Ultra-Processed Food Consumption Is Associated with an Increased Risk of Abdominal Obesity in Adults: A Cross-Sectional Study in Shanghai
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Data Collection
2.3. The Definition
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Energy and Nutrient Intake
3.3. Distribution of Metabolic Disorders Among Different Groups
3.4. Logistic Regression Analysis of Influencing Factors of Metabolic Disorders
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| UPFs | Ultra-processed foods |
| BMI | Body mass index |
| FBG | Fasting blood glucose |
| HDL-C | High-density lipoprotein cholesterol |
| TG | Serum triglycerides |
| WC | Waist circumference |
| WHR | Waist-to-hip ratio |
| SBP | Systolic blood pressure |
| DBP | Diastolic blood pressure |
| ORs | Odds ratios |
| CI | Confidence intervals |
References
- Pan, F.; Wang, Z.; Wang, H.; Zhang, J.; Su, C.; Jia, X.; Du, W.; Jiang, H.; Li, W.; Wang, L.; et al. Association between Ultra-Processed Food Consumption and Metabolic Syndrome among Adults in China—Results from the China Health and Nutrition Survey. Nutrients 2023, 15, 752. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Laster, J.; Frame, L.A. Beyond the Calories—Is the Problem in the Processing? Curr. Treat. Options Gastroenterol. 2019, 17, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Haque, M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022, 14, e28762. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef]
- Cordova, R.; Kliemann, N.; Huybrechts, I.; Rauber, F.; Vamos, E.P.; Levy, R.B.; Wagner, K.H.; Viallon, V.; Casagrande, C.; Nicolas, G.; et al. Consumption of ultra-processed foods associated with weight gain and obesity in adults: A multi-national cohort study. Clin. Nutr. 2021, 40, 5079–5088. [Google Scholar] [CrossRef]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-processed food consumption and risk of obesity: A prospective cohort study of UK Biobank. Eur. J. Nutr. 2021, 60, 2169–2180. [Google Scholar] [CrossRef] [PubMed]
- Rivera, N.; Du, S.; Bernard, L.; Kim, H.; Matsushita, K.; Rebholz, C.M. Ultra-Processed Food Consumption and Risk of Incident Hypertension in US Middle-Aged Adults. J. Am. Heart Assoc. 2024, 13, e035189. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; Campagnolo, P.D.; Hoffman, D.J.; Vitolo, M.R. Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.L.; Vigo, Á.; Luft, V.C.; Levy, R.B.; Alvim Matos, S.M.; Del Carmen Molina, M.; Giatti, L.; Barreto, S.; Duncan, B.B.; Schmidt, M.I. Ultra-Processed Food Consumption and Increased Risk of Metabolic Syndrome in Adults: The ELSA-Brasil. Diabetes Care 2023, 46, 369–376. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Jiménez-Onsurbe, M.; Donat-Vargas, C.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption Is Associated with Abdominal Obesity: A Prospective Cohort Study in Older Adults. Nutrients 2020, 12, 2368. [Google Scholar] [CrossRef]
- Ulug, E.; Acikgoz Pinar, A.; Yildiz, B.O. Impact of ultra-processed foods on hedonic and homeostatic appetite regulation: A systematic review. Appetite 2025, 213, 108139. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Nardocci, M.; Leclerc, B.S.; Louzada, M.L.; Monteiro, C.A.; Batal, M.; Moubarac, J.C. Consumption of ultra-processed foods and obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. S1), 16–26. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2005. Available online: https://www.stats.gov.cn/sj/ndsj/2005/indexch.html (accessed on 11 April 2025).
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2024. Available online: https://www.stats.gov.cn/sj/ndsj/2024/indexch.html (accessed on 11 April 2025).
