Rootstock Influence on Wine Aroma Compounds and Sensory Perception: A Review
Abstract
1. Introduction
| Grape Variety | Rootstock (n) | Rootstocks (List) | Vintage (n) | Aroma Families | Sensory Methods |
|---|---|---|---|---|---|
| Albarín Negro [14] | 5 | 101-14MGt, 110R, 196-17Cl, 3309C, Rupestris du Lot | 3 | Esters, Alcohols | OIV scoring sheet (visual, odor, taste, global evaluation) |
| Alicante Bouschet [15] | 2 | 1103P, IAC572 | 2 harvest time | QDA (16 attributes), 10-point US scale, 12 experienced wine tasters | |
| Cabernet-Sauvignon [16] | 15 | 101-14MGt, 110R, 1103P, 161-49C, 3309C, 420A, 5BB, 99R, Dog Ridge, Fercal, Gravesac, Rupestris du Lot, SO4, Solferino, Isabel | 3 | Esters, Alcohols | |
| Cabernet-Sauvignon [17] | 15 | 101-14MGt, 110R, 1103P, 161-49C, 3309C, 420A, 5BB, 99R, Dog Ridge, Fercal, Gravesac, Rupestris du Lot, SO4, Solferino, Isabel | 1 | DA (22 attributes), 9 cm US scale, 12 panelists with sensory analysis background | |
| Cabernet-Sauvignon [18] | 8 | Dog Ridge, 110R, 140Ru, 1103P, 101-14MGt, SO4, Fercal, Gravesac | 1 | DA (9 attributes), 7-point US scale, 12 trained panelists | |
| Chambourcin [19] | 4 | 1103P, 3309C, Own roots, SO4 | 2 | Monoterpenic compounds, Norisoprenoids, Esters, | |
| Marselan [20] | 3 | 1103P, 5BB, Own roots | 1 | Monoterpenic compounds, Esters, C6 Compounds, Alcohols | |
| Merlot [20] | 4 | 1103P, 5BB, Own roots, SO4 | 1 | Monoterpenic compounds, Esters, C6 compounds, Alcohols | |
| Merlot [21] | 9 | 101-14MGt, 1103P, 110R, 140Ru, 4453M, 99R, Gravesac, Own roots, SO4 | 1 | Esters, C6 compounds, Alcohols | |
| Monastrell [22] | 5 | 1103P, 110R, 140Ru, 161-49C, 41B | 2 | Monoterpenic compounds, Esters, C6 compounds, Alcohols | DT using INDO scoring sheet (structured visual, olfactory, gustatory phases + harmony), 5 trained expert tasters, positive/negative attribute scoring system |
| Pinot noir [23] | 15 | 101-14Mgt, 110R, 1103P, 3309C, 5C, C113, C114, C20, C29, M5489, M5512, M6262, Own roots, SO4, Schwarzmann | 2 | Monoterpenic compounds, Esters, Alcohols | |
| Shiraz [8] | 4 | 1103P, 110R, Own roots, Schwarzmann | 2 | Monoterpenic compounds, Norisoprenoids, Esters, C6 compounds, Alcohols | DA (25 attributes), 15 cm US scale, 15 and 12 trained panelists (2010, 2011); Wine quality: 20-pt Wine Show score, 8 and 12 experts (2010, 2011) |
| Shiraz [24] | 3 | Dog Ridge, M6262, Ramsey | 1 | MPs, Monoterpenic and C6 compounds | Informal evaluation, free-choice descriptive notes, 8 trained judges |
| Shiraz [25] | 8 | 101-14MGt, 110R, 1103P, 140Ru, M5489, M5512, M6262, Ramsey | 2 | DA, 15 cm US scale, 11 and 12 trained panelists (2012 and 2013), training with reference standards | |
| Shiraz [26] | 2 | 5C, Gravesac | 1 | DA (13 attributes), 15 cm US scale, 10 trained panelists with previous wine evaluation experience | |
| Shiraz [27] | 2 | 1103P, IAC313 | 3 + 4 seasons | QDA (16 attributes), 10-point US scale, 12 experienced wine tasters | |
| Verdejo Negro [28] | 3 | 101-14MGt, 196-17Cl, 3309C | 3 | Esters, Alcohols | OIV scoring sheet (visual, nose, taste, global evaluation), median scores, 6 experienced tasters |
| Albariño [29] | 9 | 110R, 161-46C, 196-17Cl, 3309C, 41B, 420A, Gravesac, RGM, SO4 | 2 | Monoterpenic compounds, Norisoprenoids, Esters, C6 compounds | |
| Riesling [30] | 6 | 110R, 140Ru, 3309C, Börner, Gravesac, SO4 | 2 | Monoterpenic compounds, Norisoprenoids, Esters, C6 compounds | |
