradation. Front. Bioeng. Biotechnol. 2022, 10, 1072868. [Google Scholar] [CrossRef]
- Butler, T. The Diatom Phaeodactylum Tricornutum as a Sustainable Microalgal Cell Factory: Towards a Biorefinery Approach. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2021. Available online: https://etheses.whiterose.ac.uk/id/eprint/29308/ (accessed on 7 February 2025).
- Kusmayadi, A.; Leong, Y.K.; Yen, H.-W.; Huang, C.-Y.; Chang, J.-S. Microalgae as sustainable food and feed sources for animals and humans—Biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–nutritious, sustainable aqua- and animal feed source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Martínez-Córdova, L.R.; Emerenciano, M.; Miranda-Baeza, A.; Martínez-Porchas, M. Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquac. 2015, 7, 131–148. [Google Scholar] [CrossRef]
- Tyus, C. Discovering Potential Protein, Carbohydrate, and Lipid Based Food Ingredients in a Co-Culture of Microalgae. Ph.D. Thesis, Agricultural & Mechanical College, Louisiana State University, Baton Rouge, LA, USA, 2019. Available online: https://digitalcommons.lsu.edu/gradschool_dissertations/5018 (accessed on 8 February 2025).
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a potential source of protein meat alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Rojas-Tavara, A.N.; Donayre-Torres, A.J. Microalgae in lab-grown meat production. Czech J. Food Sci. 2023, 41, 406–418. [Google Scholar] [CrossRef]
- Hubalek, S.; Post, M.J.; Moutsatsou, P. Towards resource-efficient and cost-efficient cultured meat. Curr. Opin. Food Sci. 2022, 47, 100885. [Google Scholar] [CrossRef]
- Okamoto, Y.; Haraguchi, Y.; Sawamura, N.; Asahi, T.; Shimizu, T. Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnol. Prog. 2020, 36, e2941. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Shimizu, T. Microalgal culture in animal cell waste medium for sustainable ‘cultured food’ production. Arch. Microbiol. 2021, 203, 5525–5532. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Shimizu, T. Three-dimensional tissue fabrication system by co-culture of microalgae and animal cells for production of thicker and healthy cultured food. Biotechnol. Lett. 2021, 43, 1117–1129. [Google Scholar] [CrossRef]
- Srinivasan Babuskin, S.B.; Krishnan, K.R.; Babu, P.A.S.; Meenatchisundaram Sivarajan, M.S.; Muthusamy Sukumar, M.S. Functional foods enriched with marine microalga Nannochloropsis oculata as a source of ω-3 fatty acids. Food Technol. Biotechnol. 2025, 52, 292–299. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20143328456 (accessed on 20 March 2025).
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Vigani, M.; Barbosa, M.; Enzing, C.; Parisi, C.; Ploeg, M.; Sijtsma, L.; Rodríguez Cerezo, E. Microalgae-Based Products for the Food and Feed Sector—An outlook for Europe; Joint Research Centre; Publications Office of the European Union: Seville, Spain, 2014. [Google Scholar] [CrossRef]
- Algae as Novel Food in Europe. Information paper. European Algae Biomass Association (EABA). 2021. Available online: https://www.algae-novel-food.com/output/algae-novel-food/download.pdf (accessed on 26 February 2025).
- Food and Feed Information Portal Database|FIP. Available online: https://ec.europa.eu/food/food-feed-portal/screen/novel-food-catalogue/search (accessed on 26 February 2025).
