A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries
Abstract
:1. Introduction
1.1. Fruits and Vegetables: State of the Art
Cova da Beira’s Cherries
Compounds in Cherries and Their Relevance
Methods of Conservation and Marketing Parameters
Microbial Contamination
1.2. Temperature Integrating Devices
Enzymatic TTI
2. Materials and Methods
3. Results and Discussion
3.1. Microbial Kinetics: Deduction for the Specific Case of CHERRY
3.2. Concepts of the Formulation and Design of the TTI Prototype
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assao, T.Y.; Cordeiro, A.A.; Costa, C.; Cervato, A.M. Práticas e percepções acerca da segurança alimentar e nutricional entre os representantes das instituições integrantes de um centro de referência localizado na região do Butantã, Município de São Paulo. Saúde E Soc. 2007, 16, 102–116. [Google Scholar]
- Fernandez, C.M.; Alves, J.; Gaspar, P.D.; Lima, T.M. Fostering awareness on environmentally sustainable technological solutions for the post-harvest food supply chain. Processes 2021, 9, 1611. [Google Scholar] [CrossRef]
- Viegas, S.J. Segurança Alimentar-Guia de Boas Práticas do Consumidor; Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisboa, Portugal, 2015. [Google Scholar]
- Gaspar, P.D.; Silva, P.D.; Andrade, L.P.; Nunes, J.; Santo, C.E. Technologies for monitoring the safety of perishables food products. In Handbook of Research on Technologies and Systems for Food Preservation; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Almeida, D. Manuseamento de Produtos Hortofrutícolas; SPI–Sociedade Portuguesa de Inovação: Porto, Portugal, 2005. [Google Scholar]
- Gaspar, P.D.; Alves, J.; Pinto, P. Simplified approach to predict food safety through the maximum specific bacterial growth rate as function of extrinsic and intrinsic parameters. ChemEngineering 2021, 5, 22. [Google Scholar] [CrossRef]
- Braga, L.R.; Peres, L. New trends in packaging for foods: A review. Bol. Cent. Pesqui. Process. Aliment. 2010, 28, 69–84. [Google Scholar]
- Van Loey, A.; Hendrickx, M.; Cordt, S.; Haentjens, T.; Tobback, P. Quantitative evaluation of thermal processes using time-temperature integrators. Trends Food Sci. Technol. 1996, 7, 16–26. [Google Scholar] [CrossRef]
- Costa, F.M.M. Avaliação das Características Agronómicas da Cerejeira de Saco na Região da Cova da Beira. Master’s Thesis, Universidade Técnica de Lisboa, Lisboa, Portugal, 2006. [Google Scholar]
- Serrano, M.; Díaz-Mula, H.M.; Zapata, P.J.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Valverde, J.M.; Valero, D. Maturity stage at harvest determines the fruit quality and antioxidant potential after storage of sweet cherry cultivars. J. Agric. Food Chem. 2009, 57, 3240–3246. [Google Scholar] [CrossRef]
- Schmitz-Eiberger, M.A.; Blanke, M.M. Bioactive components in forced sweet cherry fruit (Prunus avium L.), antioxidative capacity and allergenic potential as dependent on cultivation under cover. LWT Food Sci. Technol. 2012, 46, 388–392. [Google Scholar] [CrossRef]
- Predieri, S.; Dris, R.; Rapparini, F. Influence of growing conditions on yield and quality of cherry: II. Fruit quality. J. Food Agric. Environ. 2004, 2, 307–309. [Google Scholar]
- Wani, A.; Singh, P.; Gul, K.; Wani, M.H.; Langowski, H.C. Sweet cherry (Prunus avium): Critical factors affecting the composition and shelf life. Food Packag. Shelf Life 2014, 1, 86–99. [Google Scholar] [CrossRef]
- Clayton, M.; Biasi, W.V.; Agar, I.T.; Southwick, S.M.; Mitcham, E.J. Sensory quality of ‘bing’ sweet cherries following preharvest treatment with hydrogen cyanamide, calcium ammonium nitrate, or gibberellic acid. HortScience 2006, 41, 745–748. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.M.D.C. Ecofisiologia da Cerejeira (Prunus avium L.), Composição Fenólica e Actividade Antioxidante dos Frutos. Ph.D. Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2006. [Google Scholar]
- Gonçalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Oancea, A.M.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. LWT Food Sci. Technol. 2017, 82, 139–146. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 2013, 140, 630–638. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Kumar, V.B.A.; Mohan, T.C.K.; Murugan, L. Purification and kinetic characterization of polyphenol oxidase from Barbados cherry (Malpighia glabra L.). Food Chem. 2008, 110, 328–333. [Google Scholar] [CrossRef]
- Kitinoja, L.; Kader, A. Small-scale postharvest handling practices: A manual for horticultural crops. Postharvest Technol. Res. Inf. Cent. 2003, 8, 267. [Google Scholar]
- Hui, Y.H. Handbook of Fruits and Fruit Processing, 1st ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2007. [Google Scholar]
- Associação Portuguesa de Horticultura (APH). APH 2º Simpósio Nacional de Fruticultura; Associação Portuguesa de Horticultura (APH): Lisbon, Portugal, 2014. [Google Scholar]
- Andrade, L.P.; Veloso, A.; Santo, C.E.; Gaspar, P.D.; Silva, P.D.; Resende, M.; Beato, H.; Baptista, C.; Pintado, C.M.; Paulo, L.; et al. Effect of controlled atmospheres and environmental conditions on the physicochemical and sensory characteristics of sweet cherry cultivar Satin. Agronomy 2022, 12, 188. [Google Scholar] [CrossRef]
- Delgado, F. A Produção de Cereja na Cova da Beira. Cadernos Temáticos; Martins, F., Ed.; Direção Regional de Agricultura e Pescas do Centro (DRAPCentro): Castelo Branco, Portugal, 2021.