| Sauvignon blanc [31] | 7 | 1103P, 110R, 140Ru, Dog Ridge, Fercal, Ramsey (Salt Creek), SO4 | 1 | Hedonic test, 9-point scale (color, appearance, flavor, taste, overall acceptability), 6 assessors | |
| Vermentino [32] | 4 | 101-14MGt, 1103P, Harmony, VR043-43 | 3 | Quantitative evaluation, 0–10 intensity scale (visual, olfactory, taste, overall balance), 10 trained judges |
2. Impact of Rootstock on Aroma Compounds
2.1. 2-Methoxy-3-Isobutylpyrazine
2.2. Monoterpenic Compounds
| Aroma Compound | Concentration Range in Wine (µg/L) | Grape Variety Studied | Rootstock Effect | ||||
|---|---|---|---|---|---|---|---|
| White | Red | White | Red | Yes | No | Sometimes | |
| Monoterpenic compounds | |||||||
| Linalool | 32–127 [29,30] | 1.6–15 [19,20] | Riesling, Albariño | Merlot, Marselan, Monastrell, Chambourcin | [19,20,30] | [20,22] | [29] |
| Geraniol | 1.8–32 [20] | Merlot, Marselan, Shiraz, Pinot noir | [20] | [23] | [8] | ||
| α–terpineol | 6–11 [29] | 0.86–1.05 [20] | Albariño | Merlot, Marselan, Monastrell | [20] | [22] | [29] |
| Citronellol | Merlot, Marselan, Monastrell, Shiraz | [20,22] | [8] | ||||
| hotrienol | 8–43 [29] | Albariño | [29] | ||||
| C13-Norisoprenoids | |||||||
| β-damascenone | 0.6–14 [29,30] | 4.6–13.3 [19] | Riesling, Albariño | Chambourcin, Shiraz | [19,30] | [8,29] | |
| 1,1,6-trimethyl-1,2-dihydronaphthalene | 2.3–12 [30] | 0.4–0.6 [19] | Riesling | Chambourcin | [30] | [19] | |
| Vitispiranes | 2.7–10.1 [30] | Riesling | [30] | ||||
2.3. C13-Norisoprenoids
2.4. Esters
2.4.1. Fatty Acid and Alkylated Ethyl Esters
| Aroma Compound | Concentration Range in Wine (µg/L) | Grape Variety Studied | Rootstock Effect | ||||
|---|---|---|---|---|---|---|---|
| White | Red | White | Red | Yes | No | Sometimes | |
| Fatty acid ethyl esters | |||||||
| Ethyl butanoate | 57–318 [29,30] | Riesling, Albariño | Merlot, Monastrell, Pinot noir | [30] | [21,22,23] | [29] | |
| Ethyl hexanoate | 272–1990 [29,30] | Riesling, Albariño | Merlot, Monastrell, Pinot noir, Shiraz | [30] | [21,22,23] | [8,29] | |
| Ethyl octanoate | 101–3903 [29,30] | 30–1010 [19,21] | Riesling, Albariño | Chambourcin, Merlot, Pinot noir, Shiraz, Monastrell | [8,19,21,30] | [22,23] | [29] |
| Ethyl decanoate | 182–254 [29] | 14–260 [19,21] | Albariño | Chambourcin, Pinot noir, Shiraz, Monastrell, Merlot | [21] | [22,23] | [8,19,29] |
| Ethyl dodecanoate | 136–399 [22] | Monastrell, Pinot noir | [22] | [23] | |||
| Ethyl tetradecenoate | 3.3–4.6 [19] | Chambourcin | [19] | ||||
| Ethyl hexadecanoate | 34.2–48.8 [19] | Monastrell, Chambourcin | [22] | [19] | |||
| Hydroxylated ethyl esters | |||||||
| Ethyl-3-hydroxybutaote | 133–187 [22] | Monastrell | [22] | ||||
| Higher alcohol acetates | |||||||
| Hexyl acetate | 16–171 [29,30] | Riesling, Albariño | Shiraz, Monastrell, Pinot noir | [8,30] | [22,23] | [29] | |
| 2-Phenylethyl acetate | 18–460 [29,30] | 10–46 [19] | Riesling, Albariño | Shiraz, Chambourcin, Pinot noir, Albarín Negro, Verdejo Negro | [8,19,29,30] | [14,23,28] | |
| 2-methylbutyl-acetate | 69–104 [30] | Riesling | [30] | ||||
| 3-methylbutyl-acetate | 868–5372 [29,30] | 340–1160 [19,21] | Riesling, Albariño | Merlot, Monastrell, Pinot noir, Shiraz, Chambourcin | [21,29,30] | [22,23] | [8,19] |
2.4.2. Hydroxylated Ethyl Esters
2.4.3. Higher Alcohol Acetates
2.5. Alcohols
| Aroma Compound | Concentration Range in Wine (µg/L) | Grape Variety Studied | Rootstock Effect | ||||
|---|---|---|---|---|---|---|---|
| White | Red | White | Red | Yes | No | Sometimes | |
