Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Highland Barley Flour and Determination of Its Main Nutrients
2.3. Preparation of Highland Barley Flour–Wheat Flour Composite Noodles
2.4. Pasting Properties
2.5. Mixing Behavior
2.6. Scanning Electron Microscopy and Color of Noodles
2.7. Cooking Properties
2.8. Textural Properties
2.9. In Vitro Digestibility of Noodles
2.10. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Highland Barley Flour
3.2. Pasting Properties of Composite Flour
3.3. The Mixing Behavior of Composite Flour
3.4. SEM Observation and Color of Noodles
3.5. Cooking Properties of Noodles
3.6. Textural Properties of Noodles
3.7. Digestive Properties of Noodles
3.8. Pearson’s Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, Y.; Liu, H.; Liu, X. Effects of different crop starches on the cooking quality of Chinese dried noodles. Int. J. Food Sci. Technol. 2022, 57, 2080–2092. [Google Scholar] [CrossRef]
- Xi, H.; Wang, A.; Qin, W.; Nie, M.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Huang, Y.; Wang, F.; et al. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted treatments. Food Chem. 2023, 406, 135025. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lin, S.; Lu, M.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Lin, D.; Qin, W.; Wu, D. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars. Int. J. Biol. Macromol. 2018, 120, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ming, J.; Zhao, G.; Lei, L. Color, Starch Digestibility, and In Vitro Fermentation of Roasted Highland Barley Flour with Different Fractions. Foods 2022, 11, 287. [Google Scholar] [CrossRef]
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; You, M.; Liu, X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int. J. Biol. Macromol. 2021, 182, 1192–1199. [Google Scholar] [CrossRef]
- Xu, F.; Dube, N.M.; Han; Zhao, R.; Wang, Y.; Chen, J. The effect of Zimbabwean tannin-free sorghum flour substitution on fine dried noodles quality characteristics. J. Cereal Sci. 2021, 102, 103320. [Google Scholar] [CrossRef]
- Zuñiga, Y.L.M.; Rebello, S.A.; Oi, P.L.; Zheng, H.; Lee, J.; Tai, E.S.; Van Dam, R.M. Rice and noodle consumption is associated with insulin resistance and hyperglycaemia in an Asian population. Br. J. Nutr. 2014, 111, 1118–1128. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, M.S.N.; Yang, T.; Yang, J. Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Tan, B.; Zhang, W. Dietary fibre extracted from different types of whole grains and beans: A comparative study. Int. J. Food Sci. Technol. 2020, 55, 2188–2196. [Google Scholar] [CrossRef]
- Ahmad, S.; Nema, P.K.; Nasir, G.; Asfaq; Kheto, A.; Vashishth, R.; Kumar, A.Y. Formulation and Optimization of Multigrain Fermented Noodles: A Healthy and Palatable Convenience Food Option. J. Food Process. Preserv. 2023, 2023, 8813705. [Google Scholar] [CrossRef]
- Ding, X.; Quan, Z.Y.; Zhang, L.L.; Li, L.; Qian, J.Y. Development of noodles with high highland barley flour incorporation level with proteins and pre-gelatinized flour/starch. Int. J. Food Sci. Technol. 2024, 59, 1094–1103. [Google Scholar] [CrossRef]
- Shen, R.; Zhang, W.; Dong, J. Preparation, structural characteristics and digestibility of resistant starches from highland barley, oats and buckwheat starches. J. Food Nutr. Res. 2016, 55, 303–312. [Google Scholar]