- Hu, X.F.; Zhang, R.; Chan, H.M. Identification of Chinese dietary patterns and their relationships with health outcomes: A systematic review and meta-analysis. Public Health Nutr. 2024, 27, e209. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cui, X.; Wei, X.; Zang, J.; Feng, J.; Wang, Z.; Shi, Z. Dietary Sodium Intake Is Positively Associated with Sugar-Sweetened Beverage Consumption in Chinese Children and Adolescents. Nutrients 2021, 13, 3949. [Google Scholar] [CrossRef]
- Zang, J.; Luo, B.; Wang, Y.; Zhu, Z.; Wang, Z.; He, X.; Wang, W.; Guo, Y.; Chen, X.; Wang, C.; et al. Eating Out-of-Home in Adult Residents in Shanghai and the Nutritional Differences among Dining Places. Nutrients 2018, 10, 951. [Google Scholar] [CrossRef]
- Yang, Y.; Peking, N.F.S.; Wang, G.; Pan, X. China Food Composition Table; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- National Health and Family Planning Commission of the People’s Republic of China. Criteria of Weight for Adults (WS/T 428-2013). Available online: https://www.chinanutri.cn/fgbz/fgbzhybz/201501/P020170721497677913633.pdf (accessed on 11 April 2025).
- Wang, J.G. Chinese Guidelines for the Prevention and Treatment of Hypertension (2024 revision). J. Geriatr. Cardiol 2025, 22, 1–149. [Google Scholar] [CrossRef]
- Conover, W.; Iman, R. Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Oladele, C.R.; Khandpur, N.; Johnson, S.; Yuan, Y.; Wambugu, V.; Plante, T.B.; Lovasi, G.S.; Judd, S. Ultra-Processed Food Consumption and Hypertension Risk in the REGARDS Cohort Study. Hypertension 2024, 81, 2520–2528. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Huang, F.; Jia, X.; Ouyang, Y.; Wang, Y.; et al. Intake of pre-packaged foods among Chinese adults aged 18–59 years old in 15 provinces, 2015. Wei Sheng Yan Jiu 2018, 47, 183–187. [Google Scholar]
- Bu, T.; Tang, D.; Liu, Y.; Chen, D. Trends in Dietary Patterns and Diet-related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef]
- Batis, C.; Sotres-Alvarez, D.; Gordon-Larsen, P.; Mendez, M.A.; Adair, L.; Popkin, B. Longitudinal analysis of dietary patterns in Chinese adults from 1991 to 2009. Br. J. Nutr. 2014, 111, 1441–1451. [Google Scholar] [CrossRef]
- Moradi, S.; Entezari, M.H.; Mohammadi, H.; Jayedi, A.; Lazaridi, A.V.; Kermani, M.A.H.; Miraghajani, M. Ultra-processed food consumption and adult obesity risk: A systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 249–260. [Google Scholar] [CrossRef]
- Park, H.; Lee, Y.; Hwang, J.; Lee, Y. Ultra-processed food consumption and increased risk of metabolic syndrome in Korean adults: A cross-sectional analysis of the KNHANES 2016–2020. Nutrition 2024, 122, 112374. [Google Scholar] [CrossRef]
- Li, M.; Shi, Z. Ultra-Processed Food Consumption Associated with Overweight/Obesity among Chinese Adults—Results from China Health and Nutrition Survey 1997–2011. Nutrients 2021, 13, 2796. [Google Scholar] [CrossRef]