| Higher alcohols | |||||||
| Propan-1-ol | 94–35,000 [14,22] | Albariño | Monastrell, Shiraz, Merlot, Cabertnet-Sauvignon, Albarín Negro, Verdejo Negro | [14,22] | [16,21,28,29] | [8] | |
| 2-Methylpropan-1-ol | 167–674 [29] | 75,000–96,000 [14] | Albariño | Cabernet-Sauvignon, Monastrell, Merlot, Albarín Negro, Verdejo Negro | [14] | [16,21,22,28] | [29] |
| 3-Methylbutan-1-ol | 168,000–363,200 [30] | Riesling | Merlot, Pinot noir | [30] | [21,23] | ||
| Benzylic alcohols | |||||||
| Benzyl alcohol | 90–420 [21] | Albariño | Merlot, Shiraz | [21] | [29] | [8] | |
| 2-Phenylethanol | 3414–27,000 [29,30] | 137,360–238,970 [21] | Riesling, Albariño | Merlot, Shiraz, Monastrell, Albarín Negro, Verdejo Negro | [8,21,29,30] | [14,22,28] | |
| C6 Compounds | |||||||
| Hexan-1-ol | 1100–2800 [30] | 314–1240 [20,21,22] | Riesling, Albariño | Merlot, Shiraz, Marselan, Monastrell | [8,20,21,22,30] | [29] | |
| (E)-2-Hexenal | 118–210 [20] | Merlot, Marselan | [20] | ||||
| (E/Z)-2-Hexen-1-ol | 26–41 [20] | Merlot, Marselan, Shiraz | [20] | [8] | |||
| (E/Z)-3-Hexen-1-ol | 7–50 [29] | 0.9–1880 [20,21] | Albariño | Merlot, Marselan, Shiraz | [20,21,29] | [8] | |
2.5.1. Higher Alcohols
2.5.2. Benzylic Alcohols
2.5.3. C6 Alcohols
3. Impact of Rootstock on Wine Aroma Perception
4. Conclusions and Perspectives
4.1. Key Findings
4.2. Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cadot, Y. Le lien du vin au terroir: Complexité du concept de typicité. Rev. Œnol. Tech. Vitivinic. Œnol. 2006, 118, 9–11. [Google Scholar]
- Sáenz-Navajas, M.P.; Avizcuri, J.M.; Ballester, J.; Fernández-Zurbano, P.; Ferreira, V.; Peyron, D.; Valentin, D. Sensory-active compounds influencing wine experts’ and consumers’ perception of red wine intrinsic quality. LWT—Food Sci. Technol. 2015, 60, 400–411. [Google Scholar] [CrossRef]
- Culbert, J.R.; Ristic, R.; Ovington, L.A.; Saliba, A.J.; Wilkinson, K.L. Sensory profiles and consumer acceptance of different styles of Australian Moscato. Aust. J. Grape Wine Res. 2018, 24, 96–104. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef]
- Roldán, A.M.; Sánchez-García, F.; Pérez-Rodríguez, L.; Palacios, V.M. Influence of Different Vinification Techniques on Volatile Compounds and the Aromatic Profile of Palomino Fino Wines. Foods 2021, 10, 453. [Google Scholar] [CrossRef]
- Plantevin, M.; Tempère, S.; Thibon, C.; Dijkstra, L.; Lecourt, J.; Destrac-Irvine, A.; van Leeuwen, C. No major impact of new grape varieties on Bordeaux wine typicity: Expert assessments in blind and non-blind tastings. OENO One 2025, 59. [Google Scholar] [CrossRef]
- Mantilla, S.M.O.; Collins, C.; Iland, P.G.; Kidman, C.M.; Ristic, R.; Boss, P.K.; Jordans, C.; Bastian, S.E.P. Shiraz (Vitis vinifera L.) Berry and Wine Sensory Profiles and Composition Are Modulated by Rootstocks. Am. J. Enol. Vitic. 2018, 69, 32–44. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Blank, M.; Samer, S.; Stoll, M. Grapevine rootstock genotypes influences berry and wine phenolic composition (Vitis vinifera L. cv. Pinot Noir). OENO One 2022, 56, 133–144. [Google Scholar] [CrossRef]
- Kodur, S.; Tisdall, J.M.; Clingeleffer, P.R.; Walker, R.R. Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks (Vitis). Vitis 2013, 52, 125–128. [Google Scholar]