- Deng, X.Q.; Pan, Z.F.; Li, Q.; Deng, G.B.; Long, H.; Tashi, N.; Zhao, Y.; Yu, M.Q. Nutritional components, in vitro digestibility, and textural properties of cookies made from whole hull-less barley. Cereal Chem. 2020, 97, 39–52. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Xie, H.; Shi, W.; Chen, Z.; Jiang, D.; Hu, H.; Zheng, X.; Xu, J.; Yang, Y.; et al. Purification, Preliminary Structural Characterization, and In Vitro Inhibitory Effect on Digestive Enzymes byβ -Glucan from Qingke (Tibetan Hulless Barley). Adv. Polym. Technol. 2020, 2020, 2709536. [Google Scholar] [CrossRef]
- Guo, T.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food Sci. Technol. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Hong, T.; Zhang, Y.; Xu, D.; Wu, F.; Xu, X. Effect of sodium alginate on the quality of highland barley fortified wheat noodles. LWT 2021, 140, 110719. [Google Scholar] [CrossRef]
- He, Y.; Wang, A.; Qin, W.; Chen, Z.; Xi, H.; Nie, M.; Liu, L.; Wang, L.; Sun, J.; Bai, Y.; et al. Effects of semidry milling on the properties of highland barley flour and the quality of highland barley bread. J. Sci. Food. Agric. 2023, 103, 5077–5086. [Google Scholar] [CrossRef]
- Gebre, B.A.; Xu, Z.; Ma, M.; Lakew, B.; Sui, Z.; Corke, H. Relationships among Structure, Physicochemical Properties and In Vitro Digestibility of Starches from Ethiopian Food Barley Varieties. Foods 2024, 13, 1198. [Google Scholar] [CrossRef]
- Xia, H.; Yu, B.; Yang, Y.; Wan, Y.; Zou, L.; Peng, L.; Lu, L.; Ren, Y. The Quality Evaluation of Highland Barley and Its Suitability for Chinese Traditional Tsampa Processing. Foods 2024, 13, 613. [Google Scholar] [CrossRef]
- Huang, Y.; Lai, H. Noodle quality affected by different cereal starches. J. Food Eng. 2010, 97, 135–143. [Google Scholar] [CrossRef]
- Gebre, B.A.; Zhang, C.; Li, Z.; Sui, Z.; Corke, H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem. 2024, 435, 137641. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Shevkani, K.; Katyal, M.; Singh, N.; Ahlawat, A.K.; Singh, A.M. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. J. Food Sci. Technol. 2016, 53, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhou, D.; Jin, Z.; Xu, X.; Chen, H. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- GB 5009-3-2016; National Standards for Food Safety Determination of Moisture in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009-4-2016; National Standards for Food Safety Determination of Ash Content in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009-5-2016; National Standards for Food Safety Determination of Protein in Food. National Health and Family Planning Commission of the People’s Republic of China National Medical Products Administration: Beijing, China, 2016.
- Chen, Z.; Huang, Q.; Xia, Q.; Zha, B.; Sun, J.; Xu, B.; Shi, Y. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chem. 2020, 330, 127318. [Google Scholar] [CrossRef]
- Pu, H.; Wei, J.; Wang, L.; Huang, J.; Chen, X.; Luo, C.; Liu, S.; Zhang, H. Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. J. Cereal Sci. 2017, 76, 236–242. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Sun, Q.; Amza, T.; Guo, X.; Zhou, H. Quality characteristics, structural changes, and storage stability of semi-dried noodles induced by moderate dehydration. Food Chem. 2016, 194, 797–804. [Google Scholar] [CrossRef]
- Choy, A.; Morrison, P.D.; Hughes, J.G.; Marriott, P.J.; Small, D.M. Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour. J. Cereal Sci. 2013, 57, 281–287. [Google Scholar] [CrossRef]
- Jahan, E.; Nupur, A.H.; Majumder, S.; Chandra Das, P.; Aunsary, L.; Aziz, M.G.; Islam, M.A.; Rahman Mazumder, M.A. Physico-chemical, textural and sensory properties of breads enriched with date seed powder. Food Humanit. 2023, 1, 165–173. [Google Scholar] [CrossRef]