- Hu, H.; Zuo, L.; Song, X.; Su, C.; Wang, H.; Zhang, B.; Ding, G. Longitudinal Association of Dietary Energy Density with Abdominal Obesity among Chinese Adults from CHNS 1993–2018. Nutrients 2022, 14, 2151. [Google Scholar] [CrossRef]
- Levitt, D.G.; Heymsfield, S.B.; Pierson, R.N., Jr.; Shapses, S.A.; Kral, J.G. Physiological models of body composition and human obesity. Nutr. Metab. 2009, 6, 7. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Maruyama, H.; Onoda, K.; Huang, Q. Body Fat Percentage and Normal-Weight Obesity in the Chinese Population: Development of a Simple Evaluation Indicator Using Anthropometric Measurements. Int. J. Environ. Res. Public Health 2022, 19, 4238. [Google Scholar] [CrossRef]
- Islam, M.S.; Wei, P.; Suzauddula, M.; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef]
- Ledikwe, J.H.; Blanck, H.M.; Kettel Khan, L.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Dietary energy density is associated with energy intake and weight status in US adults. Am. J. Clin. Nutr. 2006, 83, 1362–1368. [Google Scholar] [CrossRef]
- Kesztyüs, D.; Erhardt, J.; Schönsteiner, D.; Kesztyüs, T. Therapeutic Treatment for Abdominal Obesity in Adults. Dtsch. Arztebl. Int. 2018, 115, 487–493. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Y.; Xiang, Q.; Fang, S.; Chen, Y.; Chen, C.; Zhang, W.; Zhang, H.; Xia, F.; Wang, N.; et al. Associations between abdominal obesity indices and diabetic complications: Chinese visceral adiposity index and neck circumference. Cardiovasc. Diabetol. 2020, 19, 118. [Google Scholar] [CrossRef]
| Total | Non/Low Consumption Group | Medium Consumption Group | High Consumption Group | χ2 | p-Value | |
|---|---|---|---|---|---|---|
| N | 2842 (100.0) * | 949 (33.4) | 945 (33.3) | 948 (33.4) | ||
| Sex | ||||||
| Male | 1414 (49.8) | 484 (51.0) | 470 (49.7) | 460 (48.5) | 1.165 | 0.559 |
| Female | 1428 (50.2) | 465 (49.0) | 475 (50.3) | 488 (51.5) | ||
| Age, years | ||||||
| 18–44 | 712 (25.1) | 211 (22.2) | 222 (23.5) | 279 (29.5) | 20.453 | 0.002 |
| 45–59 | 707 (24.9) | 230 (24.2) | 249 (26.3) | 228 (24.1) | ||
| 60–74 | 727 (25.6) | 260 (27.4) | 256 (27.1) | 211 (22.3) | ||
| ≥75 | 695 (24.5) | 248 (26.1) | 218 (23.1) | 229 (24.2) | ||
| Education status | ||||||
| Junior high school and below | 1294 (45.5) | 525 (55.4) | 415 (43.9) | 354 (37.3) | 72.088 | <0.001 |
| High school or secondary vocational school | 635 (22.3) | 193 (20.4) | 223 (23.6) | 219 (23.1) | ||
| Junior college and above | 912 (32.1) | 230 (24.3) | 307 (32.5) | 375 (39.6) | ||
| Family income last year, RMB | ||||||
| < 100,000 | 973 (34.2) | 364 (38.6) | 314 (33.4) | 295 (31.4) | 15.002 | 0.005 |
| 100,000–200,000 | 1124 (39.5) | 350 (37.2) | 398 (42.3) | 376 (40.1) | ||
| ≥200,000 | 724 (25.5) | 228 (24.2) | 229 (24.3) | 267 (28.5) | ||
| Marital status | ||||||
| Single | 228 (8.0) | 56 (5.9) | 69 (7.3) | 103 (10.9) | 17.177 | 0.002 |
