Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = highland barley varieties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1289 KiB  
Article
Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles
by Guiyun Wu, Lili Wang, Xueqing Wang, Bin Dang, Wengang Zhang, Jingjing Yang, Lang Jia, Jinbian Wei, Zhihui Han, Xiaopei Chen, Jingfeng Li, Xijuan Yang and Fengzhong Wang
Foods 2025, 14(13), 2163; https://doi.org/10.3390/foods14132163 - 20 Jun 2025
Viewed by 409
Abstract
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated [...] Read more.
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated through cooking and textural property analysis. The digestion characteristics of the noodles were determined to evaluate the starch hydrolysis rate and glycemic index (GI). Additionally, a correlation analysis was conducted among the proximate composition of highland barley flour, the characteristics of flour, and the quality of noodles. The results demonstrate that Chaiqing 1 exhibited superior performance in terms of flour quality and noodle texture compared to other varieties. The noodles produced from this variety possessed an outstanding texture, with moderate hardness and excellent elasticity. Additionally, its noodles also exhibited superior cooking resistance and low cooking loss. Nutritionally, the moderate estimated glycemic index (eGI) and high resistant starch (RS) content of Chaiqing 1 were beneficial for intestinal health. Ximalaya 22 showed good processing performance but slightly inferior texture, whereas Kunlun 14 had a high dietary fiber content, which resulted in noodles prone to breaking. Through a comprehensive variety comparison and screening, Chaiqing 1 emerged as the preferred choice for producing high-quality highland barley noodles. Furthermore, correlation analysis revealed that dietary fiber was significantly and positively correlated with water absorption, stability time (ST), and hardness (p < 0.01). Amylose content was associated with peak temperature and breakdown viscosity. This study provides valuable insights into the selection of highland barley varieties for noodle production. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

23 pages, 4620 KiB  
Article
Analysis of Comprehensive Edible Quality and Volatile Components in Different Varieties of Cooked Highland Barley
by Caijiao Li, Jun Li, Wengang Zhang, Bin Dang and Xijuan Yang
Foods 2025, 14(10), 1690; https://doi.org/10.3390/foods14101690 - 10 May 2025
Viewed by 408
Abstract
Twenty-two types of highland barley (HB) raw materials (including 10 common varieties and 5 main planting regions in the Qinghai province) were selected as the experimental materials to investigate their differences in the cooking characteristics, sensory quality, and characteristic flavor of cooked HB. [...] Read more.
Twenty-two types of highland barley (HB) raw materials (including 10 common varieties and 5 main planting regions in the Qinghai province) were selected as the experimental materials to investigate their differences in the cooking characteristics, sensory quality, and characteristic flavor of cooked HB. The key volatile flavor components were identified using Gas Chromatography–Ion Mobility Spectroscopy (GC-IMS) combined with relative odor activity value (ROAV) analysis. The results indicated that the highland barley raw materials of Kunlun 15 (M5), Kunlun 14 (M9), Chaiqing 1 (M13) and Kunlun 14 (M14), and Chaiqing 1 (M20) and Kunlun 15 (M21) showed superior cooking quality, texture, and sensory scores. A total of 44 volatile flavor compounds were identified, including 16 aldehydes, 10 alcohols, 9 ketones, 7 esters, 1 acid, and 1 furan. Among these, 13 aldehydes, 4 alcohols, 4 ketones, 7 esters, and 1 furan were found across different cooked HB samples. Notably, ethyl, ethyl 2-methylbutanoate dimer, 2-methylbutanoic acid methyl ester, 2-butanone, 1-octen-3-ol, 1-pentanol dimer, and 2-pentyl furan contributed more significantly to the overall volatile profile. Cluster analysis combining principal component analysis revealed that Kunlun 16 (M16), Kunlun 17 (M17), Kunlun 14 (M18), Kunlun 15 (M19), as well as Chaiqing 1 (M20) and Kunlun 15 (M21), were the most suitable raw materials for cooking due to their better cooking quality, sensory attributes, and flavors, followed by Kunlun 15 (M10) and Kunlun 18 (M12), and Chaiqing 1 (M13) and Kunlun 14 (M14). These findings could help us identify specific HB varieties in corresponding regions with advantages, thus providing a theoretical basis for cooking HB. Full article
Show Figures