- Liu, H.; Duan, J.; Zhu, J.; Liu, X. Effects of Highland Barley Flour with Different Particle Sizes on the Characteristics of Reconstituted Flour and Noodles. Foods 2023, 12, 1074. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, T.; Li, Z.; Gao, Y.; Cui, S.W.; Qiu, J. Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chem. 2022, 367, 130762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Li, B.; Wang, X.; Xu, F.; Zhu, K.; Tan, L.; Dong, W.; Chu, Z.; Li, S. In vitro hydrolysis and estimated glycemic index of jackfruit seed starch prepared by improved extrusion cooking technology. Int. J. Biol. Macromol. 2019, 121, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Fan, J.; Guo, X.; Zhu, K. Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. Food Hydrocoll. 2022, 124, 107298. [Google Scholar] [CrossRef]
- Sissons, M.; Cutillo, S.; Marcotuli, I.; Gadaleta, A. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties. J. Cereal Sci. 2021, 98, 103156. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, T.; Fu, X.; Abbasi, A.M.; Zheng, B.; Liu, R.H. Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods. 2015, 19, 439–450. [Google Scholar] [CrossRef]
- Jia, F.; Ma, Z.; Wang, X.; Li, X.; Liu, L.; Hu, X. Effect of kansui addition on dough rheology and quality characteristics of chickpea-wheat composite flour-based noodles and the underlying mechanism. Food Chem. 2019, 298, 125081. [Google Scholar] [CrossRef]
- Ling, X.; Tang, N.; Zhao, B.; Zhang, Y.; Guo, B.; Wei, Y.M. Study on the water state, mobility and textural property of Chinese noodles during boiling. Int. J. Food Sci. Technol. 2020, 55, 1716–1724. [Google Scholar] [CrossRef]
- Xing, J.; Jiang, D.; Guo, X.; Yang, Z.; Zhu, K. Effect of dough mixing with slightly acidic electrolyzed water on the shelf-life and quality characteristics of fresh wet noodles. Food Control 2021, 124, 107891. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, J.; Gong, S.; Li, M.; Yang, T.; Zhang, J. Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int. J. Biol. Macromol. 2020, 158, 656–661. [Google Scholar] [CrossRef]
- Rai, A.K.; Pandey, A.; Sahoo, D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci. Technol. 2019, 83, 129–137. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Williams, P.; Nigen, M.; Tamayo, V.M.; Doco, T.; Sanchez, C. Fractionation of Acacia seyal gum by ion exchange chromatography. Food Hydrocoll. 2020, 98, 105283. [Google Scholar] [CrossRef]
- Geng, D.H.; Liu, L.; Lin, Z.; Zhu, L.; Deng, J.; Chen, J.; Xiang, Z.; Yao, H.; Su, X.; Xia, C.; et al. Effects of red lentil protein addition on textural quality and starch digestibility of brown rice noodles. Int. J. Food Sci. Technol. 2021, 56, 6656–6666. [Google Scholar] [CrossRef]
- Jung, H.; Cho, S.; Pan, C.; Yoon, W.B. Rheological and microstructural properties of noodle dough with purple-fleshed potato (Solanum tuberosum L.) flours: Grinding kinetics and effects of particle size. CyTA—J. Food 2018, 16, 165–171. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, G.; Zhu, C.; Peng, X.; Chen, X.; Fu, J.; Ouyang, L.; Bian, J.; Hu, L.; Sun, X.; et al. Characterization of Amylopectin Fine Structure and its Role on Pasting Properties of Starches in Rice (Oryza sativa L.). Food Sci. Technol. Res. 2018, 24, 347–354. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, X.; Chen, K.; Li, H.; Peng, L. Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN. Carbohydr. Polym. 2018, 181, 450–459. [Google Scholar] [CrossRef]