- Gutiérrez-Gamboa, G.; Gómez-Plaza, E.; Bautista-Ortín, A.B.; Garde-Cerdán, T.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, S.; Gkrimpizis, T.; Karadimou, C.; Alatzas, A.; Koundouras, S.; Taskos, D. Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects. Horticulturae 2024, 10, 490. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Moreno-Sanz, P.; García, A.; Fernández, O.; Fernández, N.; Suárez, B. Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Sci. Hortic. 2016, 201, 145–152. [Google Scholar] [CrossRef]
- de Oliveira, J.B.; Laureano, O.; Castro, R.; Pereira, G.E.; Ricardo-da-Silva, J.M. Rootstock and harvest season affect the chemical composition and sensory analysis of grapes and wines of the Alicante Bouschet (Vitis vinifera L.) grown in a tropical semi-arid climate in Brazil. OENO One 2020, 54, 1021–1039. [Google Scholar] [CrossRef]
- Miele, A.; Rizzon, L.A. Rootstock-scion interaction:3. Effect on the composition of Cabernet Sauvignon wine. Rev. Bras. Frutic. 2019, 41, e-642. [Google Scholar] [CrossRef]
- Miele, A.; Rizzon, L.A. Rootstock-scion interaction: 4. Effect on the sensory characteristics of Cabernet Sauvignon wine. Rev. Bras. Frutic. 2019, 41, e-043. [Google Scholar] [CrossRef]
- Somkuwar, R.G.; Kakade, P.B.; Ausari, P.K.; Bhor, V.; Sharma, A.K.; Karande, P. Influence of varying rootstocks on bio-chemical properties and sensory characteristics of Cabernet Sauvignon wine produced under subtropical climate. Int. J. Adv. Biochem. Res. 2024, 8, 379–386. [Google Scholar] [CrossRef]
- Awale, M.; Liu, C.; Kwasniewski, M.T. Workflow to Investigate Subtle Differences in Wine Volatile Metabolome Induced by Different Root Systems and Irrigation Regimes. Molecules 2021, 26, 6010. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Li, Y.; Du, T.; Jia, J.; Xi, Z. The Expression of Aroma Components and Related Genes in Merlot and Marselan Scion–Rootstock Grape and Wine. Foods 2022, 11, 2777. [Google Scholar] [CrossRef]
- Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Effect of rootstocks on volatile composition of Merlot wines. J. Sci. Food Agric. 2020, 100, 3517–3524. [Google Scholar] [CrossRef]
- Romero, P.; Botía, P.; del Amor, F.M.; Gil-Muñoz, R.; Flores, P.; Navarro, J.M. Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting conditions. Agric. Water Manag. 2019, 225, 105733. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Z.; Krstic, M.; Clingeleffer, P.; Howell, K.; Chen, D.; Zhang, P. The Influences of Rootstock on the Performance of Pinot Noir (Vitis vinifera L.): Berry and Wine Composition. Aust. J. Grape Wine Res. 2024, 2024, 7586202. [Google Scholar] [CrossRef]
- Capone, D.L.; Francis, I.L.; Clingeleffer, P.R.; Maffei, S.M.; Boss, P.K. Evidence that methoxypyrazine accumulation is elevated in Shiraz rachis grown on Ramsey rootstock, increasing ‘green’ flavour in wine. Aust. J. Grape Wine Res. 2022, 28, 304–315. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Holt, H.; Pearson, W.; Francis, I.L. Effect of rootstock on yield, grape composition and wine sensory attributes of Shiraz grown in a moderately saline environment. Aust. J. Grape Wine Res. 2019, 25, 414–429. [Google Scholar] [CrossRef]
- Heller-Fuenzalida, F.; Cuneo, I.F.; Kuhn, N.; Peña-Neira, Á.; Cáceres-Mella, A. Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate. Agronomy 2023, 13, 2530. [Google Scholar] [CrossRef]