Figure 1

17 pages, 4988 KiB  
Article
Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color
by Ping Yu, Xuemin Kang, Pengfei Liu, Zhengzong Wu, Yue Cheng, Bo Cui and Wei Gao
Foods 2025, 14(2), 316; https://doi.org/10.3390/foods14020316 - 18 Jan 2025
Cited by 1 | Viewed by 1607
Abstract
Herein, β-glucan (BG) was extracted from different colored varieties of highland barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a [...] Read more.
Herein, β-glucan (BG) was extracted from different colored varieties of highland barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a series of technical methods. The high-performance anion-exchange chromatography (HPAEC) results indicated the extracted BBG, LBG, and WBG mainly comprised glucose regardless of color. The molecular weight (Mw) of BBG, LBG, and WBG were 55.87 kDa, 65.19 kDa, and 81.59 kDa, respectively. 4-Glc(p), 3-Glc(p), and t-Glc(p) accounted for a larger proportion (>90%) of the total methylated residues according to gas chromatography–mass spectrometry (GC-MS) analysis. Additionally, Fourier transform infrared (FT-IR) spectroscopy revealed that the β-linkage of LBG had a greater capacity to develop stronger hydrogen bonds, due to the absence of 3,4-Glc(p). Among them, LBG had a low particle size distribution and a high shear viscosity, showing obvious round aggregates on its surface. Meanwhile, BBG presented a high peak viscosity (PV) and thermal stability. Based on the differences in their molecular structure, it could be concluded that there were different physicochemical properties among BBG, LBG, and WBG. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

15 pages, 6686 KiB  
Article
Characterization and Comparison of Structure and Physicochemical Properties of Highland Barley Starch of Different Colors
by Mengru Han, Xiongying Zhang, Honglu Wang, Jiayue Zhou, Meijin Liu, Xirong Zhou, Aliaksandr Ivanistau, Qinghua Yang and Baili Feng
Foods 2025, 14(2), 186; https://doi.org/10.3390/foods14020186 - 9 Jan 2025
Cited by 2 | Viewed by 1123
Abstract
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, [...] Read more.
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, structural characteristics, and physicochemical properties were analyzed. The apparent amylose content was highest in the purple variety (20.26%) and lowest in the yellow variety (18.58%). The different varieties had three subgroups and A-type crystalline structures, but the particle size and relative crystallinity (25.67–27.59%) were significantly different. In addition, the weight average molecular weight (6.72 × 107 g/mol), area ratio of APs to APL (2.88), relative crystallinity (27.59%), and 1045/1022 (0.730 cm−1) of starch were higher in yellow highland barley (YHB), forming a stable particle structure and increasing the Tp and PV of its starch. A cluster heat map showed that starches from differently colored highland barley vary in fine structure, water solubility, swelling power, and thermal and pasting properties. This study provides a reference for the high-quality breeding of colored highland barley and its utilization in food and non-food industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 3404 KiB  
Article
The Quality Evaluation of Highland Barley and Its Suitability for Chinese Traditional Tsampa Processing
by Hu Xia, Bo Yu, Yanting Yang, Yan Wan, Liang Zou, Lianxin Peng, Lidan Lu and Yuanhang Ren
Foods 2024, 13(4), 613; https://doi.org/10.3390/foods13040613 - 18 Feb 2024
Cited by 3 | Viewed by 1715
Abstract
The physicochemical traits of highland barley prominently affect the quality of Tsampa. To find out the relevance between the physicochemical properties of raw material and the texture parameters of processed products, twenty-five physicochemical traits and ten quality parameters for seventy-six varieties of highland [...] Read more.
The physicochemical traits of highland barley prominently affect the quality of Tsampa. To find out the relevance between the physicochemical properties of raw material and the texture parameters of processed products, twenty-five physicochemical traits and ten quality parameters for seventy-six varieties of highland barley were measured and analyzed. The results showed that there was a significant difference between the physicochemical indexes for highland barleys of various colors. The dark highland barley generally has more fat, protein, total dietary fiber, phenolic, Mg, K, Ca, and Zn and less amylose, Fe, Cu, and Mo than light colored barley. Then, these highland barleys were made into Tsampa. A comprehensive quality evaluation model based on the color and texture parameters of Tsampa was established through principal component analysis. Then, cluster analysis was used to classify the tested samples into three edible quality grades predicated on the above evaluation model. At last, the regression analysis was applied to establish a Tsampa quality predictive model according to the physicochemical traits of the raw material. The results showed that amylose, protein, β-Glucan, and a* and b* could be used to predict the comprehensive quality of Tsampa. The predicted results indicated that 11 of 14 validated samples were consistent with the actual quality, and the accuracy was above 78.57%. Our study built the approach of the appropriate processing varieties evaluation. It may provide reference for processing specific highland barley. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