| Married/cohabiting | 2201 (77.4) | 752 (79.2) | 742 (78.5) | 707 (74.6) | ||
| Divorce, widowhood, or other | 413 (14.5) | 141 (14.9) | 134 (14.2) | 138 (14.6) | ||
| Occupation status | ||||||
| Mental activity mainly | 611 (21.5) | 218 (23.0) | 200 (21.2) | 193 (20.4) | 56.853 | <0.001 |
| Physical activity mainly | 497 (17.5) | 118 (12.4) | 146 (15.4) | 233 (24.6) | ||
| Retirement | 1311 (46.1) | 469 (49.4) | 463 (49.0) | 379 (40.0) | ||
| Unemployment and other | 423 (14.9) | 144 (15.2) | 136 (14.4) | 143 (15.1) | ||
| Smoking status | ||||||
| Yes | 778 (27.4) | 265 (27.9) | 263 (27.8) | 250 (26.4) | 0.723 | 0.697 |
| No | 2064 (72.6) | 684 (72.1) | 682 (72.2) | 698 (73.6) | ||
| Drinking status | ||||||
| Yes | 902 (31.7) | 305 (32.1) | 296 (31.4) | 301 (31.8) | 0.134 | 0.935 |
| No | 1938 (68.2) | 644 (67.9) | 648 (68.6) | 646 (68.2) |
| Total (n = 2842) | Non/Low Consumption Group (n = 949) | Medium Consumption Group (n = 945) | High Consumption Group (n = 948) | F # | p-Value | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Intake | UPF (%) | Intake | UPF (%) | Intake | UPF (%) | Intake | UPF (%) | |||
| Energy, kcal/d |
1620.0 (1278.0, 2035.6) * |
11.2 (1.7, 22.8) |
1568.5 a (1223.1, 1998.8) |
0.0 (0.0, 1.7) |
1624.8 a,b (1286.4, 2062.9) |
11.2 (8.0, 14.3) |
1652.3 b (1324.2, 2038.7) |
29.0 (22.8, 37.2) | 10.650 | 0.001 |
| Protein, g/d |
69.3 (53.5, 91.3) |
12.3 (5.6, 22.7) |
66.8
a (50.8, 90.6) |
0.0 (0.0, 1.5) |
70.8 a,b (54.5, 91.9) |
9.1 (6.1, 13.3) |
70.6 b (55.3, 91.0) |
24.9 (17.7, 34.3) | 7.595 | 0.006 |
| Fat, g/d |
61.7 (45.8, 85.2) |
10.0 (3.5, 20.6) |
60.0
a (41.9, 85.3) |
0.0 (0.0, 0.4) |
63.0 b (47.3, 86.0) |
7.2 (4.0, 12.0) |
61.6
b (48.2, 84.6) |
22.3 (14.5, 32.9) | 5.540 | 0.019 |
| Carbohydrate, g/d |
181.5 (139.4, 241.6) |
18.6 (7.4, 32.5) |
176.1 (132.5, 241.2) |
0.0 (0.0, 0.8) |
177.8 (137.3, 237.1) |
13.6 (8.6, 19.9) |
192.6 (147.5, 245.8) |
35.4 (27.1, 47.4) | 2.283 | 0.131 |
| Cholesterol, mg/d |
456.8 (305.3, 631.3) |
0.0 (0.0, 5.3) |
443.9 a (285.0, 623.8) |
0.0 (0.0, 0.0) |
480.0 a (321.3, 651.3) |
0.2 (0.0, 4.3) |
454.0 b (311.9, 614.5) |
4.8 (0.1, 16.9) | 12.005 | 0.001 |
| Dietary fiber, g/d |
6.0 (4.2, 9.3) |
9.1 (1.3, 23.6) |
6.1 (4.0, 9.7) |
0.0 (0.0, 0.8) |
6.1 (4.3, 9.1) |
6.8 (1.0, 15.6) |
6.0 (4.3, 8.9) |
21.2 (8.4, 39.1) | 0.013 | 0.911 |
| Calcium, mg/d |
444.7 (314.2, 606.0) |
8.3 (3.2, 20.0) |
408.5 a (287.2, 575.8) |
0.0 (0.0, 2.0) |
461.0 b (324.1, 629.9) |
6.1 (2.8, 12.2) |
468.1 b (321.9, 621.5) |
17.9 (8.5, 32.4) | 18.141 | <0.001 |
| Iron, mg/d |
17.8 (13.8, 23.7) |
8.8 (3.5, 17.6) |
18.3 a (14.1, 24.5) |
0.0 (0.0, 1.4) |
18.1 a (13.8, 23.8) |
6.9 (3.8, 10.9) |
17.1 b (13.3, 22.6) |
18.5 (11.1, 27.8) | 12.434 | <0.001 |
| Phosphorus, mg/d |
874.4 (685.2, 1131.9) |
10.8 (4.4, 21.4) |
843.8 (663.9, 1130.1) |
0.0 (0.0, 1.6) |
906.6 (699.8, 1156.4) |
8.7 (5.1, 13.3) |
