Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Products Development and Sensorial Evaluation
2.1.1. Microalgae Biomass and Ingredients
2.1.2. Baked Goods Preparation
2.1.3. Physical Characterization
- wi = initial weight of the sample,
- wf = final weight of sample.
2.2. Nutritional Characterization, Product Selection and In Vitro Bioavailability Essay
2.2.1. Total Phenolic Content and Antioxidant Activity
2.2.2. Total Protein Content
2.3. Sensory Evaluation
2.3.1. In Vitro Gastrointestinal Essay
2.3.2. Essential Amino Acids Quantification
2.4. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Incorporation of Microalgae in Baked Goods
3.2. Nutritional Quality
3.3. Sensory Evaluation
3.4. Sensory Acceptance Selection
3.5. Amino Acids Profile of Selected Products
3.6. In Vitro Gastrointestinal Essay Evaluating TPC/AOX of Selected Products
4. Conclusions
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, Y.; Sun, H.; Deng, J.; Huang, J.; Chen, F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar. Drugs 2021, 19, 713. [Google Scholar] [CrossRef] [PubMed]
- Geyik, O.; Hadjikakou, M.; Bryan, B.A. Spatiotemporal Trends in Adequacy of Dietary Nutrient Production and Food Sources. Glob. Food Sec. 2020, 24, 100355. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–Nutritious, Sustainable Aqua- and Animal Feed Source. J. Funct. Foods 2019, 26, 103545. [Google Scholar] [CrossRef]
- García, J.L.; de Vicente, M.; Galán, B. Microalgae, Old Sustainable Food and Fashion Nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Gohara-Beirigo, A.K.; Matsudo, M.C.; Cezare-Gomes, E.A.; de Carvalho, J.C.M.; Danesi, E.D.G. Microalgae Trends toward Functional Staple Food Incorporation: Sustainable Alternative for Human Health Improvement. Trends Food Sci. Technol. 2022, 125, 185–199. [Google Scholar] [CrossRef]
- Matos, Â.P. The Impact of Microalgae in Food Science and Technology. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1333–1350. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical Composition and Nutritional Properties of Freshwater and Marine Microalgal Biomass Cultured in Photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as Versatile Cellular Factories for Valued Products. Algal Res. 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Watanabe, F.; Takenaka, S.; Kittaka-Katsura, H.; Ebara, S.; Miyamoto, E. Characterization and Bioavailability of Vitamin B12-Compounds from Edible Algae. J. Nutr. Sci. Vitaminol. 2002, 48, 325–331. [Google Scholar] [CrossRef]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Pontonio, E. Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023, 12, 983. [Google Scholar] [CrossRef]
- Moon, S.-H.; Cho, S.-J. Evaluation of the Antioxidant Activity of Tetraselmis Chuii after in Vitro Gastrointestinal Digestion and Investigation of Its Antioxidant Peptides. Algal Res. 2023, 76, 103328. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the Microalgae Nannochloropsis and Tetraselmis for Being Used as Innovative Ingredients in Baked Goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Lafarga, T.; Villaró, S.; Bobo, G.; Simó, J.; Aguiló-Aguayo, I. Bioaccessibility and Antioxidant Activity of Phenolic Compounds in Cooked Pulses. Int. J. Food Sci. Technol. 2019, 54, 1816–1823. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Abadias, M.; Bobo, G.; Lafarga, T.; Viñas, I.; Aguiló-Aguayo, I. Antioxidant and Antimicrobial Activities of Ginseng Extract, Ferulic Acid, and Noni Juice: Evaluation of Their Potential to Be Incorporated in Food. J. Food Process Preserv. 2021, 45, e16041. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of Pulse Flours on the Physiochemical Characteristics and Sensory Acceptance of Baked Crackers. Int. J. Food Sci. Technol. 2017, 52, 1155–1163. [Google Scholar] [CrossRef]