18 pages, 2952 KiB  
Article
Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke
by Dian Lin, Zhibin Xu, Bo Feng, Qiang Zhou, Xiaoli Fan and Tao Wang
Agronomy 2023, 13(5), 1292; https://doi.org/10.3390/agronomy13051292 - 30 Apr 2023
Cited by 2 | Viewed by 2045
Abstract
Anther development is crucial for controlling crop fertility. To elucidate the underlying mechanisms of reproductive development of highland barley (called Qingke in Chinese), two main Qingke cultivars, Zangqing 2000 and Ximala 22, were utilized. Transcriptome analysis showed that lipid, sugar and phenylpropane metabolisms [...] Read more.
Anther development is crucial for controlling crop fertility. To elucidate the underlying mechanisms of reproductive development of highland barley (called Qingke in Chinese), two main Qingke cultivars, Zangqing 2000 and Ximala 22, were utilized. Transcriptome analysis showed that lipid, sugar and phenylpropane metabolisms might be the major pathways associated with Qingke male fertility by analyzing the possible common DEGs before anther maturation in both varieties. Additionally, 26 genes related to crop genic male sterility were screened to identify homologous genes for Qingke male sterile lines. Among them, HORVU.MOREX.r3.7HG0634780 (HvtOSC12), an oxidosqualene cyclase, was highlighted as a candidate gene for affecting Qingke male fertility, as it is highly and especially expressed before Qingke anther maturation. Furthermore, HvtOSC12 (including promoter sequence) was cloned by homology-based cloning. The further bioinformatic analysis deduced that MYBs might be one of the transcription factors affecting expression of HvtOSC12 by responding to environmental changes. These results might lay a foundation for the potential applications for the creation of environment-sensitive genic male sterility in Qingke. Full article
(This article belongs to the Special Issue Genetic and Genomic Studies of Important Traits in Cereal Crops)
Show Figures