- de Oliveira, J.B.; Egipto, R.; Laureano, O.; de Castro, R.; Pereira, G.E.; Ricardo-da-Silva, J.M. Chemical composition and sensory profile of Syrah wines from semiarid tropical Brazil—Rootstock and harvest season effects. LWT 2019, 114, 108415. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Moreno-Sanz, P.; Suárez, B. Evaluation of rootstocks for the ‘Verdejo Negro’ cultivar. Ciência Téc. Vitiv. 2020, 35, 120–132. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Tubío, M.; Alvarez, K.; Lissarrague, J.R.; Oliveira, J.M. Rootstock Effect on Volatile Composition of Albariño Wines. Appl. Sci. 2021, 11, 2135. [Google Scholar] [CrossRef]
- Ziegler, M.; Wegmann-Herr, P.; Schmarr, H.G.; Gök, R.; Winterhalter, P.; Fischer, U. Impact of Rootstock, Clonal Selection, and Berry Size of Vitis vinifera sp. Riesling on the Formation of TDN, Vitispiranes, and Other Volatile Compounds. J. Agric. Food Chem. 2020, 68, 3834–3849. [Google Scholar] [CrossRef]
- Ausari, P.K.; Gurjar, P.K.S.; Somkuwar, R.G.; Naruka, I.S.; Sharma, A.K.; Gharate, P.S. Effect of rootstocks on yield and wine quality of Sauvignon blanc variety. Plant Arch. 2024, 24, 1477–1482. [Google Scholar] [CrossRef]
- Nardello, I.C.; Kirinus, M.B.M.; de Souza, A.L.K.; Caliari, V.; Malgarim, M.B. Influence of different rootstocks on the characteristics of Vermentino wines at altitudes in Santa Catarina. Sci. Plena 2024, 20, 090201. [Google Scholar] [CrossRef]
- Murray, K.E.; Whitfield, F.B. The Occurrence of 3-Alkyl-2-Methoxypyrazines in Raw Vegetables. J. Sci. Food Agric. 1975, 26, 973–986. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Baumes, R.L.; Bertrand, A.; Skouroumounis, G.K. Quantitative determination of 2-methoxy-3-isobutylpyrazine in red wines and grapes of Bordeaux using a stable isotope dilution assay. J. Chromatogr. A 1999, 841, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Marais, J.; Swart, E. Sensory Impact of 2-Methoxy-3-Isobutylpyrazine and 4-Mercapto-4- Methylpentan-2-0ne Added to a Neutral Sauvignon Blanc Wine. S. Afr. J. Enol. Vitic. 1999, 20, 77–79. [Google Scholar] [CrossRef]
- Roujou de Boubée, D.; van Leeuwen, C.; Dubourdieu, D. Organoleptic Impact of 2-Methoxy-3-Isobutylpyrazine on Red Bordeaux and Loire Wines. Effect of Environmental Conditions on Concentrations in Grapes during Ripening. J. Agric. Food Chem. 2000, 48, 4830–4834. [Google Scholar] [CrossRef]
- Sanders, R.D.; Boss, P.K.; Capone, D.L.; Kidman, C.M.; Bramley, R.G.V.; Nicholson, E.L.; Jeffery, D.W. Rootstock, Vine Vigor, and Light Mediate Methoxypyrazine Concentrations in the Grape Bunch Rachis of Vitis vinifera L. cv. Cabernet Sauvignon. J. Agric. Food Chem. 2022, 70, 5417–5426. [Google Scholar] [CrossRef]
- Sanders, R.D.; Boss, P.K.; Capone, D.L.; Kidman, C.M.; Maffei, S.; Jeffery, D.W. Methoxypyrazine concentrations in the grape bunch rachis of Vitis vinifera L. Cv Shiraz: Influence of rootstock, region and light. Food Chem. 2023, 408, 135234. [Google Scholar] [CrossRef]
- Cordonnier, R.; Bayonove, C. Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes du fruit. CR Acad. Sci. Paris 1974, 278, 3387–3390. [Google Scholar]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr. A 1985, 331, 83–90. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Black, C.A.; Parker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Günata, Y.Z. Recherches sur la Fraction liée de Nature Glycosidique de l’arome du Raisin: Importance des Terpenylglycosides, Action des Glycosidases. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 1984. [Google Scholar]
- Falqué, E.; Fernández, E.; Dubourdieu, D. Volatile Components of Loureira, Dona Branca, and Treixadura Wines. J. Agric. Food Chem. 2002, 50, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Ribéreau-Gayon, P. Traité D’oenologie. 2. Chimie du vin, Stabilisation et Traitements; Dunod: Paris, France, 1998. [Google Scholar]