- Hernández-López, I.; Benavente Valdés, J.R.; Castellari, M.; Aguiló-Aguayo, I.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Lafarga, T. Utilisation of the Marine Microalgae Nannochloropsis Sp. and Tetraselmis Sp. as Innovative Ingredients in the Formulation of Wheat Tortillas. Algal Res. 2021, 58, 102361. [Google Scholar] [CrossRef]
- Kıvrak, İ.; Kıvrak, Ş.; Harmandar, M. Free Amino Acid Profiling in the Giant Puffball Mushroom (Calvatia Gigantea) Using UPLC-MS/MS. Food Chem. 2014, 158, 88–92. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of Microalgae Incorporation on the Physicochemical, Nutritional, and Sensorial Properties of an Innovative Broccoli Soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef]
- da Silva Figueira, F.; de Moraes Crizel, T.; Rubira Silva, C.; de las Mercedes Salas-Mellado, M. Pão Sem Glúten Enriquecido Com a Microalga Spirulina Platensis. Braz. J. Food Technol. 2011, 14, 308–316. [Google Scholar] [CrossRef]
- García-Segovia, P.; García Alcaraz, V.; Tárrega, A.; Martínez-Monzó, J. Consumer Perception and Acceptability of Microalgae Based Breadstick. Food Sci. Technol. Int. 2020, 26, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Sukhikh, S.; Ivanova, S.; Dolganyuk, V.; Pilevinova, I.; Prosekov, A.; Ulrikh, E.; Noskova, S.; Michaud, P.; Babich, O. Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production. Appl. Sci. 2022, 12, 12563. [Google Scholar] [CrossRef]
- Hernández-López, I.; Alamprese, C.; Cappa, C.; Prieto-Santiago, V.; Abadias, M.; Aguiló-Aguayo, I. Effect of Spirulina in Bread Formulated with Wheat Flours of Different Alveograph Strength. Foods 2023, 12, 3724. [Google Scholar] [CrossRef] [PubMed]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Custódio, L.; Justo, T.; Silvestre, L.; Barradas, A.; Duarte, C.V.; Pereira, H.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Microalgae of Different Phyla Display Antioxidant, Metal Chelating and Acetylcholinesterase Inhibitory Activities. Food Chem. 2012, 131, 134–140. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Raymundo, A.; Fradinho, P.; Nunes, M.C. Application of Microalgae in Baked Goods and Pasta. In Handbook of Food and Feed from Microalgae: Production, Application, Regulation, and Sustainability; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Calella, P.; Cerullo, G.; Di Dio, M.; Liguori, F.; Di Onofrio, V.; Gallè, F.; Liguori, G. Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Spirulina in Exercise and Sport: A Systematic Review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of Spirulina Biomass on the Technological and Nutritional Quality of Bread Wheat Pasta. LWT 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Montevecchi, G.; Santunione, G.; Licciardello, F.; Köker, Ö.; Masino, F.; Antonelli, A. Enrichment of Wheat Flour with Spirulina. Evaluation of Thermal Damage to Essential Amino Acids during Bread Preparation. Food Res. Int. 2022, 157, 111357. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae Biomass as an Alternative Ingredient in Cookies: Sensory, Physical and Chemical Properties, Antioxidant Activity and in Vitro Digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Niccolai, A.; Venturi, M.; Galli, V.; Pini, N.; Rodolfi, L.; Biondi, N.; D’Ottavio, M.; Batista, A.P.; Raymundo, A.; Granchi, L.; et al. Development of New Microalgae-Based Sourdough “Crostini”: Functional Effects of Arthrospira Platensis (Spirulina) Addition. Sci. Rep. 2019, 9, 19433. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “Healthy” Foods-Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S. Recommended Dietary Allowances, Tenth Edition; National Academies Press: Washington, DC, USA, 1990; Volume 44. [Google Scholar] [CrossRef]
- Terriente-Palacios, C.; Castellari, M. Levels of Taurine, Hypotaurine and Homotaurine, and Amino Acids Profiles in Selected Commercial Seaweeds, Microalgae, and Algae-Enriched Food Products. Food Chem. 2022, 368, 130770. [Google Scholar] [CrossRef]
- Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent Updates on Bioaccessibility of Phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Demarco, M.; Oliveira de Moraes, J.; Matos, Â.P.; Derner, R.B.; de Farias Neves, F.; Tribuzi, G. Digestibility, Bioaccessibility and Bioactivity of Compounds from Algae. Trends Food Sci. Technol. 2022, 121, 114–128. [Google Scholar] [CrossRef]
- Ranga Rao, A.; Baskaran, V.; Sarada, R.; Ravishankar, G.A. In Vivo Bioavailability and Antioxidant Activity of Carotenoids from Microalgal Biomass—A Repeated Dose Study. Food Res. Int. 2013, 54, 711–717. [Google Scholar] [CrossRef]
- Muszyńska, B.; Krakowska, A.; Lazur, J.; Jękot, B.; Zimmer, Ł.; Szewczyk, A.; Sułkowska-Ziaja, K.; Poleszak, E.; Opoka, W. Bioaccessibility of Phenolic Compounds, Lutein, and Bioelements of Preparations Containing Chlorella Vulgaris in Artificial Digestive Juices. J. Appl. Phycol. 2018, 30, 1629–1640. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
Samples | Flour Type 55 (g) | Baking Powder (g) | Cold Water (mL) | Yeast (g) | Salt (g) | Microalgae (g) |
---|---|---|---|---|---|---|
CK | 156.2 | 1.6 | 94.0 | 4.7 | 3.1 | - |
1.5% | 153.8 | 1.6 | 94.0 | 4.7 | 3.1 | 2.3 |
2.5% | 152.3 | 1.6 | 94.0 | 4.7 | 3.1 | 3.9 |
3.5% | 150.7 | 1.6 | 94.0 | 4.7 | 3.1 | 5.5 |
Samples | Flour Type 55 (g) | Baking Powder (g) | Cold Water (mL) | Olive Oil (mL) | Yeast (g) | Salt (g) | Microalgae (g) |
---|---|---|---|---|---|---|---|
CK | 416.6 | 4.2 | 208.3 | 41.6 | 12.5 | 8.3 | - |
1.50% | 410.4 | 4.2 | 208.3 | 41.6 | 12.5 | 8.3 | 6.3 |
2.50% | 406.2 | 4.2 | 208.3 | 41.6 | 12.5 | 8.3 | 10.4 |
3.50% | 404.2 | 4.2 | 208.3 | 41.6 | 12.5 | 8.3 | 12.5 |
Time (min) | Flow (mL/min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|---|
0.00 | 0.40 | 99.0 | 1.0 |
2.00 | 0.40 | 99.0 | 1.0 |
8.00 | 0.40 | 30.0 | 70.0 |
10.00 | 0.40 | 99.0 | 1.0 |
13.00 | 0.40 | 99.0 | 1.0 |
Color Recordings | |||||||
---|---|---|---|---|---|---|---|
Grissini | L* | a* | b* | Crackers | L* | a* | b* |
CK | 65.29 | 12.51 | 38.20 | CK | 65.02 | 12.14 | 20.91 |
Ch. 1.5% | 57.85 ± 0.51 Aa | 0.97 ± 0.88 Ab | 38.30 ± 1.10 Aa | Ch. 1.5% | 64.92 ± 3.60 Aa | 5.70 ± 2.54 Aa | 22.81 ± 0.64 Aa |
Ch. 2.5% | 56.72 ± 3.89 Aa | −1.56 ± 0.41 Bc | 32.29 ± 1.39 Ab | Ch. 2.5% | 63.54 ± 3.77 Aa | 6.01 ± 2.21 Aa | 16.59 ± 2.45 Ab |