Figure 1

17 pages, 1238 KiB  
Review
Highland Barley Starch: Structures, Properties, and Applications
by Jingjing Xie, Yan Hong, Zhengbiao Gu, Li Cheng, Zhaofeng Li, Caiming Li and Xiaofeng Ban
Foods 2023, 12(2), 387; https://doi.org/10.3390/foods12020387 - 13 Jan 2023
Cited by 28 | Viewed by 5704
Abstract
Highland barley (HB) is a nutritious crop with excellent health benefits, and shows promise as an economically important crop with diverse applications. Starch is the main component of HB and has great application potential owing to its unique structural and functional properties. This [...] Read more.
Highland barley (HB) is a nutritious crop with excellent health benefits, and shows promise as an economically important crop with diverse applications. Starch is the main component of HB and has great application potential owing to its unique structural and functional properties. This review details the latest status of research on the isolation, chemical composition, structure, properties, and applications of highland barley starch (HBS). Suggestions regarding how to better comprehend and utilize starches are proposed. The amylopectin content of HBS ranged from 74% to 78%, and can reach 100% in some varieties. Milling and air classification of barley, followed by wet extraction, can yield high-purity HBS. The surface of HBS granules is smooth, and most are oval and disc-shaped. Normal, waxy, and high-amylose HBS have an A-type crystalline. Due to its superb freeze-thaw stability, outstanding stability, and high solubility, HBS is widely used in the food and non-food industries. The digestibility of starch in different HB whole grain products varies widely. Therefore, the suitable HB variety can be selected to achieve the desired glycemic index. Further physicochemical modifications can be applied to expand the variability in starch structures and properties. The findings provide a thorough reference for future research on the utilization of HBS. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 1014 KiB  
Article
Evaluation of Nutritional Components, Phenolic Composition, and Antioxidant Capacity of Highland Barley with Different Grain Colors on the Qinghai Tibet Plateau
by Bin Dang, Wen-Gang Zhang, Jie Zhang, Xi-Juan Yang and Huai-De Xu
Foods 2022, 11(14), 2025; https://doi.org/10.3390/foods11142025 - 8 Jul 2022
Cited by 36 | Viewed by 3934
Abstract
The nutritional composition, polyphenol and anthocyanin composition, and antioxidant capacity of 52 colored highland barley were evaluated. The results showed that the protein content of highland barley in the black group was the highest, the total starch and fat contents in the blue [...] Read more.
The nutritional composition, polyphenol and anthocyanin composition, and antioxidant capacity of 52 colored highland barley were evaluated. The results showed that the protein content of highland barley in the black group was the highest, the total starch and fat contents in the blue group were the highest, the amylose content in the purple group was quite high, the fiber content in the yellow group was quite high, and the β-glucan content of the dark highland barley (purple, blue and black) was quite high. The polyphenol content and its antioxidant capacity in the black group were the highest, while the anthocyanin content and its antioxidant capacity in the purple highland barley were the highest. Ten types of monomeric phenolic substances were the main contributors to DPPH, ABTS, and FRAP antioxidant capacity. All varieties could be divided into four categories according to nutrition or function. The grain color could not be used as an absolute index to evaluate the quality of highland barley, and the important influence of variety on the quality of highland barley also needed to be considered. In actual production, suitable raw materials must be selected according to the processing purpose and variety characteristics of highland barley. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

