The Use of Different Cell Wall Degrading Enzymes for Pectin Extraction from Carrot Pomace, in Comparison to and in Combination with an Acid Extraction
Abstract
1. Introduction
2. Material and Methods
2.1. Material
2.2. Characterization and Pretreatment of the Starting Material
2.2.1. Dry Matter Content
2.2.2. Production of the Alcohol Insoluble Residue
2.2.3. Pretreatment of the Starting Material
2.3. Different Pectin Extraction Processes
2.3.1. Acid Extraction
2.3.2. Enzyme-Assisted Extraction
2.3.3. Combination Treatments
2.3.4. Alcohol Precipitation
2.4. Determination of the Extraction Yield on Mass Basis
2.5. Determination of the Molecular Structure of the Extracted Materials
2.5.1. Monosaccharide Content
2.5.2. Protein Content
2.5.3. Degree of Methylesterification
2.5.4. Molar Mass Distribution
2.6. Calculations
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Cell Wall Degrading Enzymes and a Heat Treatment
3.1.1. Extraction Yield
3.1.2. Pectin Extraction Yield
3.1.3. Composition of the Extracted Material
3.1.4. Molecular Structure of the Extracted Pectin
3.2. Combination of an Enzyme-Assisted Extraction with an Acid Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Müller-Maatsch, J.; Bencivenni, M.; Caligiani, A.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Petrusan, J.; Van Droogenbroeck, B.; Elst, K.; Sforza, S. Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chem. 2016, 201, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Zaidel, D.N.A.; Meyer, A.S. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality: Structures, mechanisms, and reactions. Biocatal. Agric. Biotechnol. 2012, 1, 207–219. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, C.; Feng, L.; Han, Y.; Du, H.; Xiao, H.; Zheng, J. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci. Technol. 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Albersheim, P.; Darvill, A.G.; O’Neill, M.A.; Schols, H.A.; Voragen, A.G.J. An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants. Prog. Biotechnol. 1996, 14, 47–55. [Google Scholar] [CrossRef]
- Khedmat, L.; Izadi, A.; Mofid, V.; Mojtahedi, S.Y. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr. Polym. 2020, 229, 115474. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Sila, D.N.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Pectins in processed fruits and vegetables: Part III—Texture engineering. Compr. Rev. Food Sci. Food Saf. 2009, 8, 105–117. [Google Scholar] [CrossRef]
- Waldron, K.W.; Parker, M.L.; Smith, A.C. Plant Cell Walls and Food Quality. Compr. Rev. Food Sci. Food Saf. 2003, 2, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elseoud, W.S.; Hassan, E.A.; Hassan, M.L. Extraction of pectin from sugar beet pulp by enzymatic and ultrasound-assisted treatments. Carbohydr. Polym. Technol. Appl. 2021, 2, 100042. [Google Scholar] [CrossRef]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Idrovo Encalada, A.M.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- Panouillé, M.; Thibault, J.F.; Bonnin, E. Cellulase and protease preparations can extract pectins from various plant byproducts. J. Agric. Food Chem. 2006, 54, 8926–8935. [Google Scholar] [CrossRef]
