Modifying the Structural and Functional Properties of Walnut Glutenin Through Atmospheric Cold Plasma Treatment: Evaluation of Treatment Times Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WGLU
2.3. Cold Plasma Treatment of WGLU
2.4. Structural Properties of WGLU
2.4.1. Measurement of Fluorescence Spectroscopy
2.4.2. Measurement of Fourier Transform Infrared (FTIR) Spectroscopy
2.4.3. Measurement of X-Ray Diffraction (XRD)
2.4.4. Measurement of Scanning Electron Microscope (SEM) Analysis
2.5. Physicochemical Properties of Walnut Glutenin (WGLU)
2.5.1. Measurement of Particle Size and Zeta Potential
2.5.2. Measurement of Total and Active Sulfhydryl (-SH)
2.5.3. Measurement of Thermal Stability
2.5.4. Measurement of Surface Hydrophobicity (H0)
2.5.5. Measurement of Solubility
2.5.6. Measurement of Water-Holding Capacity (WHC) and Oil-Holding Capacity (OHC)
2.5.7. Measurement of Emulsifying Properties
2.5.8. Measurement of Foaming Properties
2.6. Statistical Analysis
3. Results
3.1. Structural Characterization
3.1.1. Fluorescence Spectra Analysis
3.1.2. Fourier Transform Infrared Spectroscopy Analysis
3.1.3. X-Ray Diffraction Analysis
3.1.4. Scanning Electron Microscope Analysis
3.2. Physical and Chemical Properties
3.2.1. Particle Size and Zeta Potential Analysis
3.2.2. Total and Active -SH Analysis
3.2.3. Thermal Stability Analysis
3.2.4. Surface Hydrophobicity Analysis
3.2.5. Solubility Analysis
3.2.6. Water and Oil Holding Capacity
3.2.7. Emulsification Activity Index and Emulsion Stability Index Analysis
3.2.8. Foaming and Foam Stability Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Y.; Gao, S.; Xiang, X.; Li, X.; Yu, X.; Li, S. Physicochemical, structural and adhesion properties of walnut protein isolate-xanthan gum composite adhesives using walnut protein modified by ethanol. Int. J. Biol. Macromol. 2021, 192, 644–653. [Google Scholar] [CrossRef]
- Alabi, O.O.; Annor, G.A.; Amonsou, E.O. Effect of cold plasma-activated water on the physicochemical and functional properties of Bambara groundnut globulin. Food Struct. 2023, 36, 32. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, T.; Yang, G.; Zhao, L.; Li, F.; Park, Y.-M.; Tabung, F.K.; Steck, S.E.; Li, X.; Wang, H. The Isocaloric Substitution of Plant-Based and Animal-Based Protein in Relation to Aging-Related Health Outcomes: A Systematic Review. Nutrients 2022, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive Peptides from Walnut Residue Protein. Molecules 2020, 25, 1285. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Y.; Liu, J.; Yang, X.; Zhao, Y.; Fan, F. Preparation and Properties of Walnut Protein Isolate–Whey Protein Isolate Nanoparticles Stabilizing High Internal Phase Pickering Emulsions. Foods 2024, 13, 2389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, Z.; Pan, F.; Zhou, Q.; Zhao, L.; Zhao, L. Enhancing walnut protein isolate functionality with ultrasound treatment: An integrated experimental and molecular dynamics simulation study. Food Hydrocoll. 2025, 163, 111135. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Y.; Han, Y.; Yao, X.; Li, Q.; Liu, M.; Cao, Y. Structural characteristics, functional properties and nutritional value of walnut protein by limited enzymatic hydrolysis. LWT 2024, 197, 115923. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Liang, Y.; Wang, L.; Xiong, W. Solubility and conformational characterization of rice glutelin after high temperature treatment. Int. J. Biol. Macromol. 2022, 223, 1720–1726. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Jiang, L.; Wang, J.; Zhang, W. Investigating binding mechanism between coconut globulin and tannic acid mediated by atmospheric cold plasma: Protein structure and stability. Food Chem. 2025, 464, 141670. [Google Scholar] [CrossRef]