Ch. 3.5% | 44.45 ± 3.52 Bb | 5.83. ± 1.04 Aa | 24.47 ± 1.72 Aa | Ch. 3.5% | 63.46 ± 1.87 Aa | 0.83 ± 3.16 Ab | 19.46 ± 1.83 Ab |
Sp. 1.5% | 54.58 ± 2.11 Bb | 1.92 ± 0.74 Ac | 28.08 ± 1.40 Ba | Sp. 1.5% | 66.24 ± 2.15 Aa | 1.52 ± 1.27 Ba | 9.08 ± 1.37 Ca |
Sp. 2.5% | 57.40 ± 1.70 Ab | 0.14 ± 0.19 Ab | 18.81 ± 1.30 Bc | Sp. 2.5% | 60.98 ± 1.49 Ba | 1.248 ± 1.40 Ba | 10.05 ± 1.40 Ba |
Sp. 3.5% | 66.02 ± 5.42 Aa | 4.48 ± 1.41 Aa | 20.27 ± 2.30 Bb | Sp. 3.5% | 67.40 ± 4.12 Aa | 1.356 ± 0.60 Aa | 7.37 ± 2.04 Ca |
Ts. 1.5% | 40.44 ± 1.23 Ca | −2.77 ± 2.37 Bb | 28.18 ± 1.50 Cb | Ts. 1.5% | 60.05 ± 1.16 Ab | −7.00 ± 2.37 Ca | 16.81 ± 0.55 Ba |
Ts. 2.5% | 37.21 ± 1.54 Bb | −11.12 ± 0.92 Cc | 35.62 ± 0.99 Bb | Ts. 2.5% | 59.45 ± 1.28 Aab | −8.14 ± 2.56 Ca | 16.28 ± 1.13 Aab |
Ts. 3.5% | 46.38 ± 4.02 Bb | 0.16 ± 0.45 Ba | 21.18 ± 1.29 Ba | Ts. 3.5% | 56.43 ± 2.92 Bb | −8.65 ± 1.43 Ba | 14.40 ± 1.56 Bb |
Crackers | Crunchiness | Firmness | Flavor | Global Acceptance | |
---|---|---|---|---|---|
Chlorella | 1.50% | 79% | 72% | 59% | 55% |
2.50% | 72% | 68% | 52% | 62% | |
3.50% | 83% | 72% | 48% | 62% | |
Spirulina | 1.50% | 83% | 86% | 69% | 62% |
2.50% | 83% | 72% | 41% | 57% | |
3.50% | 97% | 90% | 48% | 55% | |
Tetraselmis | 1.50% | 83% | 93% | 38% | 31% |
2.50% | 90% | 83% | 38% | 38% | |
3.50% | 79% | 76% | 31% | 28% |
Grissini | Crunchiness | Firmness | Flavor | Global Acceptance | |
---|---|---|---|---|---|
Chlorella | 1.50% | 54% | 56% | 67% | 59% |
2.50% | 44% | 51% | 70% | 64% | |
3.50% | 64% | 74% | 69% | 67% | |
Spirulina | 1.50% | 40% | 49% | 54% | 51% |
2.50% | 29% | 37% | 43% | 49% | |
3.50% | 60% | 68% | 63% | 49% | |
Tetraselmis | 1.50% | 51% | 54% | 32% | 32% |
2.50% | 40% | 59% | 30% | 38% | |
3.50% | 54% | 62% | 41% | 38% |
Essential Amino Acids mg aa/100 g Total Product | ||
---|---|---|
Crackers Spirulina 1.5% | Grissini Chlorella 3.5% | |
Isoleucine | 11.6 | 4.0 |
Leucine | 16.5 | 5.1 |
Lysine | 0.1 | 0.2 |
Threonine | - | 0.2 |
Tryptophan | 11.6 | 6.8 |
Valine | 27.8 | 27.1 |
TPC & AOX Activity before and after Digestion | |||
---|---|---|---|
TPC | Samples | Pre-Digestion | Post Digestion |
mg Eq GA/100 g f.w. | Crackers Spirulina 1.5% | 35.17 ± 3.34 | 317.1 ± 22.4 |
Grissini Chlorella 3.5% | 16.4 ± 0.5 | 114.9 ± 0.7 | |
FRAP | Samples | Pre-Digestion | Post Digestion |
mg Eq AA/100 g f.w. | Crackers Spirulina 1.5% | 17.4 ± 1.1 | 182.8 ± 7.9 |
Grissini Chlorella 3.5% | 10.9 ± 0.2 | 96.5 ± 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-López, I.; Abadias, M.; Prieto-Santiago, V.; Chic-Blanco, Á.; Ortiz-Solà, J.; Aguiló-Aguayo, I. Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products. Foods 2024, 13, 84. https://doi.org/10.3390/foods13010084
Hernández-López I, Abadias M, Prieto-Santiago V, Chic-Blanco Á, Ortiz-Solà J, Aguiló-Aguayo I. Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products. Foods. 2024; 13(1):84. https://doi.org/10.3390/foods13010084
Chicago/Turabian StyleHernández-López, Israel, Maribel Abadias, Virginia Prieto-Santiago, Ángela Chic-Blanco, Jordi Ortiz-Solà, and Ingrid Aguiló-Aguayo. 2024. "Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products" Foods 13, no. 1: 84. https://doi.org/10.3390/foods13010084
APA StyleHernández-López, I., Abadias, M., Prieto-Santiago, V., Chic-Blanco, Á., Ortiz-Solà, J., & Aguiló-Aguayo, I. (2024). Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products. Foods, 13(1), 84. https://doi.org/10.3390/foods13010084