873.7 (701.5, 1110.3) |
23.1 (14.1, 32.6) | 1.571 | 0.210 |
| Potassium, mg/d |
1604.6 (1241.1, 2089.9) |
9.7 (3.9, 20.3) |
1560.1 (1194.2, 2085.9) |
0.0 (0.0, 1.9) |
1645.5 (1272.8, 2107.1) |
7.6 (4.2, 12.9) |
1612.4 (1243.6, 2074.9) |
21.1 (12.3, 31.4) | 1.494 | 0.222 |
| Sodium, mg/d |
3730.9 (2683.2, 5261.6) |
6.1 (1.8, 14.5) |
3725.5 (2628.9, 5365.5) |
0.0 (0.0, 0.8) |
3732.2 (2783.0, 5354.1) |
4.0 (1.4, 9.1) |
3732.6 (2643.9, 5107.9) |
12.1 (6.1, 21.8) | 0.051 | 0.821 |
| Vitamin A, mg/d |
422.7 (290.5, 608.5) |
2.3 (0.0, 11.1) |
426.1 (292.1, 639.0) |
0.0 (0.0, 0.3) |
431.2 (302.5, 600.7) |
1.3 (0.0, 6.4) |
407.4 (278.5, 586.4) |
7.2 (0.7, 20.4) | 1.057 | 0.304 |
| Carotene, mg/d |
1532.3 (881.9, 2416.1) |
0.1 (0.0, 4.7) |
1713.0 a (1013.5, 2704.3) |
0.0 (0.0, 0.0) |
1521.8 b (946.0, 2380.4) |
0.0 (0.0, 2.4) |
1357.4 c (770.2, 2222.6) |
1.3 (0.0, 11.1) | 33.609 | <0.001 |
| Thiamine, mg/d |
0.7 (0.5, 1.0) |
8.2 (2.7, 20.7) |
0.7 (0.5, 1.0) |
0.0 (0.0, 0.9) |
0.7 (0.5, 1.0) |
6.4 (3.0, 11.8) |
0.7 (0.5, 1.0) |
20.6 (10.3, 35.3) | 4.087 | 0.053 |
| Riboflavin, mg/d |
0.8 (0.6, 1.1) |
8.6 (3.3, 18.1) |
0.8 a (0.6, 1.0) |
0.0 (0.0, 1.4) |
0.8 b (0.6, 1.1) |
6.2 (3.3, 11.8) |
0.8 b (0.6, 1.1) |
18.0 (10.4, 29.7) | 5.636 | 0.018 |
| Niacin, mg/d |
13.5 (10.0, 18.4) |
8.4 (2.4, 18.5) |
13.6 (10.0, 18.6) |
0.0 (0.0, 0.6) |
13.7 (10.2, 18.3) |
6.3 (2.9, 11.4) |
13.2 (9.9, 18.1) |
19.0 (10.8, 32.3) | 2.317 | 0.128 |
| Vitamin C, mg/d |
60.3 (40.6, 91.7) |
0.0 (0.0, 4.3) |
64.0 a (41.0, 95.6) | 0.0 (0.0, 0.0) |
60.8 a (41.9, 94.0) |
0.0 (0.0, 1.6) |
56.7 b (38.1, 85.6) |
1.0 (0.0, 13.7) | 8.701 | 0.003 |
| Vitamin E, mg/d |
18.8 (12.0, 28.4) |
5.7 (1.5, 13.7) |
19.3 a (12.0, 30.1) |
0.0 (0.0, 0.3) |
19.6 a (12.7, 28.9) |
4.3 (1.7, 8.6) |
17.9 b (11.1, 26.6) |
12.2 (6.0, 25.6) | 13.174 | 0.001 |
| Folic acid, mg/d |
48.1 (7.7, 110.5) |
0.0 (0.0, 5.4) |
56.3
a (7.4, 118.1) |
0.0 (0.0, 0.0) |
47.9 a,b (7.3, 110.5) |
0.0 (0.0, 2.4) |
41.6 b (9.0, 94.8) |
0.0 (0.0, 23.4) | 5.844 | 0.016 |
| Overall | 16.423 | <0.001 | ||||||||
| Total (n = 2842) | Non/Low Consumption (n = 949) | Medium Consumption (n = 945) | High Consumption (n = 948) | χ2 | p-Value | |
|---|---|---|---|---|---|---|
| Obesity | 434 (15.3) * | 151 (16.1) | 147 (15.7) | 136 (14.5) | 1.033 | 0.597 |
| Overweight and obesity | 1185 (41.7) | 410 (43.5) | 394 (42.0) | 381 (40.3) | 1.993 | 0.369 |
| Abdominal obesity | 1673 (58.9) | 549 (57.9) | 543 (57.5) | 581 (61.3) | 3.470 | 0.176 |
| Hypertension | 1036 (36.7) | 364 (38.6) | 341 (36.3) | 331 (35.0) | 2.726 | 0.256 |
| Diabetes | 300 (10.6) | 100 (10.5) | 88 (9.3) | 112 (11.8) | 3.139 | 0.208 |
| Metabolic syndrome | 539 (19.0) | 186 (19.8) | 179 (19.1) | 174 (18.4) | 0.543 | 0.762 |
| Non/Low Consumption Group | Medium Consumption Group | High Consumption Group | |||||
|---|---|---|---|---|---|---|---|
| OR | p | 95% CI | OR | p | 95% CI | ||
| Obesity | |||||||