- European Commission (EC). Commercialisation of Energy Storage in Europe; European Commission (EC): Brussels, Belgium, 2015. [Google Scholar]
- Mohamed, M. The intelligent colorimetric timer indicator systems to develop label packaging industry in Egypt. Int. Des. J. 2014, 4, 295–304. [Google Scholar]
- Rungjindamai, N.; Xu, X.M.; Jeffries, P. Identification and characterisation of new microbial antagonists for biocontrol of monilinia laxa, the causal agent of brown rot on stone fruit. Agronomy 2013, 3, 685–703. [Google Scholar] [CrossRef] [Green Version]
- Luti, S.; Campigli, S.; Ranaldi, F.; Paoli, P.; Pazzagli, L.; Marchi, G. Lscβ and lscγ, two novel levansucrases of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, show different enzymatic properties. Int. J. Biol. Macromol. 2021, 179, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Mu, W.; Moga, L.M.; Zhang, X. Development of temperature managed traceability system for frozen and chilled food during storage and transportation. J. Food Agric. Environ. 2009, 7, 28–31. [Google Scholar]
- Taoukis, P.S.; Tsironi, T.; Giannoglou, M.; Metaxa, I.; Gogou, E. Historical review and state of the art in Time Temperature Integrator (TTI) technology for the management of the cold chain of refrigerated and frozen foods. Food Process Eng. A Chang. World 2011. [Google Scholar]
- Gwanpua, S.G.; Verboven, P.; Ho, Q.T.; Verlinden, B.; Hertog, M.; Schenk, A.; Van Impe, J.; Nicolai, B.; Geeraerd, A. A tool for predicting the quality of food products during refrigerated storage. In Proceedings of the 23rd International Congress of Refrigeration, Prague, Czech Republic, 21–26 August 2011; pp. 3050–3057, ISBN 978-1-61839-748-5. [Google Scholar]
- Haentjens, T.H.; Van Loey, A.M.; Hendrickx, M.E.; Tobback, P.P. The use of α-amylase at reduced water content to develop time temperature integrators for sterilization processes. LWT Food Sci. Technol. 1998, 31, 467–472. [Google Scholar] [CrossRef]
- Pavelková, A. Time temperature indicators as devices intelligent packaging. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Vitsab International AB: TTI Label. Available online: http://vitsab.com/en/tti-label/ (accessed on 16 April 2021).
- Fresh-check® Indicator. Available online: http://fresh-check.com (accessed on 16 April 2021).
- O’Grady, M.N.; Kerry, J.P. Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems; Toldrá, F., Ed.; Meat Biotechnology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Martini, C. Phenotype and Genotype Characterization of Monilinia spp. Isolates and Preformed Antifungal Compounds in Peach Peel Fruit at Different Developmental Stages. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2012. [Google Scholar]
- Combase. Available online: https://www.combase.cc/index.php/en/ (accessed on 15 April 2021).
Microorganism | Tmin [°C] | Initial Colony [log 10 cells/g] | Infecting Colony [log 10 cells/g] |
---|---|---|---|
Bacillus cereus | 5.0 | 3 | >5 |
Escherichia coli | 10.0 | 2 | >6 |
Listeria monocytogenes | 1.0 | 1.30 | >2 |
Staphylococcus aureus | 7.5 | 1.30 | >5 |
Salmonella | 7.0 | 2 | >5 |
Yersinia enterocolitica | −1.0 | 2 | >7 |
Brochothrix thermosphacta | 0.0 | 2 | >7 |
Pseudomonas spp. | 0.0 | 2 | >7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, P.D.; Alves, J.; Quelhas, A.S.; Domingos, C.; Caio, S. A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries. Foods 2023, 12, 1240. https://doi.org/10.3390/foods12061240
Gaspar PD, Alves J, Quelhas AS, Domingos C, Caio S. A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries. Foods. 2023; 12(6):1240. https://doi.org/10.3390/foods12061240
Chicago/Turabian StyleGaspar, Pedro D., Joel Alves, Adriana S. Quelhas, Christelle Domingos, and Susana Caio. 2023. "A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries" Foods 12, no. 6: 1240. https://doi.org/10.3390/foods12061240
APA StyleGaspar, P. D., Alves, J., Quelhas, A. S., Domingos, C., & Caio, S. (2023). A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries. Foods, 12(6), 1240. https://doi.org/10.3390/foods12061240