- Ribeiro, N.R.; Sousa, M.B.E.; Oliveira, L.A.D.; de Oliveira, E.J. Variability of amylose content and its correlation with the paste properties of cassava starch. PLoS ONE 2024, 19, e309619. [Google Scholar] [CrossRef]
- Don, C.; Lichtendonk, W.J.; Plijter, J.J.; van Vliet, T.; Hamer, R.J. The effect of mixing on glutenin particle properties: Aggregation factors that affect gluten function in dough. J. Cereal Sci. 2005, 41, 69–83. [Google Scholar] [CrossRef]
- Mu, Y.; Sun, J.; Obadi, M.; Chen, Z.; Xu, B. Effects of saccharides on the rheological and gelling properties and water mobility of egg white protein. Food Hydrocoll. 2020, 108, 106038. [Google Scholar] [CrossRef]
- Ding, J.; Hou, G.G.; Nemzer, B.V.; Xiong, S.; Dubat, A.; Feng, H. Effects of controlled germination on selected physicochemical and functional properties of whole-wheat flour and enhanced γ-aminobutyric acid accumulation by ultrasonication. Food Chem. 2018, 243, 214–221. [Google Scholar] [CrossRef]
- Andonegi, M.; Heras, K.L.; Santos-Vizcaíno, E.; Igartua, M.; Hernandez, R.M.; de la Caba, K.; Guerrero, P. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr. Polym. 2020, 237, 116159. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Qi, Y.; Gong, K.; Chen, Z.; Brennan, M.A.; Ma, Q.; Wang, J.; Gen, Y.; Lv, W.; Brennan, C.S. Influence of substituting wheat flour with quinoa flour on quality characteristics and in vitro starch and protein digestibility of fried-free instant noodles. LWT 2022, 165, 113686. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Anti-staling effects of β-glucan and barley flour in wheat flour chapatti. Food Chem. 2014, 145, 102–108. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem. 2022, 368, 130883. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hou, G.G.; Dubat, A. Effects of flour particle size on the quality attributes of reconstituted whole-wheat flour and Chinese southern-type steamed bread. LWT—Food Sci. Technol. 2017, 82, 147–153. [Google Scholar] [CrossRef]
- Torbica, A.; Drašković, M.; Tomić, J.; Dodig, D.; Bošković, J.; Zečević, V. Utilization of Mixolab for assessment of durum wheat quality dependent on climatic factors. J. Cereal Sci. 2016, 69, 344–350. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food. Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Kim, M.J.; Hyun, J.N.; Kim, J.A.; Park, J.C.; Kim, M.Y.; Kim, J.G.; Lee, S.J.; Chun, S.C.; Chung, I.M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food. Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, J.; Sun, L.; Zhou, X.; Cheng, J.; Sun, Y. Effect of kansui on the physicochemical, structural, and quality characteristics of adlay seed flour-fortified wheat noodles. LWT 2021, 146, 111458. [Google Scholar] [CrossRef]
- Tan, H.; Li, Z.; Tan, B. Starch noodles: History, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res. Int. 2009, 42, 551–576. [Google Scholar] [CrossRef]
- Fan, L.; Li, L.; Xu, A.; Huang, J.; Ma, S. Impact of Fermented Wheat Bran Dietary Fiber Addition on Dough Rheological Properties and Noodle Quality. Front. Nutr. 2022, 9, 952525. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, X.; Huang, D. Mitigating the in vitro enzymatic digestibility of noodles by aqueous extracts of Malay cherry leaves. Food Chem. 2017, 232, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Lu, Q. Effects of the size distribution of wheat starch on noodles with and without gluten. J. Texture Stud. 2021, 52, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.Y.; Wu, T.T.; Liu, Y.L. Effect of the Amount and Particle Size of Wheat Fiber on Textural and Rheological Properties of Raw, Dried and Cooked Noodles. J. Food Qual. 2012, 35, 207–216. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, C.; Bai, J.; Liang, J. Mixing, tensile and pasting properties of wheat flour mixed with raw and enzyme treated rice bran. J. Food Sci. Technol. 2015, 52, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Sivam, A.S.; Sun Waterhouse, D.; Quek, S.; Perera, C.O. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. J. Food Sci. 2010, 75, R163–R174. [Google Scholar] [CrossRef]
- Guo, G.; Jackson, D.S.; Graybosch, R.A.; Parkhurst, A.M. Asian salted noodle quality: Impact of amylose content adjustments using waxy wheat flour1. Cereal Chem. 2003, 80, 437. [Google Scholar] [CrossRef]
- Kang, M.J.; Bae, I.Y.; Lee, H.G. Rice noodle enriched with okara: Cooking property, texture, and in vitro starch digestibility. Food Biosci. 2018, 22, 178–183. [Google Scholar] [CrossRef]
- Nayak, B.; De, J.; Berrios, J.; Tang, J. Impact of food processing on the glycemic index (GI) of potato products. Food Res. Int. 2014, 56, 35–46. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhu, J.; Cheung, P.C.K.; Li, C. The physical and chemical interactions between starch and dietary fiber: Their impact on the physicochemical and nutritional properties of starch. Trends Food Sci. Technol. 2024, 149, 104566. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.; Gao, Y.; Du, S.; Li, W.; Yu, X. Functional Properties and Structural Characteristics of Starch–Fatty Acid Complexes Prepared at High Temperature. J. Agric. Food. Chem. 2021, 69, 9076–9085. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, X.-W.; Zhang, B.; Fu, X.; Jane, J.-L.; Huang, Q. Effects of Adding Corn Oil and Soy Protein to Corn Starch on the Physicochemical and Digestive Properties of the Starch. Int. J. Biol. Macromol. 2017, 104 Pt A, 481–486. [Google Scholar] [CrossRef]
- Zhang, R.; He, X.; Xiong, L.; Sun, Q. Effects of the interaction between konjac glucomannan and starch on the physicochemical properties, recrystallization characteristics, and digestibility of starch: A review. Food Hydrocoll. 2025, 160, 110840. [Google Scholar] [CrossRef]
- Xie, L.; Lu, L.; Zhao, L.; Peng, J.; Zhou, W. Improvement of okara noodle quality by modifying the soluble/insoluble dietary fibre ratio. Food Chem. 2025, 464, 141566. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT 2020, 125, 109227. [Google Scholar] [CrossRef]
- Shi, P.; Zhao, Y.; Qin, F.; Liu, K.; Wang, H. Understanding the multi-scale structure and physicochemical properties of millet starch with varied amylose content. Food Chem. 2023, 410, 135422. [Google Scholar] [CrossRef]
- Fatimah, S.; Hafied, M.A.; Indiasih, P.A.Y.; Airlangga, B.; Minah, F.N.; Hudha, M.I.; Sumarno, S. Production of resistant starch type 3 from cassava starch with high shear mixing and centrifugation treatment to increase its total dietary fibre content. Int. J. Food Sci. Technol. 2024, 59, 7818–7826. [Google Scholar] [CrossRef]
- Miller, R.A.; Bianchi, E. Effect of RS4 Resistant Starch on Dietary Fiber Content of White Pan Bread. Cereal Chem. 2017, 94, 185–189. [Google Scholar] [CrossRef]
- Bakar, S.; Ahmad, N.; Jailani, F. In Vitro Starch Hydrolysis and Estimated Glycaemic Index of Biscuits from Unripe Banana Peel Flour. J. Nutr. Sci. Vitaminol. 2020, 66, S234–S238. [Google Scholar] [CrossRef]
- Ratnaningsih, N.; Suparmo; Harmayani, E.; Marsono, Y. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles. Int. J. Biol. Macromol. 2019, 142, 191–200. [Google Scholar] [CrossRef]