- Milošević, M.M.; Antov, M.G. Pectin from butternut squash (Cucurbita moschata)—The effect of enzyme-assisted extractions on fiber characteristics and properties. Food Hydrocoll. 2022, 123, 107201. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Hu, D.; Xiao, K.; Wu, J.Y. Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocoll. 2018, 79, 189–196. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Application of Celluclast 1.5L in apple pectin extraction. Carbohydr. Polym. 2015, 134, 251–257. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Grabacka, M. Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocoll. 2015, 44, 156–161. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr. Polym. 2016, 142, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ptichkina, N.M.; Markina, O.A.; Rumyantseva, G.N. Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocoll. 2008, 22, 192–195. [Google Scholar] [CrossRef]
- Dranca, F.; Vargas, M.; Oroian, M. Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll. 2020, 100, 105383. [Google Scholar] [CrossRef]
- Naghshineh, M.; Olsen, K.; Georgiou, C.A. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem. 2013, 136, 472–478. [Google Scholar] [CrossRef]
- Shkodina, O.G.; Zeltser, O.A.; Selivanov, N.Y.; Ignatov, V.V. Enzymic extraction of pectin preparations from pumpkin. Food Hydrocoll. 1998, 12, 313–316. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot-A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- De Laet, E.; Bernaerts, T.; Dewettinck, K.; Hendrickx, M.E.; Van Loey, A.M. The effect of different particle size reduction techniques on the biomass microstructure and the influence on the pectin extraction yield and structure. Food Hydrocoll. 2024, 151, 109875. [Google Scholar] [CrossRef]
- Vicent, V.; Ndoye, F.-T.; Verboven, P.; Nicolaï, B.; Alvarez, G. Effect of dynamic storage temperatures on the microstructure of frozen carrot imaged using X-ray micro-CT. J. Food Eng. 2019, 246, 232–241. [Google Scholar] [CrossRef]
- McFeeters, R.F.; Armstrong, S.A. Measurement of pectin methylation in plant cell walls. Anal. Biochem. 1984, 139, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, K.L.D.D.; Panozzo, A.; Moelants, K.; Debon, S.J.J.; Desmet, C.; Cardinaels, R.; Moldenaers, P.; Wallecan, J.; Hendrickx, M.E.G. Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocoll. 2017, 72, 358–371. [Google Scholar] [CrossRef]
- Ahmed, A.E.R.; Labavitch, J.M. a Simplified Method for Accurate Determination of Cell Wall Uronide Content. J. Food Biochem. 1978, 1, 361–365. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method of quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Yeats, T.; Vellosillo, T.; Sorek, N.; Ibáñez, A.; Bauer, S. Rapid Determination of Cellulose, Neutral Sugars, and Uronic Acids from Plant Cell Walls by One-step Two-step Hydrolysis and HPAEC-PAD. Bio-Protocol 2016, 6, e1978. [Google Scholar] [CrossRef]
- Jung, S.; Rickert, D.A.; Deak, N.A.; Aldin, E.D.; Recknor, J.; Johnson, L.A.; Murphy, P.A. Comparison of kjeldahl and dumas methods for determining protein contents of soybean products. J. Am. Oil Chem. Soc. 2003, 80, 1169. [Google Scholar] [CrossRef]
- Kyomugasho, C.; Christiaens, S.; Shpigelman, A.; Van Loey, A.M.; Hendrickx, M.E. FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit- and vegetable-based matrices. Food Chem. 2015, 176, 82–90. [Google Scholar] [CrossRef]
- Shpigelman, A.; Kyomugasho, C.; Christiaens, S.; Van Loey, A.M.; Hendrickx, M.E. Thermal and high pressure high temperature processes result in distinctly different pectin non-enzymatic conversions. Food Hydrocoll. 2014, 39, 251–263. [Google Scholar] [CrossRef]
