Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = TTI (time-temperature integrators)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1265 KiB  
Review
Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety
by Junjun Zhang, Jianing Zhang, Lidan Zhang, Zhou Qin and Tianxing Wang
Foods 2025, 14(7), 1157; https://doi.org/10.3390/foods14071157 - 26 Mar 2025
Cited by 3 | Viewed by 1672
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for [...] Read more.
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains. Full article
(This article belongs to the Special Issue Advances of Novel Technologies in Food Analysis and Food Safety)
Show Figures

Graphical abstract

14 pages, 2123 KiB  
Article
Continuous-Flow Microwave Heating Inactivation Kinetics of α-Amylase from Bacillus subtilis and a Comparison with Conventional Heating Conditions
by Zhen Tong and Hosahalli S. Ramaswamy
Appl. Sci. 2023, 13(16), 9220; https://doi.org/10.3390/app13169220 - 14 Aug 2023
Cited by 1 | Viewed by 1448
Abstract
The inactivation kinetics of an α-amylase enzymatic time-temperature integrator (TTI) from Bacillus subtilis (BAA) under continuous-flow microwave (MW) and conventional heating conditions were evaluated and compared in this study. The TTI dispersed in a buffer solution (pH 5.0 to 6.9) at 20 °C [...] Read more.
The inactivation kinetics of an α-amylase enzymatic time-temperature integrator (TTI) from Bacillus subtilis (BAA) under continuous-flow microwave (MW) and conventional heating conditions were evaluated and compared in this study. The TTI dispersed in a buffer solution (pH 5.0 to 6.9) at 20 °C initially, and it was continuously circulated through two helical coils connected in a series for heating. The two coils were positioned in two domestic microwave ovens (2450 MHz and 1000 W nominal capacity each) and connected by a short tube. The sample flow rates were adjusted to result in a specific exit temperature in the range of 65 to 80 °C. A short fully insulated helical coil at the exit of the second oven was used as a holding tube. Test samples were drawn either at the exit of the second MW oven or immediately after the holding tube. The decimal reduction times obtained under conventional batch heating conditions decreased from 66 to 24 s as the temperature changed from 70 to 75 °C at pH 5.0 while they decreased from 8 to 5 s under MW in the same temperature range, but at pH 6.0, they increased both under conventional and microwave heating conditions (138 to 120 s and 89 to 61 s, respectively). The D-values under conventional thermal holding were four–eight times higher than under a continuous-flow MW heating condition. By varying the pH, the D-values could be modified to suit the validation of appropriate processing conditions. Full article
Show Figures

Figure 1

10 pages, 1279 KiB  
Article
A Chromatic Enzymatic Time-Temperature Integrator Device Based on the Degradation of Phenolic Compounds for the Real-Time Prediction of the Quality and Shelf Life of Cherries
by Pedro D. Gaspar, Joel Alves, Adriana S. Quelhas, Christelle Domingos and Susana Caio
Foods 2023, 12(6), 1240; https://doi.org/10.3390/foods12061240 - 14 Mar 2023
Viewed by 1903
Abstract
The particular characteristics of cherries, such as color, firmness, and palate increase their demand, as does, among other things, their antioxidant properties that benefit human health. However, their high perishability leads to a reduced shelf life and consequently generates undesirable changes in the [...] Read more.
The particular characteristics of cherries, such as color, firmness, and palate increase their demand, as does, among other things, their antioxidant properties that benefit human health. However, their high perishability leads to a reduced shelf life and consequently generates undesirable changes in the cherry flow chain. To ensure food quality and safety and prevent food waste, a smart device prototype is proposed. The concepts related to the formulation and design of the enzymatic-type chromatic time-temperature integrator (TTI) device used to monitor the real-time quality of cherries are described. The kinetic parameters for thermal inactivation of cultivar Santina cherries were determined based on the degradation of phenolic compounds that are substrates of the polyphenol oxidase enzyme, whose hydroxylation reaction of a monophenol to o-diphenol leads to the oxidation in o-quinone. The proposed device concept aims to help retailers and consumers decide upon selling and buying according to the remaining shelf life, thus promoting sustainability related to food processes. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