- Zou, J.-J.; Liu, C.-J.; Eliasson, B. Modification of starch by glow discharge plasma. Carbohydr. Polym. 2004, 55, 23–26. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Du, J.; Han, C.; Yu, D. Effect of cold plasma treatment of sunflower seed protein modification on its structural and functional properties and its mechanism. Food Hydrocoll. 2024, 155, 110175. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Z.; Zhang, J.; Nasiru, M.M.; Wang, Y.; Fu, L. Atmospheric cold plasma treatment of soybean protein isolate: Insights into the structural, physicochemical, and allergenic characteristics. J. Food Sci. 2020, 86, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, L.; Wang, Z.; Wang, Y.; Lin, X.; Dai, J.; Shi, C.; Dai, T.; Sheng, J.; Tian, Y. Effect of succinylation-assisted glycosylation on the structural characteristics, emulsifying, and gel properties of walnut glutenin. Food Chem. 2024, 446, 138856. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Y.; Jiang, Y.; Yuan, G.; Yang, T.; Gao, B.; Yang, J.; Guo, L.; Fan, F. Effect of cold plasma treatment time on walnut protein isolate: Revealing structural changes and improving functional properties. Int. J. Biol. Macromol. 2025, 311, 143693. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, X.; Jiang, Y.; Ban, Q.; Wang, X. Effect of Maillard reaction conditions on the gelation and thermal stability of whey protein isolate/d-tagatose conjugates. Food Chem. 2023, 405, 134928. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, J.; Wang, Q.; Ma, M.; Ma, L.; Li, S. Succinylation Modified Ovalbumin: Structural, Interfacial, and Functional Properties. Foods 2022, 11, 2724. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Liu, J.; Zhao, Y.; Fan, F. Characterization of bamboo shoot cellulose nanofibers modified by TEMPO oxidation and ball milling method and its application in W/O emulsion. LWT 2024, 205, 116563. [Google Scholar] [CrossRef]
- Sharafodin, H.; Soltanizadeh, N. Potential application of DBD Plasma Technique for modifying structural and physicochemical properties of Soy Protein Isolate. Food Hydrocoll. 2022, 122, 107077. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, R.; Wang, Y.; Xiang, Q.; Li, K.; Bai, Y. Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate. Food Hydrocoll. 2022, 124, 107351. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Feizollahi, E.; Roopesh, M.S.; Chen, L. Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innov. Food Sci. Emerg. Technol. 2021, 67, 102567. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Tu, Z.-C.; Xiao, H.; Wang, H.; Huang, X.-Q.; Liu, G.-X.; Liu, C.-M.; Shi, Y.; Fan, L.-L.; Lin, D.-R. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod. Process. 2014, 92, 30–37. [Google Scholar] [CrossRef]
- Mahdavian Mehr, H.; Koocheki, A. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocoll. 2020, 106, 105899. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Tang, C.; Sun, X.; Zhang, J. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocoll. 2021, 113, 106485. [Google Scholar] [CrossRef]
- Han, Y.-X.; Cheng, J.-H.; Sun, D.-W. Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food Chem. 2019, 301, 125240. [Google Scholar] [CrossRef]
- Dong, S.; Wang, J.-m.; Cheng, L.-m.; Lu, Y.-l.; Li, S.-h.; Chen, Y. Behavior of Zein in Aqueous Ethanol under Atmospheric Pressure Cold Plasma Treatment. J. Agric. Food Chem. 2017, 65, 7352–7360. [Google Scholar] [CrossRef]
- Yu, J.-J.; Zhang, Z.-Y.; Lin, X.-N.; Ji, Y.-Q.; Zhang, R.-R.; Ji, H.; Chen, Y. Changes in the structure and hydration properties of high-temperature peanut protein induced by cold plasma oxidation. Int. J. Biol. Macromol. 2023, 253, 127500. [Google Scholar] [CrossRef]