Variety | Planting Area | Harvested Year | Variety | Planting Area | Harvested Year |
---|---|---|---|---|---|
Chaiqing 1 | Qinghai | 2022 | Longzihei | Tibet | 2022 |
Gankennuo 2 | Gansu | 2022 | Ximalaya 22 | Tibet | 2022 |
Beiqing 8 | Qinghai | 2022 | Zangqing 25 | Tibet | 2022 |
Kunlun 14 | Qinghai | 2022 | Zangqing 2000 | Tibet | 2022 |
Kunlun 15 | Qinghai | 2022 | Zangqing 3000 | Tibet | 2022 |
Sample | Moisture (%) | Ash (%) | Protein (%) | Total Starch (%) | Amylose (%) | Total Dietary Fiber (%) | β-Glucan (%) | Total Phenol (mg/g) |
---|---|---|---|---|---|---|---|---|
Chaiqing 1 | 8.25 ± 0.21 bc | 1.83 ± 0.01 abc | 13.70 ± 0.27 a | 51.09 ± 0.54 fg | 24.42 ± 0.01 e | 24.87 ± 0.64 b | 5.59 ± 0.02 a | 2.59 ± 0.07 de |
Gankennuo 2 | 9.58 ± 1.17 a | 1.62 ± 0.01 cd | 12.82 ± 0.08 b | 57.58 ± 0.02 c | 7.63 ± 0.14 h | 18.68 ± 0.52 e | 4.82 ± 0.14 bc | 3.36 ± 0.01 a |
Beiqing 8 | 8.51 ± 0.40 abc | 1.71 ± 0.00 bcd | 9.76 ± 0.05 d | 54.53 ± 1.40 def | 27.00 ± 0.26 c | 15.14 ± 0.21 f | 4.87 ± 0.14 bc | 2.58 ± 0.21 de |
Kunlun 14 | 7.68 ± 0.39 c | 1.49 ± 0.01 d | 13.13 ± 0.27 a | 53.54 ± 1.29 ef | 22.46 ± 0.48 f | 27.78 ± 0.01 a | 4.40 ± 0.24 de | 2.86 ± 0.02 bc |
Kunlun 15 | 8.50 ± 0.95 abc | 1.95 ± 0.04 a | 11.10 ± 0.18 c | 54.58 ± 1.41 def | 17.52 ± 0.11 g | 20.22 ± 0.98 d | 4.90 ± 0.15 b | 2.55 ± 0.36 de |
Longzihei | 9.62 ± 1.19 a | 1.49 ± 0.13 d | 9.07 ± 0.08 d | 53.12 ± 0.57 e | 27.19 ± 0.26 c | 25.98 ± 0.80 b | 4.67 ± 0.08 cd | 2.14 ± 0.04 fg |
Ximalaya 22 | 8.09 ± 0.28 c | 1.61 ± 0.01 cd | 9.50 ± 0.12 d | 60.33 ± 0.04 b | 31.66 ± 0.71 a | 20.99 ± 0.20 cd | 4.24 ± 0.06 de | 2.19 ± 0.04 fg |
Zangqing 25 | 9.45 ± 0.25 ab | 1.90 ± 0.16 ab | 9.87 ± 0.03 d | 54.36 ± 0.28 def | 25.51 ± 0.25 d | 20.32 ± 0.07 d | 4.80 ± 0.14 bc | 2.08 ± 0.06 g |
Zangqing 2000 | 9.51 ± 0.27 ab | 1.64 ± 0.13 cd | 9.50 ± 0.08 d | 53.03 ± 0.03 f | 24.32 ± 0.01 e | 20.43 ± 0.20 d | 4.37 ± 0.06 de | 2.05 ± 0.24 g |
Zangqing 3000 | 8.70 ± 0.38 abc | 1.64 ± 0.01 cd | 11.02 ± 0.18 c | 61.27 ± 0.88 b | 23.08 ± 0.22 f | 21.88 ± 0.45 c | 5.31 ± 0.08 a | 2.77 ± 0.01 bc |
Mean value | 8.79 | 1.58 | 10.95 | 55.34 | 23.08 | 19.81 | 4.80 | 2.52 |
Range | 7.68~9.62 | 1.49~1.95 | 9.07~13.70 | 51.09~61.27 | 7.63~31.66 | 15.14~27.78 | 4.24~5.59 | 2.05~3.36 |
Wheat flour | 9.49 ± 0.19 ab | 0.47 ± 0.04 e | 9.73 ± 0.17 d | 77.35 ± 0.37 a | 29.18 ± 0.24 b | 1.67 ± 0.03 g | 0.15 ± 0.04 f | 1.89 ± 0.34 h |
Sample | Peak Viscosity (mPa·s) | Trough Viscosity (mPa·s) | Breakdown Viscosity (mPa·s) | Final Viscosity (mPa·s) | Setback Viscosity (mPa·s) | Peak Time (min) | Peak Temperature (°C) |
---|---|---|---|---|---|---|---|
Chaiqing 1 | 1510.00 ± 46.67 d | 926.00 ± 15.56 c | 638.00 ± 45.25 bc | 1762.00 ± 22.63 b | 839.50 ± 2.12 bc | 6.13 ± 0.00 b | 88.78 ± 0.04 c |
Gankennuo 2 | 1963.50 ± 27.58 a | 1013.00 ± 4.24 a | 933.50 ± 7.78 a | 1731.00 ± 18.38 c | 732.00 ± 5.66 g | 5.84 ± 0.05 e | 73.50 ± 0.00 e |
Beiqing 8 | 1473.50 ± 10.61 d | 947.50 ± 9.19 bc | 526.00 ± 1.41 e | 1730.00 ± 12.72 c | 782.50 ± 3.54 e | 6.20 ± 0.00 a | 90.43 ± 0.04 a |
Kunlun 14 | 1130.00 ± 7.07 g | 658.50 ± 2.12 g | 471.50 ± 9.12 f | 1401.00 ± 9.90 f | 729.00 ± 7.07 g | 5.73 ± 0.00 f | 88.85 ± 0.00 b |
Kunlun 15 | 1326.50 ± 19.09 f | 734.50 ± 2.12 f | 614.50 ± 14.85 c | 1496.50 ± 2.12 e | 762.00 ± 4.24 f | 6.07 ± 0.00 c | 88.85 ± 0.00 b |
Longzihei | 1559.00 ± 2.83 c | 888.00 ± 12.73 d | 665.00 ± 1.41 b | 1671.50 ± 10.61 d | 799.00 ± 1.41 d | 5.93 ± 0.00 d | 88.05 ± 0.00 d |