- Denman, L.J.; Morris, G.A. An experimental design approach to the chemical characterisation of pectin polysaccharides extracted from Cucumis melo Inodorus. Carbohydr. Polym. 2015, 117, 364–369. [Google Scholar] [CrossRef]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef]
- Zykwinska, A.; Boiffard, M.H.; Kontkanen, H.; Buchert, J.; Thibault, J.F.; Bonnin, E. Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 2008, 56, 8926–8935. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, S.; Uwibambe, D.; Uyttebroek, M.; Van Droogenbroeck, B.; Van Loey, A.M.; Hendrickx, M.E. Pectin characterisation in vegetable waste streams: A starting point for waste valorisation in the food industry. LWT Food Sci. Technol. 2015, 61, 275–282. [Google Scholar] [CrossRef]
- Fissore, E.N.; Ponce, N.M.; Wider, E.A.; Stortz, C.A.; Gerschenson, L.N.; Rojas, A.M. Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). J. Food Eng. 2009, 93, 293–301. [Google Scholar] [CrossRef]
- Dominiak, M.; Søndergaard, K.M.; Wichmann, J.; Vidal-Melgosa, S.; Willats, W.G.T.; Meyer, A.S.; Mikkelsen, J.D. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll. 2014, 40, 273–282. [Google Scholar] [CrossRef]
- Neckebroeck, B.; Verkempinck, S.H.E.; Vaes, G.; Wouters, K.; Magnée, J.; Hendrickx, M.E.; Van Loey, A.M. Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains. Food Hydrocoll. 2020, 102, 105594. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, H.Y.; Ahn, S.H.; Oh, S.C.; Yang, I.; Choi, I.G. Optimization of enzymatic hydrolysis conditions for extraction of pectin from rapeseed cake (Brassica napus L.) using commercial enzymes. Food Chem. 2014, 157, 332–338. [Google Scholar] [CrossRef]
- Levigne, S.; Ralet, M.C.; Thibault, J.F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydr. Polym. 2002, 49, 145–153. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, J.; Song, Y.; Ruan, C.; Liao, J. Effect of enzyme-assisted acid extraction on citrus high-methoxyl pectin riched in RG-I: Preparation, structure characterisation and physico-chemical properties. Int. J. Food Sci. Technol. 2023, 58, 6386–6398. [Google Scholar] [CrossRef]
- Fraeye, I.; Duvetter, T.; Doungla, E.; Van Loey, A.; Hendrickx, M. Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci. Technol. 2010, 21, 219–228. [Google Scholar] [CrossRef]
- Kastner, H.; Einhorn-Stoll, U.; Drusch, S. Influence of enzymatic and acidic demethoxylation on structure formation in sugar containing citrus pectin gels. Food Hydrocoll. 2019, 89, 207–215. [Google Scholar] [CrossRef]
g/100 g Extracted Material | Co-Extracted Hemicellulose | Co-Extracted Cellulose | |
---|---|---|---|
Glucose (Glc) | Mannose (Man) | Glucose (Glc) | |
(4% H2SO4) | (72% H2SO4–4%% H2SO4) | ||
C100 | 0.80 ± 0.11 | 0.64 ± 0.10 | 0.24 ± 0.34 |
C100 + H | 1.08 ± 0.31 | 0.48 ± 0.20 | n.d. |
HC100 | 39.08 ± 4.44 | 5.34 ± 0.97 | 2.63 ± 10.04 |
HC100 + H | 34.82 ± 1.93 | 4.47 ± 1.03 | 3.44 ± 6.73 |
C + HC100 | 5.68 ± 1.53 | 0.69 ± 0.21 | 7.28 ± 2.23 |
C + HC100 + H | 6.12 ± 0.71 | 0.40 ± 0.10 | 6.51 ± 1.51 |
AE | 0.96 ± 0.22 | 0.02 ± 0.01 | n.d. |
Sugar Ratios | Degree of Methylesterification (%) | Weighted-Average Molar Mass (kDa) | |||
---|---|---|---|---|---|
Contribution of HG (%) GalA-Rha | Contribution of RG I (%) 2Rha + Gal + Ara | Branching of RG I (-) (Ara + Gal)/Rha | |||
C100 | 72.72 ± 4.80 A | 24.88 ± 2.07 A | 5.27 ± 0.95 B | 68.89 ± 0.36 A | 108 ± 10.5 BCD |
C100 + H | 68.36 ± 5.20 AB | 29.04 ± 4.38 A | 4.50 ± 1.33 BC | 66.80 ± 1.20 A | 168 ± 34.4 B |