- Dong, S.; Gao, A.; Zhao, Y.; Li, Y.-t.; Chen, Y. Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food Bioprod. Process. 2017, 106, 65–74. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, D.-D.; Wu, C.-E.; Li, T.-T.; Fan, G.-J.; Li, X.-J.; Cong, K.-P.; Yan, Z.-C.; Cheng, X. Structural characterization of modified soy protein isolate composite coatings and its application on fresh-cut cantaloupe (Cucumis melo cv. Xiaomi). Food Biosci. 2024, 60, 104361. [Google Scholar] [CrossRef]
- De Geyter, N.; Morent, R.; Desmet, T.; Trentesaux, M.; Gengembre, L.; Dubruel, P.; Leys, C.; Payen, E. Plasma modification of polylactic acid in a medium pressure DBD. Surf. Coat. Technol. 2010, 204, 3272–3279. [Google Scholar] [CrossRef]
- Barnett, G.V.; Qi, W.; Amin, S.; Neil Lewis, E.; Roberts, C.J. Aggregate structure, morphology and the effect of aggregation mechanisms on viscosity at elevated protein concentrations. Biophys. Chem. 2015, 207, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, Y.; Meng, D.; Wang, D.; Blanchard, C.L.; Zhou, Z. Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin. Food Chem. 2018, 264, 41–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Guo, J.; Feng, Y.; Xie, Q.; Guo, M.; Yin, J.; Liu, G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem. 2024, 456, 140001. [Google Scholar] [CrossRef]
- Shelar, A.; Singh, A.V.; Dietrich, P.; Maharjan, R.S.; Thissen, A.; Didwal, P.N.; Shinde, M.; Laux, P.; Luch, A.; Mathe, V.; et al. Emerging cold plasma treatment and machine learning prospects for seed priming: A step towards sustainable food production. RSC Adv. 2022, 12, 10467–10488. [Google Scholar] [CrossRef]
- Ren, C.S.; Wang, K.; Nie, Q.Y.; Wang, D.Z.; Guo, S.H. Surface modification of PE film by DBD plasma in air. Appl. Surf. Sci. 2008, 255, 3421–3425. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Zhang, Z.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.; Ma, H. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochem. 2020, 69, 105240. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yang, X.; Li, L. Noncovalent interaction between proanthocyanidins and soy protein isolate fibers: Structure, functionality and interaction mechanism. Food Hydrocoll. 2025, 160, 110663. [Google Scholar] [CrossRef]
- Privalov, P.L.; Khechinashvili, N.N. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol. 1974, 86, 665–684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Shen, X.; McClements, D.J.; Liu, X.; Liu, F. Effects of combined hot alkaline and pH-shift treatments on structure and functionality of legume protein-EGCG conjugates: Soybean-, pea-, and chickpea protein-EGCG systems. Food Hydrocoll. 2025, 158, 110424. [Google Scholar] [CrossRef]
- Bao, Q.; Yan, J.; Ma, S. Effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein. Int. J. Biol. Macromol. 2023, 253, 127164. [Google Scholar] [CrossRef]
- Chang, C.; Tu, S.; Ghosh, S.; Nickerson, M. Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Res. Int. 2015, 77, 360–367. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Zhang, X.; Wang, G.; Liu, X.; Wang, Y.; Sun, L. The changed structures of Cyperus esculentus protein decide its modified physicochemical characters: Effects of ball-milling, high pressure homogenization and cold plasma treatments on structural and functional properties of the protein. Food Chem. 2024, 430, 137042. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Z.; Hei, X.; Wu, C.; Ma, X.; Hu, H.; Jiao, B.; Zhu, J.; Adhikari, B.; Wang, Q.; et al. Effect of Physical Modifications on Physicochemical and Functional Properties of Walnut Protein. Foods 2023, 12, 3709. [Google Scholar] [CrossRef]