Ximalaya 22 | 1510.50 ± 10.61 d | 947.00 ± 5.56 bc | 566.00 ± 0.71 d | 1833.50 ± 4.95 a | 828.00 ± 1.41 c | 6.20 ± 0.00 a | 88.78 ± 0.04 c |
Zangqing 25 | 1413.50 ± 9.19 e | 853.50 ± 3.54 e | 556.00 ± 0.00 de | 1688.50 ± 2.12 d | 845.00 ± 8.49 b | 5.87 ± 0.00 e | 88.78 ± 0.04 c |
Zangqing 2000 | 1148.00 ± 1.41 g | 593.50 ± 13.43 h | 569.00 ± 5.66 d | 1294.00 ± 8.49 g | 702.50 ± 2.12 h | 5.64 ± 0.05 g | 88.05 ± 0.00 d |
Zangqing 3000 | 1625.00 ± 11.31 b | 964.00 ± 1.41 b | 670.50 ± 0.71 b | 1813.00 ± 7.07 a | 880.50 ± 7.78 a | 6.13 ± 0.00 b | 88.80 ± 0.00 bc |
Sample | WAC (%) | ST (min) | C2 (Nm) | C3 (Nm) | C5 (Nm) | C3-C4 (Nm) | C5-C4 (Nm) |
---|---|---|---|---|---|---|---|
Chaiqing 1 | 73.30 ± 0.17 g | 9.92 ± 0.02 a | 0.49 ± 0.00 d | 1.64 ± 0.02 b | 3.57 ± 0.00 bc | 0.09 ± 0.02 fg | 2.19 ± 0.10 bcd |
Gankennuo 2 | 74.10 ± 0.00 ef | 9.23 ± 0.16 cd | 0.44 ± 0.01 e | 1.31 ± 0.00 e | 3.68 ± 0.04 b | 0.13 ± 0.01 d | 2.04 ± 0.03 cd |
Beiqing 8 | 71.30 ± 0.26 h | 8.28 ± 0.0.4 g | 0.58 ± 0.01 a | 1.62 ± 0.01 b | 3.81 ± 0.24 b | 0.05 ± 0.01 h | 2.24 ± 0.22 bcd |
Kunlun 14 | 77.07 ± 0.12 a | 9.67 ± 0.02 ab | 0.50 ± 0.00 d | 1.61 ± 0.01 b | 3.46 ± 0.18 c | 0.26 ± 0.01 a | 1.75 ± 0.03 ef |
Kunlun 15 | 73.87 ± 0.32 f | 9.35 ± 0.03 cd | 0.51 ± 0.02 c | 1.49 ± 0.01 d | 3.25 ± 0.01 d | 0.16 ± 0.01 c | 1.66 ± 0.10 fg |
Longzihei | 76.50 ± 0.17 b | 9.53 ± 0.10 bc | 0.51 ± 0.01 c | 1.63 ± 0.02 b | 2.96 ± 0.01 e | 0.10 ± 0.00 e | 2.25 ± 0.23 bc |
Ximalaya 22 | 74.27 ± 0.06 de | 8.95 ± 0.07 ef | 0.42 ± 0.01 f | 1.68 ± 0.01 a | 2.68 ± 0.03 f | 0.06 ± 0.04 gh | 1.51 ± 0.02 g |
Zangqing 25 | 75.17 ± 0.29 c | 8.85 ± 0.07 f | 0.53 ± 0.01 b | 1.63 ± 0.00 b | 3.47 ± 0.11 c | 0.09 ± 0.00 ef | 1.97 ± 0.03 de |
Zangqing 2000 | 74.53 ± 0.06 d | 9.32 ± 0.37 cd | 0.46 ± 0.00 e | 1.63 ± 0.01 b | 3.38 ± 0.03 cd | 0.06 ± 0.01 h | 1.96 ± 0.05 de |
Zangqing 3000 | 75.10 ± 0.00 c | 9.12 ± 0.01 de | 0.48 ± 0.00 d | 1.56 ± 0.02 c | 4.27 ± 0.15 a | 0.18 ± 0.01 b | 2.57 ± 0.05 a |
Noodles | Optimal Cooking Time (min) | Broken Ratio (%) | Cooking Loss (%) | Cooking Yield (%) |
---|---|---|---|---|
WFNs | 3.42 ± 0.01 j | 0.00 ± 0.00 d | 5.34 ± 0.02 f | 143.90 ± 3.41 a |
Chaiqing 1 | 4.08 ± 0.01 h | 0.00 ± 0.00 d | 5.55 ± 0.25 ef | 136.23 ± 6.21 b |
Gankennuo 2 | 4.45 ± 0.01 b | 0.00 ± 0.00 d | 5.87 ± 0.03 cde | 128.80 ± 1.09 cde |
Beiqing 8 | 4.32 ± 0.01 d | 5.00 ± 2.36 cd | 5.77 ± 0.14 ef | 134.59 ± 3.28 bc |
Kunlun 14 | 3.46 ± 0.01 i | 11.67 ± 2.35 ab | 6.64 ± 0.26 a | 119.97 ± 1.60 h |
Kunlun 15 | 4.10 ± 0.02 g | 1.67 ± 2.35 d | 6.13 ± 0.10 bcd | 128.17 ± 2.63 def |
Longzihei | 4.17 ± 0.01 f | 8.33 ± 2.35 ab | 6.58 ± 0.45 ab | 124.28 ± 0.49 efgh |
Ximalaya 22 | 4.46 ± 0.00 b | 0.00 ± 0.00 d | 6.31 ± 0.38 abc | 133.36 ± 3.73 bcd |
Zangqing 25 | 4.23 ± 0.01 e | 5.00 ± 3.36 cd | 6.04 ± 0.12 cd | 126.68 ± 1.56 efg |
Zangqing 2000 | 4.42 ± 0.01 c | 0.00 ± 0.00 d | 5.58 ± 0.02 ef | 121.27 ± 4.01 gh |
Zangqing 3000 | 5.07 ± 0.02 a | 0.00 ± 0.00 d | 5.78 ± 0.04 def | 134.93 ± 2.56 bc |
Noodles | L* | a* | b* |
---|---|---|---|
WFNs | 93.03 ± 0.37 c | 2.03 ± 0.40 a | 9.92 ± 0.46 a |
Chaiqing 1 | 85.62 ± 0.47 a | 5.45 ± 0.17 c | 17.01 ± 0.58 bc |
Gankennuo 2 | 84.30 ± 0.55 a | 5.99 ± 0.55 bc | 18.16 ± 0.31 c |
Beiqing 8 | 81.04 ± 0.57 bc | 6.36 ± 0.28 a | 18.13 ± 0.57 a |
Kunlun 14 | 81.83 ± 1.12 bc | 6.48 ± 0.32 a | 18.56 ± 0.31 a |
Kunlun 15 | 82.95 ± 0.52 b | 6.55 ± 0.29 a | 16.42 ± 0.19 a |
Longzihei | 69.04 ± 0.56 bc | 6.01 ± 0.48 a | 7.92 ± 0.55 a |
Ximalaya 22 | 83.40 ± 0.96 a | 6.06 ± 0.57 b | 16.41 ± 0.30 a |