HC100 | 25.34 ± 4.60 D | 12.72 ± 0.87 B | 44.4 ± 20.9 A | 61.83 ± 0.93 B | 88.6 ± 4.8 CD |
HC100 + H | 33.84 ± 2.37 C | 11.47 ± 0.66 B | 46.3 ± 10.5 A | 67.38 ± 1.62 A | 154 ± 49.3 BC |
C + HC100 | 61.31 ± 1.99 B | 28.05 ± 3.86 A | 4.78 ± 1.16 B | 68.98 ± 0.62 A | 74.9 ± 16.2 D |
C + HC100 + H | 67.55 ± 7.13 AB | 23.08 ± 3.25 A | 6.34 ± 2.23 B | 67.54 ± 0.94 A | 120 ± 24.1 BCD |
AE | 73.27 ± 4.30 A | 25.12 ± 0.99 A | 3.10 ± 0.26 C | 62.94 ± 0.45 B | 282 ± 29.4 A |
Pectin Purity (%) | Protein Content (% on Dry Matter Basis) | ||
---|---|---|---|
AE + C100 | Extraction step 1—AE | 73.97 ± 3.33 BC | 5.77 ± 0.41 B |
Extraction step 2—C100 | 68.73 ± 3.76 C | 8.46 ± 0.08 A | |
AE + C100 + H | Extraction step 1—AE | 73.97 ± 3.33 BC | 5.77 ± 0.41 B |
Extraction step 2—C100 + H | 77.86 ± 4.37 AB | 4.04 ± 1.00 C | |
C100 + AE | Extraction step 1—C100 | 68.38 ± 3.64 C | 7.86 ± 0.11 A |
Extraction step 2—AE | 76.69 ± 1.70 AB | 3.85 ± 0.09 C | |
C100 + H + AE | Extraction step 1—C100 +H | 75.89 ± 4.99 ABC | 3.12 ± 0.16 C |
Extraction step 2—AE | 79.49 ± 2.23 A | 3.61 ± 0.04 C |
Monosaccharide Ratios | Degree of Methylesterification (%) | Weighted-Average Molar Mass (kDa) | ||||
---|---|---|---|---|---|---|
Contribution of HG (%) GalA-Rha | Contribution of RG I (%) 2Rha + Gal + Ara | Branching of RG I (-) (Ara + Gal)/Rha | ||||
AE + C100 | Extraction step 1 | 73.27 ± 4.30 A | 25.12 ± 0.99 B | 3.10 ± 0.26 B | 62.94 ± 0.45 B | 282 ± 29.4 B |
Extraction step 2 | 70.43 ± 5.13 A | 25.60 ± 0.91 B | 1.80 ± 0.13 C | 50.06 ± 2.22 E | 77.7 ± 0.72 C | |
AE + C100 + H | Extraction step 1 | 73.27 ± 4.30 A | 25.12 ± 0.99 B | 3.10 ± 0.26 B | 62.94 ± 0.45 B | 282 ± 29.4 B |
Extraction step 2 | 68.70 ± 5.07 A | 28.05 ± 2.43 B | 1.82 ± 0.32 C | 56.08 ± 1.24 D | 163 ± 53.8 C | |
C100 + AE | Extraction step 1 | 72.72 ± 4.80 A | 24.88 ± 2.07 B | 5.27 ± 0.95 AB | 68.89 ± 0.36 A | 108 ± 10.5 C |
Extraction step 2 | 61.17 ± 1.35 B | 37.90 ± 2.38 A | 3.24 ± 0.42 B | 56.95 ± 1.24 CD | 505 ± 59.3 A | |
C100 + H + AE | Extraction step 1 | 68.36 ± 5.20 A | 29.04 ± 4.38 B | 4.51 ± 1.33 A | 66.80 ± 1.20 A | 168 ± 34.4 BC |
Extraction step 2 | 58.48 ± 2.23 B | 40.63 ± 2.47 A | 3.40 ± 0.45 B | 59.22 ± 0.85 C | 580 ± 91.2 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Laet, E.; Bernaerts, T.; Morren, L.; Vanmarcke, H.; Van Loey, A.M. The Use of Different Cell Wall Degrading Enzymes for Pectin Extraction from Carrot Pomace, in Comparison to and in Combination with an Acid Extraction. Foods 2025, 14, 435. https://doi.org/10.3390/foods14030435
De Laet E, Bernaerts T, Morren L, Vanmarcke H, Van Loey AM. The Use of Different Cell Wall Degrading Enzymes for Pectin Extraction from Carrot Pomace, in Comparison to and in Combination with an Acid Extraction. Foods. 2025; 14(3):435. https://doi.org/10.3390/foods14030435
Chicago/Turabian StyleDe Laet, Elien, Tom Bernaerts, Lise Morren, Hanne Vanmarcke, and Ann M. Van Loey. 2025. "The Use of Different Cell Wall Degrading Enzymes for Pectin Extraction from Carrot Pomace, in Comparison to and in Combination with an Acid Extraction" Foods 14, no. 3: 435. https://doi.org/10.3390/foods14030435
APA StyleDe Laet, E., Bernaerts, T., Morren, L., Vanmarcke, H., & Van Loey, A. M. (2025). The Use of Different Cell Wall Degrading Enzymes for Pectin Extraction from Carrot Pomace, in Comparison to and in Combination with an Acid Extraction. Foods, 14(3), 435. https://doi.org/10.3390/foods14030435