22 pages, 5427 KiB  
Article
Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions
by Maria Katsouli, Ioanna Semenoglou, Mado Kotsiri, Eleni Gogou, Theofania Tsironi and Petros Taoukis
Foods 2022, 11(15), 2245; https://doi.org/10.3390/foods11152245 - 27 Jul 2022
Cited by 7 | Viewed by 2954
Abstract
The study investigated the effect of active modified atmosphere packaging (20% CO2–60% N2–20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the [...] Read more.
The study investigated the effect of active modified atmosphere packaging (20% CO2–60% N2–20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the most appropriate enzymatic Time Temperature Integrators (TTI) were selected for monitoring their shelf-life at isothermal and variable temperature storage conditions (Teff = 4.8 °C). The concentration of CO2 and O2 in the headspace of the package, volatile compounds and of the microbial population were monitored during storage. The kinetic parameters for bacterial growth were estimated at 0–10 °C using the Baranyi growth model. The MAP-PAD samples presented significantly lower microbial growth rates and longer lag phases compared to the MAP samples, leading to significant shelf-life extension: 2 days of extension at 2.5 °C and 5 °C, while 50% extension at variable conditions (Teff = 4.8 °C). CO2 emitters in the package improved the chemical freshness (K-values) and volatile compounds (characterizing freshness). The responses of different enzymatic TTI were modeled as the function of enzyme concentration, temperature and storage time. The activation energy (Ea) ranged from 97 to 148 kJ mol−1, allowing the selection of appropriate TTIs for the shelf-life monitoring of each fish product: LP-150U for the MAP and M-25U for the MAP-PAD samples. The validation experiment at Teff = 4.8 °C confirmed the applicability of Arrhenius-type models, as well as the use of TTIs as effective chill chain management tools during distribution and storage. Full article
Show Figures

Figure 1

10 pages, 1951 KiB  
Article
Preliminary Study on Biosensor-Type Time-Temperature Integrator for Intelligent Food Packaging
by A. T. M. Mijanur Rahman, Do Hyeon Kim, Han Dong Jang, Jung Hwa Yang and Seung Ju Lee
Sensors 2018, 18(6), 1949; https://doi.org/10.3390/s18061949 - 15 Jun 2018
Cited by 36 | Viewed by 6257
Abstract
A glucose biosensor was utilized as a platform for the time-temperature integrator (TTI), a device for intelligent food packaging. The TTI system is composed of glucose oxidase, glucose, a pH indicator, and a three-electrode potentiostat, which produces an electrical signal as well as [...] Read more.
A glucose biosensor was utilized as a platform for the time-temperature integrator (TTI), a device for intelligent food packaging. The TTI system is composed of glucose oxidase, glucose, a pH indicator, and a three-electrode potentiostat, which produces an electrical signal as well as color development. The reaction kinetics of these response variables were analyzed under isothermal conditions. The reaction rates of the electrical current and color changes were 0.0360 ± 0.0020 (95% confidence limit), 0.0566 ± 0.0026, 0.0716 ± 0.0024, 0.1073 ± 0.0028 µA/min, and 0.0187 ± 0.0005, 0.0293 ± 0.0018, 0.0363 ± 0.0012, 0.0540 ± 0.0019 1/min, at 5, 15, 25, and 35 °C, respectively. The Arrhenius activation energy of the current reaction (Eacurrent) was 25.0 ± 1.6 kJ/mol and the Eacolor of the color reactions was 24.2 ± 0.6 kJ/mol. The similarity of these Ea shows agreement in the prediction of food qualities between the electrical signal and color development. Consequently, the function of the new time-temperature integrator system could be extended to that of a biosensor compatible with any electrical utilization equipment. Full article
Show Figures

Figure 1

Back to TopTop