Zangqing 25 | 81.60 ± 1.00 bc | 6.49 ± 0.28 a | 18.09 ± 0.45 b |
Zangqing 2000 | 83.10 ± 0.61 bc | 5.68 ± 0.33 a | 15.80 ± 0.53 a |
Zangqing 3000 | 82.37 ± 1.15 bc | 5.06 ± 0.53 a | 15.99 ± 0.49 a |
Noodles | Hardness (g) | Springiness (g·s) | Adhesiveness (g·s) | Chewiness (g·s) | Shearing force (g) | Tensile force (g) |
---|---|---|---|---|---|---|
WFNs | 7399.59 ± 825.52 ef | 96.49 ± 0.28 b | −144.65 ± 34.33 a | 5448.33 ± 92.67 ab | 127.57 ± 3.99 e | 15.51 ± 1.76 e |
Chaiqing 1 | 8496.49 ± 117.11 ab | 98.84 ± 0.75 a | −191.99 ± 56.27 abc | 5543.65 ± 164.17 ab | 153.78 ± 4.64 bc | 22.52 ± 1.17 abc |
Gankennuo 2 | 7656.46 ± 234.82 de | 95.97 ± 0.57 bc | −328.51 ± 14.42 e | 4753.36 ± 128.85 e | 159.67 ± 9.48 ab | 16.77 ± 1.70 cd |
Beiqing 8 | 7711.11 ± 460.95 cde | 95.48 ± 0.47 c | −253.63 ± 31.89 cde | 5780.07 ± 128.88 a | 141.55 ± 2.59 d | 20.22 ± 0.79 abc |
Kunlun 14 | 8618.90 ± 251.02 a | 96.87 ± 1.21 b | −282.49 ± 63.96 de | 4908.08 ± 476.19 cde | 164.64 ± 6.08 a | 24.01 ± 0.79 a |
Kunlun 15 | 8203.96 ± 782.83 abcd | 98.66 ± 0.86 a | −278.34 ± 78.95 de | 5288.93 ± 492.55 bc | 124.57 ± 3.18 e | 15.62 ± 1.50 e |
Longzihei | 8597.02 ± 290.16 a | 94.94 ± 0.47 c | −235.10 ± 57.90 cd | 4805.59 ± 434.00 de | 156.01 ± 6.95 abc | 16.69 ± 1.41 cd |
Ximalaya 22 | 8413.05 ± 320.35 abc | 98.25 ± 0.72 a | −148.26 ± 22.78 ab | 5242.82 ± 102.89 bcd | 152.18 ± 9.80 bc | 23.29 ± 0.55 bc |
Zangqing 25 | 8488.68 ± 167.90 ab | 98.38 ± 0.65 a | −226.95 ± 67.43 abcd | 5446.11 ± 271.43 ab | 148.26 ± 5.21 cd | 20.32 ± 1.09 abc |
Zangqing 2000 | 8090.20 ± 232.93 abcde | 98.42 ± 0.28 a | −213.13 ± 49.02 abcd | 4620.93 ± 255.20 e | 140.18 ± 9.32 d | 18.19 ± 0.71 cd |
Zangqing 3000 | 7850.20 ± 593.81 bcde | 96.94 ± 0.48 b | −227.18 ± 18.56 bcd | 5769.82 ± 240.43 a | 142.27 ± 4.19 d | 19.38 ± 0.71 bcd |
Noodles | K × 10−2 | C∞ | eGI |
---|---|---|---|
WFN | 3.06 ± 0.15 a | 82.41 ± 1.35 a | 89.97 ± 0.21 a |
Chaiqing 1 | 1.73 ± 0.12 d | 59.39 ± 1.72 g | 65.78 ± 0.09 ef |
Gankennuo 2 | 1.45 ± 0.13 g | 80.23 ± 3.34 b | 78.24 ± 0.02 b |
Beiqing 8 | 1.23 ± 0.13 i | 78.62 ± 3.99 c | 75.68 ± 0.23 c |
Kunlun 14 | 1.60 ± 0.07 f | 48.96 ± 1.01 k | 65.04 ± 0.08 f |
Kunlun 15 | 1.06 ± 0.04 j | 64.12 ± 1.39 e | 70.42 ± 0.18 d |
Longzihei | 2.02 ± 0.11 b | 50.71 ± 0.97 j | 65.06 ± 0.19 f |
Ximalaya 22 | 1.34 ± 0.07 h | 54.78 ± 1.30 h | 66.05 ± 0.69 e |
Zangqing 25 | 1.67 ± 0.12 e | 60.39 ± 1.88 f | 74.57 ± 0.23 c |
Zangqing 2000 | 1.48 ± 0.05 g | 53.84 ± 0.86 i | 66.35 ± 0.05 e |
Zangqing 3000 | 1.84 ± 0.14 c | 68.24 ± 2.05 d | 70.30 ± 0.91 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Wang, L.; Wang, X.; Dang, B.; Zhang, W.; Yang, J.; Jia, L.; Wei, J.; Han, Z.; Chen, X.; et al. Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles. Foods 2025, 14, 2163. https://doi.org/10.3390/foods14132163
Wu G, Wang L, Wang X, Dang B, Zhang W, Yang J, Jia L, Wei J, Han Z, Chen X, et al. Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles. Foods. 2025; 14(13):2163. https://doi.org/10.3390/foods14132163
Chicago/Turabian StyleWu, Guiyun, Lili Wang, Xueqing Wang, Bin Dang, Wengang Zhang, Jingjing Yang, Lang Jia, Jinbian Wei, Zhihui Han, Xiaopei Chen, and et al. 2025. "Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles" Foods 14, no. 13: 2163. https://doi.org/10.3390/foods14132163
APA StyleWu, G., Wang, L., Wang, X., Dang, B., Zhang, W., Yang, J., Jia, L., Wei, J., Han, Z., Chen, X., Li, J., Yang, X., & Wang, F. (2025). Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles. Foods, 14(13), 2163. https://doi.org/10.3390/foods14132163