- Oliete, B.; Potin, F.; Cases, E.; Saurel, R. Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innov. Food Sci. Emerg. Technol. 2018, 47, 292–300. [Google Scholar] [CrossRef]
- Misra, N.N.; Kaur, S.; Tiwari, B.K.; Kaur, A.; Singh, N.; Cullen, P.J. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 2015, 44, 115–121. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; Bourke, P.; Cullen, P.J. Zein film: Effects of dielectric barrier discharge atmospheric cold plasma. J. Appl. Polym. Sci. 2014, 131, 40803. [Google Scholar] [CrossRef]
- Julakanti, S.; Charles, A.P.R.; Zhao, J.; Bullock, F.; Syed, R.; Myles, Y.; Wu, Y. Hempseed protein (Cannabis sativa L.): Influence of extraction pH and ball milling on physicochemical and functional properties. Food Hydrocoll. 2023, 143, 108835. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Buckow, R.; Jegasothy, H.; Stockmann, R. Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. Food Bioprod. Process. 2022, 132, 200–210. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Wang, Y.; Jiang, Y.; Min, E.-H.; Rao, S.-Q. Effects of dual succinylation and ultrasonication modification on the structural and functional properties of ovalbumin. Food Res. Int. 2023, 165, 112511. [Google Scholar] [CrossRef]
- Yu, J.; Sun, B.; Zhang, S.; Liu, X.; Xie, P. The Effect of Different Induction Methods on the Structure and Physicochemical Properties of Glycosylated Soybean Isolate Gels. Foods 2022, 11, 3595. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, S.; Wu, C.; Qi, B.; Teng, F.; Wang, Z.; Li, Y.; Jiang, L. The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties. Food Hydrocoll. 2020, 103, 105709. [Google Scholar] [CrossRef]
- Chizoba Ekezie, F.-G.; Cheng, J.-H.; Sun, D.-W. Effects of Mild Oxidative and Structural Modifications Induced by Argon Plasma on Physicochemical Properties of Actomyosin from King Prawn (Litopenaeus vannamei). J. Agric. Food. Chem. 2018, 66, 13285–13294. [Google Scholar] [CrossRef] [PubMed]
Treatment Times (s) | β-Sheet (%) | Random Coil Content (%) | α-Helix (%) | β-Turn (%) |
---|---|---|---|---|
Control | 46.62 | 13.24 | 14.03 | 26.11 |
30 s | 45.57 | 13.07 | 13.98 | 27.38 |
60 s | 47.64 | 13.21 | 13.81 | 25.34 |
90 s | 46.94 | 12.98 | 13.80 | 26.28 |
120 s | 44.98 | 13.19 | 28.28 | 13.55 |
Treatment Times (s) | Average Particle Size (nm) |
---|---|
Control | 6201.45 ± 98.63 a |
30 s | 960.00 ± 84.27 b |
60 s | 341.70 ± 6.95 c |
90 s | 543.08 ± 29.85 d |
120 s | 573.66 ± 4.77 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Yuan, G.; Yang, T.; Gao, B.; Lu, Y.; Yang, J.; Guo, L.; Ma, Q.; Fan, F. Modifying the Structural and Functional Properties of Walnut Glutenin Through Atmospheric Cold Plasma Treatment: Evaluation of Treatment Times Effects. Foods 2025, 14, 2289. https://doi.org/10.3390/foods14132289
Deng Y, Yuan G, Yang T, Gao B, Lu Y, Yang J, Guo L, Ma Q, Fan F. Modifying the Structural and Functional Properties of Walnut Glutenin Through Atmospheric Cold Plasma Treatment: Evaluation of Treatment Times Effects. Foods. 2025; 14(13):2289. https://doi.org/10.3390/foods14132289
Chicago/Turabian StyleDeng, Yanmei, Guohui Yuan, Tongqin Yang, Baoyu Gao, Yanling Lu, Jiaojiao Yang, Lei Guo, Qian Ma, and Fangyu Fan. 2025. "Modifying the Structural and Functional Properties of Walnut Glutenin Through Atmospheric Cold Plasma Treatment: Evaluation of Treatment Times Effects" Foods 14, no. 13: 2289. https://doi.org/10.3390/foods14132289
APA StyleDeng, Y., Yuan, G., Yang, T., Gao, B., Lu, Y., Yang, J., Guo, L., Ma, Q., & Fan, F. (2025). Modifying the Structural and Functional Properties of Walnut Glutenin Through Atmospheric Cold Plasma Treatment: Evaluation of Treatment Times Effects. Foods, 14(13), 2289. https://doi.org/10.3390/foods14132289