- Garbay, J.; Tempere, S.; Ballet, L.; Barbe, J.C.; Lytra, G. Investigating the Olfactory Impact of Monoterpenic Compounds on Fruity Aroma Perception in Model Red Wine Solutions. J. Agric. Food Chem. 2025, 73, 4208–4218. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Boidron, J.N.; Terrier, A. Aroma of Muscat grape varieties. J. Agric. Food Chem. 1975, 23, 1042–1047. [Google Scholar] [CrossRef]
- Park, S.K.; Noble, A.C. Monoterpenes and monoterpene glycosides in wine aromas. In Beer and Wine Production; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1993; Volume 536, pp. 98–109. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the—Norisoprenoids—In wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Zamúz, S.; Vilanova, M. Volatile compounds after spontaneous fermentation of musts from Vitis vinifera cv. Albariño grapes cultivated in different origins from Rías Baixas AOC, Spain. Flavour. Fragr. J. 2006, 21, 743–748. [Google Scholar] [CrossRef]
- Pineau, B.; Barbe, J.C.; van Leeuwen, C.; Dubourdieu, D. Which Impact for β-Damascenone on Red Wines Aroma? J. Agric. Food Chem. 2007, 55, 4103–4108. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Garbay, J. Etude de L’arôme Fruité des Vins Rouges via les Interactions Perceptives Entre Composés Volatils D’intérêt dans le Contexte de Changement Climatique Pour le Vignoble Bordelais. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2024. Available online: https://theses.fr/2024BORD0078 (accessed on 31 July 2025).
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. 2-Methylbutyl acetate in wines: Enantiomeric distribution and sensory impact on red wine fruity aroma. Food Chem. 2017, 237, 364–371. [Google Scholar] [CrossRef]
- Ferreira, V.; Sáenz-Navajas, M.-P.; Campo, E.; Herrero, P.; de la Fuente, A.; Fernández-Zurbano, P. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances. Food Chem. 2016, 199, 447–456. [Google Scholar] [CrossRef]
- Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J.C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition. J. Agric. Food Chem. 2022, 70, 12587–12595. [Google Scholar] [CrossRef]
- Tempere, S.; Cuzange, E.; Malak, J.; Bougeant, J.C.; de Revel, G.; Sicard, G. The Training Level of Experts Influences their Detection Thresholds for Key Wine Compounds. Chem. Percept. 2011, 4, 99–115. [Google Scholar] [CrossRef]
- Garbay, J.; Cameleyre, M.; Riquier, L.; Barbe, J.C.; Lytra, G. Development of a New Method for the Quantitative Analysis of Aroma Compounds Potentially Related to the Fruity Aroma of Red Wines. J. Agric. Food Chem. 2023, 71, 13066–13078. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.C. Study of Sensory Interactions among Red Wine Fruity Esters in a Model Solution. J. Agric. Food Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Pineau, B.; Barbe, J.C.; van Leeuwen, C.; Dubourdieu, D. Examples of Perceptive Interactions Involved in Specific “Red-” and “Black-Berry” Aromas in Red Wines. J. Agric. Food Chem. 2009, 57, 3702–3708. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Pineau, B. Contribution à L’étude de L’arôme Fruité Spécifique des vins Rouges de Vitis vinifera L. cv. Merlot noir et Cabernet-Sauvignon. Ph.D. Thesis, Université Victor Segalen Bordeaux 2, Bordeaux, France, 2007. n° 1484. Available online: https://theses.fr/2007BOR21484 (accessed on 19 June 2025).