15 pages, 3153 KiB  
Article
Spatial and Temporal Variations in the Potential Yields of Highland Barley in Relation to Climate Change in Three Rivers Region of the Tibetan Plateau from 1961 to 2020
by Jiandong Liu, Jun Du, De-Li Liu, Hans W. Linderholm, Guangsheng Zhou, Yanling Song, Yanbo Shen and Qiang Yu
Sustainability 2022, 14(13), 7719; https://doi.org/10.3390/su14137719 - 24 Jun 2022
Cited by 3 | Viewed by 1943
Abstract
Spatial and temporal variations in the potential yields of highland barley is important for making policies on adaptation of agriculture to climate change in the Three Rivers Region (TRR), one of the main highland barley growing areas on the Tibetan Plateau. This research [...] Read more.
Spatial and temporal variations in the potential yields of highland barley is important for making policies on adaptation of agriculture to climate change in the Three Rivers Region (TRR), one of the main highland barley growing areas on the Tibetan Plateau. This research tries to explore a suitable strategy for simulating potential yields of highland barley by the WOFOST (WOrld FOod STudies) crop growth model, and further to identify variations in climate conditions and potential yields in TRR from 1961 to 2020 for making policies on adaptation of agricultural production to the climate change impacts on the Tibetan Plateau. Validation results indicated that WOFOST could accurately simulate the potential yields of highland barley with the global radiation estimated by the calibrated Angstrom model. The global radiation during the growth periods decreased at a rate of 0.047 MJ/m2a, while the temperature during the growth periods increased at rates ranging from 0.019 to 0.087 °C/a, which was greater than the average warming rate of the globe. The simulated potential yields ranged from 10,300 to 14,185 kg/ha in TRR, with an average decreasing rate of 28 kg/ha/a. The decrease in the potential yields was mainly attributed to the shortened critical period caused by warming effects, so cultivation of new varieties of highland barley with longer growth periods is suggested as an achievable strategy for the adaptation of highland barley to climate change in TRR. Full article
(This article belongs to the Special Issue Climate Change Research toward Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 3350 KiB  
Article
Effect of Highland Barley on Rheological Properties, Textural Properties and Starch Digestibility of Chinese Steamed Bread
by Daying Wu, Liwei Yu, Lei Guo, Shiquan Li, Xiaohua Yao, Youhua Yao, Xinyou Cao, Kunlun Wu and Xin Gao
Foods 2022, 11(8), 1091; https://doi.org/10.3390/foods11081091 - 10 Apr 2022
Cited by 31 | Viewed by 3643 | Correction
Abstract
Highland barley has a different composition and structure to other crops. It has higher contents of total polyphenol (TPC), total flavonoid (TFC) and β-glucan, which can be supplemented to improve the nutrition of wheat-flour-based food. In this study, the flours of three different [...] Read more.
Highland barley has a different composition and structure to other crops. It has higher contents of total polyphenol (TPC), total flavonoid (TFC) and β-glucan, which can be supplemented to improve the nutrition of wheat-flour-based food. In this study, the flours of three different grain-colored highland barley varieties Beiqing 6 (BQ), Dulihuang (DLH), and Heilaoya (HLY), were added to Jimai60 (JM, a wheat variety with medium gluten) wheat flour at different substitution levels to investigate their effects on the unextractable polymeric protein (UPP) content, micro-structure, rheological properties and mixing properties of dough, and the color, texture, flavor, and in vitro digestion of Chinese steam bread (CSB). The results showed that the moderate substitution of highland barley (20%) increased the UPP%, optimized the micro-structure of gluten, and improved its rheological properties by increasing dough viscoelasticity. The CSBs made from the composite flours exhibited a similar specific volume, cohesiveness, springiness and resilience to wheat CSB, while the firmness of composite CSBs (particularly JM-HLY-20) was delayed during storage. Importantly, the addition of highland barley increased the contents of TPC, TFC and β-glucan, but decreased the in vitro starch digestibility of CSBs. A sensory evaluation showed that JM-HLY CSB was the most preferable. Taken together, highland barley can be used as a fine supplement to food products, with health-promoting properties. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

20 pages, 3255 KiB  
Article
Assessment of the Phenolic Profiles, Hypoglycemic Activity, and Molecular Mechanism of Different Highland Barley (Hordeum vulgare L.) Varieties
by Na Deng, Bisheng Zheng, Tong Li and Rui Hai Liu
Int. J. Mol. Sci. 2020, 21(4), 1175; https://doi.org/10.3390/ijms21041175 - 11 Feb 2020
Cited by 74 | Viewed by 5704
Abstract
The phenolic profiles, hypoglycemic activity, and molecular mechanism of the effect on type 2 diabetes mellitus (T2DM) of four highland barley varieties were investigated in the present study. The fundamental phenolics in highland barley were ferulic acid, naringin, and catechin, which mainly existed [...] Read more.
The phenolic profiles, hypoglycemic activity, and molecular mechanism of the effect on type 2 diabetes mellitus (T2DM) of four highland barley varieties were investigated in the present study. The fundamental phenolics in highland barley were ferulic acid, naringin, and catechin, which mainly existed in bound form. These varieties showed favorable hypoglycemic activity via inhibition of α-glucosidase and α-amylase activities, enhancement of glucose consumption, glycogen accumulation and glycogen synthase 2 (GYS2) activity, and down-regulation of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) activities. Specifically, ZQ320 variety exhibited the strongest hypoglycemic activity compared to the other varieties. Highland barley phenolics could inhibit gluconeogenesis and motivate glycogen synthesis via down-regulating the gene expression of G6Pase, PEPCK, and glycogen synthase kinase 3β (GSK3β), while activating the expression of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3 kinase (PI3K), serine/threonine kinase (Akt), GYS2, and glucose transporter type 4 (GLUT4). Therefore, phenolics from highland barley could be served as suitable candidates for therapeutic agent in T2DM to improve human health. Full article
(This article belongs to the Special Issue Nutrition and Diabetes)
Show Figures