- Al-Hoqani, U.; Young, R.; Purton, S. The biotechnological potential of Nannochloropsis. Perspect. Phycol. 2016, 4, 1–15. [Google Scholar] [CrossRef]
Marine Microalgae Species | Bioactive Compounds | Total Lipid Content | Applications | Reference |
---|---|---|---|---|
Nannochloropsis spp. | PUFAs, EPA | 30–60% | Biofuel, nutraceuticals, feed, food | [7,8] |
Phaeodactylum tricornutum | PUFAs, EPA, fucoxanthin | 20–30% | Nutraceuticals, pharmaceuticals, biofuel, cosmetics | [9,10] |
Isochrysis galbana | PUFAs, DHA, EPA | 25–30% | Aquaculture feed, nutraceuticals | [11,12] |
Tetraselmis spp. | PUFAs | 12–15% | Aquaculture feeds, biofuel, wastewater treatment | [13,14] |
Dunaliella salina | PUFAs, Beta-carotene, lutein | 7% | Biofuel, cosmetics, nutraceuticals, pharmaceuticals | [15] |
Schizochytrium spp. | PUFAs, DHA | (up to 60% under stress) | DHA-rich oils, oral vaccines | [16,17] |
Pavlova lutheri | PUFAs, DHA, EPA | 50–70% | Aquaculture feed, biofuel | [18] |
Co-Culture Type | Microalgae Species | Co-Culture Species | Application | Reference |
---|---|---|---|---|
Microalgae– microalgae | Nannochloropsis sp. | MAC1 1: Chlorella sp., Chlamydomonas reinhardtii, Scenedesmus bijugatus, and Oscillatoria MAC2: Chlorella sp., Kirchnella, Scenedesmus dimorphus, and Microcoleus | - Sewage wastewater treatment. - Heavy metal removal by bioaugmentation. | [52] |
M. salina | Phaeodactylum tricornutum | - Wastewater treatment. | [53] | |
N. oculata | Tisochrysis lutea | - Biomass growth and lipid production. | [54] | |
N. oceanica | Isochrysis galbana | - Biomass growth and lipid production. | [55] | |
Microalgae– bacteria | N. oceanica | Halomonas aquamarina | - Biomass growth and lipid production. | [45] |
N. oceanica | Bacterial isolates from the Rhodobacterales, Flavobacteriales, and Sphingomonadale orders | - Facilitate biomass aggregation. | [56] | |
N. oceanica | Genera Algoriphagus, Oceanicaulis, and Marinobacter | - Enhance productivity and stability of cell cultures. | [57] | |
N. oceanica | Bacillus sp. | - Cell aggregation for biofuel production. | [58] | |
M. gaditana | Raoultella ornithinolytica | - Cell wall degradation for biofuel production. | [59] | |
Microalgae–fungi | N. oceanica | Mortierella elongata | - Biofuel production. - Harvesting efficiency. | [60,61] |
N. oculata | Aspergillus fumigatus | - Wastewater treatment. - Lipid production. - Harvesting efficiency. | [61] |
Marine Microalgae Species | Co-Culture Type | Co-Culture Partners | Application | Reference |
---|---|---|---|---|
Phaeodactylum tricornutum | Microalgae– microalgae | Chlorella sp. | - Marine aquaculture wastewater treatment. | [65] |
Dunaliella salina | - Biomass growth and lipid and chlorophyll production. | [82] | ||
Aurantiochytrium limacinum | - EPA and DHA production. | [83] | ||
Microalgae–bacteria | Marinobacter sp. | - Biomass growth and lipid production. | [68] | |
Thalassospira sp. | - Bisphenol removal from media. | [84] | ||
Stappia sp. | - Biomass growth and lipid and carotenoid production. | [85] | ||
Isochrysis galbana | Microalgae– microalgae | Chaetoceros calcitrans | - Added-value metabolite production. | [86] |
Microalgae–bacteria | Thalassiosira pseudonana | - Fishery wastewater treatment. | [87] | |
Marinobacter sp. | - Biomass growth and DHA production. | [67] | ||
Alteromonas sp. | - Biomass growth and metabolite production. | [88] | ||
Labrenzia sp. | - Biomass growth and metabolite production. | [88] | ||
Microalgae–yeast | Ambrosiozyma cicatricosa | - Biomass growth. | [77] | |
Tetraselmis spp. | Microalgae– microalgae | T. lutea and Microchloropsis salina | - EPA and DHA production. | [63] |
T. sueccia, and Chlorella sp., Nannochloropsis sp. | - Bio-flocculation for cell harvesting. | [89] | ||
Microalgae–bacteria | T. striata and Pelagibaca bermudensis, Stappia sp. | - Biomass growth and lipid production. | [90] | |
T. chuii, and Muricauda sp. | - Biomass growth. | [91] | ||
Microalgae–fungi | T. suecica and Aspergillus fumigatus | - Bio-flocculation for cell harvesting, biomass growth, and lipid production, | [92] | |
Dunaliella salina | Microalgae–bacteria | Halomonas mongoliensis | - Bisphenol removal from wastewater. | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, M.V.; Marques, D.M.C.; de Almeida, J.D.; Faria, N.T.; Ferreira, F.C. Marine Microalgae–Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications. Foods 2025, 14, 1522. https://doi.org/10.3390/foods14091522
Esteves MV, Marques DMC, de Almeida JD, Faria NT, Ferreira FC. Marine Microalgae–Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications. Foods. 2025; 14(9):1522. https://doi.org/10.3390/foods14091522
Chicago/Turabian StyleEsteves, Marta Vala, Diana M. C. Marques, Joana D. de Almeida, Nuno Torres Faria, and Frederico Castelo Ferreira. 2025. "Marine Microalgae–Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications" Foods 14, no. 9: 1522. https://doi.org/10.3390/foods14091522
APA StyleEsteves, M. V., Marques, D. M. C., de Almeida, J. D., Faria, N. T., & Ferreira, F. C. (2025). Marine Microalgae–Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications. Foods, 14(9), 1522. https://doi.org/10.3390/foods14091522