- Antalick, G.; Perello, M.C.; de Revel, G. Esters in Wines: New Insight through the Establishment of a Database of French Wines. Am. J. Enol. Vitic. 2014, 65, 293–304. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines Can Be Predicted from Their Aroma-Active Chemical Composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Cordonnier, R.; Bayonove, C.L. Etude de la phase préfermentaire de la vinification: Extraction et formation de certains composés de l’arôme; cas des terpenols, des aldehydes et des alcools en C 6. Connaiss. Vigne Vin. 1981, 15, 269–286. [Google Scholar] [CrossRef]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Nitrogenous Compounds. In Production Wine Analysis; Springer: Boston, MA, USA, 1990; pp. 329–346. [Google Scholar] [CrossRef]
- Muñoz, D.; Peinado, R.A.; Medina, M.; Moreno, J. Higher alcohols concentration and its relation with the biological aging evolution. Eur. Food Res. Technol. 2006, 222, 629–635. [Google Scholar] [CrossRef]
- Ancín, C.; Ayestarán, B.; Corroza, M.; Garrido, J.; González, A. Influence of prefermentation clarification on the higher alcohol contents of wines. Food Chem. 1996, 55, 241–249. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine Aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Aleixandre, J.L.; Lizama, V.; Alvarez, I.; García, M.J. Varietal Differentiation of Red Wines in the Valencian Region (Spain). J. Agric. Food Chem. 2002, 50, 751–755. [Google Scholar] [CrossRef]
- Viviani, A.; Moreno, J.; Peinado, R.A. Differentiation of young red wines obtained in a warm climate region. Int. J. Food Sci. Technol. 2007, 42, 523–527. [Google Scholar] [CrossRef]
- Mendez-Costabel, M.P.; Wilkinson, K.L.; Bastian, S.E.P.; McCarthy, M.; Ford, C.M.; Dokoozlian, N. Seasonal and Regional Variation of Green Aroma Compounds in Commercial Vineyards of Vitis vinifera L. Merlot in California. Am. J. Enol. Vitic. 2013, 64, 430–436. [Google Scholar] [CrossRef]
- Mendez-Costabel, M.P.; Wilkinson, K.L.; Bastian, S.E.P.; Jordans, C.; McCarthy, M.; Ford, C.M.; Dokoozlian, N. Effect of winter rainfall on yield components and fruit green aromas of Vitis vinifera L. cv. Merlot in California. Aust. J. Grape Wine Res. 2014, 20, 100–110. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Martínez, M.C.; Santiago, J.L.; Simal-Gándara, J. Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouratón varieties. Food Chem. 2012, 135, 2771–2782. [Google Scholar] [CrossRef]
- Poitou, X. Contribution à la Connaissance Aromatique des vins Rouges: Approche Sensorielle et Moléculaire des Nuances «Végétales, Vertes» en Lien Avec leur Origine. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2016. Available online: https://theses.fr/2016BORD0407 (accessed on 30 June 2025).
- Schreier, P.; Jennings, W.G. Flavor composition of wines: A review. Crit. Rev. Food Sci. Nutr. 1979, 12, 59–111. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ferreira, B.; Hory, C.; Bard, M.H.; Taisant, C.; Olsson, A.; Le Fur, Y. Effects of skin contact and settling on the level of the C18:2, C18:3 fatty acids and C6 compounds in Burgundy Chardonnay musts and wines. Food Qual. Prefer. 1995, 6, 35–41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farris, L.; Marguerit, E.; Lytra, G.; Barbe, J.-C. Rootstock Influence on Wine Aroma Compounds and Sensory Perception: A Review. Foods 2025, 14, 3593. https://doi.org/10.3390/foods14213593
Farris L, Marguerit E, Lytra G, Barbe J-C. Rootstock Influence on Wine Aroma Compounds and Sensory Perception: A Review. Foods. 2025; 14(21):3593. https://doi.org/10.3390/foods14213593
Chicago/Turabian StyleFarris, Laura, Elisa Marguerit, Georgia Lytra, and Jean-Christophe Barbe. 2025. "Rootstock Influence on Wine Aroma Compounds and Sensory Perception: A Review" Foods 14, no. 21: 3593. https://doi.org/10.3390/foods14213593
APA StyleFarris, L., Marguerit, E., Lytra, G., & Barbe, J.-C. (2025). Rootstock Influence on Wine Aroma Compounds and Sensory Perception: A Review. Foods, 14(21), 3593. https://doi.org/10.3390/foods14213593