| Crude | Reference | 0.974 | 0.832 | 0.760–1.247 | 0.883 | 0.331 | 0.686–1.135 |
| Model 1 | Reference | 0.971 | 0.816 | 0.757–1.245 | 0.860 | 0.244 | 0.667–1.108 |
| Model 2 | Reference | 0.983 | 0.894 | 0.764–1.264 | 0.897 | 0.414 | 0.692–1.164 |
| Overweight and obesity | |||||||
| Crude | Reference | 0.938 | 0.493 | 0.781–1.126 | 0.877 | 0.158 | 0.730–1.053 |
| Model 1 | Reference | 0.946 | 0.557 | 0.787–1.138 | 0.893 | 0.232 | 0.742–1.075 |
| Model 2 | Reference | 0.977 | 0.809 | 0.811–1.178 | 0.938 | 0.513 | 0.776–1.135 |
| Abdominal obesity | |||||||
| Crude | Reference | 0.984 | 0.864 | 0.820–1.181 | 1.153 | 0.127 | 0.960–1.386 |
| Model 1 | Reference | 1.007 | 0.938 | 0.837–1.213 | 1.246 | 0.022 | 1.033–1.504 |
| Model 2 | Reference | 1.027 | 0.784 | 0.851–1.239 | 1.285 | 0.011 | 1.059–1.559 |
| Hypertension | |||||||
| Crude | Reference | 0.905 | 0.297 | 0.751–1.091 | 0.856 | 0.104 | 0.710–1.032 |
| Model 1 | Reference | 0.946 | 0.584 | 0.777–1.153 | 0.946 | 0.583 | 0.775–1.154 |
| Model 2 | Reference | 0.983 | 0.867 | 0.804–1.202 | 0.991 | 0.929 | 0.806–1.218 |
| Diabetes | |||||||
| Crude | Reference | 0.872 | 0.373 | 0.645–1.179 | 1.137 | 0.378 | 0.854–1.514 |
| Model 1 | Reference | 0.903 | 0.511 | 0.665–1.225 | 1.232 | 0.159 | 0.921–1.647 |
| Model 2 | Reference | 0.926 | 0.623 | 0.680–1.260 | 1.241 | 0.159 | 0.919–1.675 |
| Metabolic syndrome | |||||||
| Crude | Reference | 0.960 | 0.725 | 0.764–1.206 | 0.917 | 0.461 | 0.729–1.154 |
| Model 1 | Reference | 0.996 | 0.971 | 0.788–1.258 | 0.990 | 0.934 | 0.783–1.253 |
| Model 2 | Reference | 1.025 | 0.838 | 0.809–1.298 | 1.054 | 0.670 | 0.827–1.344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Ou, T.; Song, Q.; Shi, Z.; Sun, Z.; Shen, L.; Ma, W.; Mai, S.; Wang, Z.; Zang, J. Ultra-Processed Food Consumption Is Associated with an Increased Risk of Abdominal Obesity in Adults: A Cross-Sectional Study in Shanghai. Foods 2025, 14, 3955. https://doi.org/10.3390/foods14223955
Lu W, Ou T, Song Q, Shi Z, Sun Z, Shen L, Ma W, Mai S, Wang Z, Zang J. Ultra-Processed Food Consumption Is Associated with an Increased Risk of Abdominal Obesity in Adults: A Cross-Sectional Study in Shanghai. Foods. 2025; 14(22):3955. https://doi.org/10.3390/foods14223955
Chicago/Turabian StyleLu, Wei, Tongxing Ou, Qi Song, Zehuan Shi, Zhuo Sun, Liping Shen, Wenqing Ma, Shupeng Mai, Zhengyuan Wang, and Jiajie Zang. 2025. "Ultra-Processed Food Consumption Is Associated with an Increased Risk of Abdominal Obesity in Adults: A Cross-Sectional Study in Shanghai" Foods 14, no. 22: 3955. https://doi.org/10.3390/foods14223955
APA StyleLu, W., Ou, T., Song, Q., Shi, Z., Sun, Z., Shen, L., Ma, W., Mai, S., Wang, Z., & Zang, J. (2025). Ultra-Processed Food Consumption Is Associated with an Increased Risk of Abdominal Obesity in Adults: A Cross-Sectional Study in Shanghai. Foods, 14(22), 3955. https://doi.org/10.3390/foods14223955