Graphical abstract

18 pages, 3979 KiB  
Article
Alternative Pathway is Involved in Nitric Oxide-Enhanced Tolerance to Cadmium Stress in Barley Roots
by Li He, Xiaomin Wang, Ruijun Feng, Qiang He, Shengwang Wang, Cuifang Liang, Lili Yan and Yurong Bi
Plants 2019, 8(12), 557; https://doi.org/10.3390/plants8120557 - 29 Nov 2019
Cited by 24 | Viewed by 3649
Abstract
Alternative pathway (AP) has been widely accepted to be involved in enhancing tolerance to various environmental stresses. In this study, the role of AP in response to cadmium (Cd) stress in two barley varieties, highland barley (Kunlun14) and barley (Ganpi6), was investigated. Results [...] Read more.
Alternative pathway (AP) has been widely accepted to be involved in enhancing tolerance to various environmental stresses. In this study, the role of AP in response to cadmium (Cd) stress in two barley varieties, highland barley (Kunlun14) and barley (Ganpi6), was investigated. Results showed that the malondialdehyde (MDA) content and electrolyte leakage (EL) level under Cd stress increased in two barley varieties. The expressions of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein amount were clearly induced more in Kunlun14 under Cd stress, and these parameters were further enhanced by applying sodium nitroprussid (SNP, a NO donor). Moreover, H2O2 and O2 contents were raised in the Cd-treated roots of two barley varieties, but they were markedly relieved by exogenous SNP. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting that AP contributes to NO-enhanced Cd stress tolerance. Further study demonstrated that the effect of SHAM application on reactive oxygen species (ROS)-related scavenging enzymes and antioxidants was minimal. These observations showed that AP exerts an indispensable function in NO-enhanced Cd stress tolerance in two barley varieties. AP was mainly responsible for regulating the ROS accumulation to maintain the homeostasis of redox state. Full article
(This article belongs to the Special Issue Plant Respiration 2020)
Show Figures

Graphical abstract

20 pages, 1367 KiB  
Article
Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau
by Xi-Juan Yang, Bin Dang and Ming-Tao Fan
Molecules 2018, 23(4), 879; https://doi.org/10.3390/molecules23040879 - 11 Apr 2018
Cited by 141 | Viewed by 7772
Abstract
In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20–237.60, 170.10–240.75 and 336.29–453.94 mg of gallic acid [...] Read more.
In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20–237.60, 170.10–240.75 and 336.29–453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61–25.59, 14.91–22.38 and 37.91–47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS•+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH and ABTS•+ free radical scavenging capacity in the free phenolic extract, while chlorogenic acid, vanillic acid, ferulic acid and quercetin were the main contributors to the free radical scavenging capacity in the bound phenol extract. The study results show that the blue highland barley grains have rich phenolic compounds and high antioxidant activity, as well as significant varietal differences. The free and bound phenolic extracts in the blue hulless barley grains have an equivalent proportion in the total phenol, and co-exist in two forms. They can be used as a potential valuable source of natural antioxidants, and can aid in enhancing the development and daily consumption of foods relating to blue highland barley. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop