Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption
Abstract
1. Introduction
2. Microorganisms Isolated from Arid Areas of Interest for the Production of Peptides and/or Proteins for Human Consumption
3. Microorganisms from Arid Zones as a Source of Protein for Human Consumption
4. Plants from Arid Zones as a Source of Protein for Human Consumption
5. Insects from Arid Zones as a Source of Proteins and Peptides for Human Consumption
6. Knowledge Summary and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 13 August 2023).
- Grover, Z.; Ee, L.C. Protein Energy Malnutrition. Pediatr. Clin. N. Am. 2009, 56, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Prandi, B.; Ruales, J.; Van Camp, J.; Sforza, S.; Elst, K. Valorization of Soursop (Annona muricata) Seeds as Alternative Oil and Protein Source Using Novel de-Oiling and Protein Extraction Techniques. LWT 2023, 182, 114777. [Google Scholar] [CrossRef]
- Alsharif, W.; Saad, M.M.; Hirt, H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front. Microbiol. 2020, 11, 01666. [Google Scholar] [CrossRef] [PubMed]
- Guillen-Cruz, G.; Rodríguez-Sánchez, A.L.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of Vegetation Type on the Ecosystem Services Provided by Urban Green Areas in an Arid Zone of Northern Mexico. Urban For. Urban Green. 2021, 62, 127135. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2018; Volume 3, ISBN 9780429964015. [Google Scholar]
- Ashfaq, S.; Ahmad, M.; Zafar, M.; Sultana, S.; Bahadur, S.; Ullah, F.; Zaman, W.; Ahmed, S.N.; Nazish, M. Foliar Micromorphology of Convolvulaceous Species with Special Emphasis on Trichome Diversity from the Arid Zone of Pakistan. Flora Morphol. Distrib. Funct. Ecol. Plants 2019, 255, 110–124. [Google Scholar] [CrossRef]
- Ramírez-Guzmán, N.; Torres-León, C.; Martínez-Terrazas, E.; De la Cruz-Quiroz, R.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Biocontrol as an Efficient Tool for Food Control and Biosecurity. In Food Safety and Preservation; Academic Press: Cambridge, MA, USA, 2018; pp. 167–193. ISBN 9780128149560. [Google Scholar]
- Verma, S.; Meghwanshi, G.K.; Kumar, R. Current Perspectives for Microbial Lipases from Extremophiles and Metagenomics. Biochimie 2021, 182, 23–36. [Google Scholar] [CrossRef]
- Alcalde, M.; Plou, F.J.; Andersen, C.; Martín, M.T.; Pedersen, S.; Ballesteros, A. Chemical Modification of Lysine Side Chains of Cyclodextrin Glycosyltransferase from Thermoanaerobacter Causes a Shift from Cyclodextrin Glycosyltransferase to α-Amylase Specificity. FEBS Lett. 1999, 445, 333–337. [Google Scholar] [CrossRef]
- Somayaji, A.; Dhanjal, C.R.; Lingamsetty, R.; Vinayagam, R.; Selvaraj, R.; Varadavenkatesan, T.; Govarthanan, M. An Insight into the Mechanisms of Homeostasis in Extremophiles. Microbiol. Res. 2022, 263, 127115. [Google Scholar] [CrossRef]
- Canganella, F.; Wiegel, J. Extremophiles: From Abyssal to Terrestrial Ecosystems and Possibly Beyond. Naturwissenschaften 2011, 98, 253–279. [Google Scholar] [CrossRef]
- McDonald, J. Discontinuities in Arid Zone Rock Art: Graphic Indicators for Changing Social Complexity across Space and through Time. J. Anthropol. Archaeol. 2017, 46, 53–67. [Google Scholar] [CrossRef]
- Kumar, A.; Alam, A.; Tripathi, D.; Rani, M.; Khatoon, H.; Pandey, S.; Ehtesham, N.Z.; Hasnain, S.E. Protein Adaptations in Extremophiles: An Insight into Extremophilic Connection of Mycobacterial Proteome. Semin. Cell Dev. Biol. 2018, 84, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Dhritlahre, R.K.; Ruchika; Padwad, Y.; Saneja, A. Self-Emulsifying Formulations to Augment Therapeutic Efficacy of Nutraceuticals: From Concepts to Clinic. Trends Food Sci. Technol. 2021, 115, 347–365. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Daliri, E.B.-M.; Oh, D.H.; Lee, B.H. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Mingyi, Y.; Belwal, T.; Devkota, H.P.; Li, L.; Luo, Z. Trends of Utilizing Mushroom Polysaccharides (MPs) as Potent Nutraceutical Components in Food and Medicine: A Comprehensive Review. Trends Food Sci. Technol. 2019, 92, 94–110. [Google Scholar] [CrossRef]
- Adams, C.; Sawh, F.; Green-Johnson, J.M.; Jones Taggart, H.; Strap, J.L. Characterization of Casein-Derived Peptide Bioactivity: Differential Effects on Angiotensin-Converting Enzyme Inhibition and Cytokine and Nitric Oxide Production. J. Dairy Sci. 2020, 103, 5805–5815. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, A.P.F.; Daroit, D.J.; Fontoura, R.; Meira, S.M.M.; Segalin, J.; Brandelli, A. Hydrolysates of Sheep Cheese Whey as a Source of Bioactive Peptides with Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities. Peptides 2014, 61, 48–55. [Google Scholar] [CrossRef]
- Gammoh, S.; Alu’datt, M.H.; Tranchant, C.C.; Al-U’datt, D.G.; Alhamad, M.N.; Rababah, T.; Kubow, S.; Haddadin, M.S.Y.; Ammari, Z.; Maghaydah, S.; et al. Modification of the Functional and Bioactive Properties of Camel Milk Casein and Whey Proteins by Ultrasonication and Fermentation with Lactobacillus delbrueckii Subsp. Lactis. LWT-Food Sci. Technol. 2020, 129, 109501. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of Bioactive Peptides from Various Origin as Promising Nutraceutical Treasures: In Vitro, in Silico and in Vivo Studies. Food Chem. 2021, 373, 131395. [Google Scholar] [CrossRef]
- Gulyamova, T.G.; Okhundedaev, B.S.; Bobakulov, K.M.; Nishanbaev, S.Z.; Shamyanov, I.D.; Ruzieva, D.M.; Abdulmyanova, L.I.; Sattarova, R.S. Composition of Secondary Metabolites of Endophytic Fungus Aspergillus Egypticus HT-166S Isolated from Helianthus Tuberósus. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 513–520. [Google Scholar] [CrossRef]
- Zhang, J.H.; Tatsumi, E.; Ding, C.H.; Li, L. Te Angiotensin I-Converting Enzyme Inhibitory Peptides in Douchi, a Chinese Traditional Fermented Soybean Product. Food Chem. 2006, 98, 551–557. [Google Scholar] [CrossRef]
- Chugh, B.; Kamal-Eldin, A. Bioactive Compounds Produced by Probiotics in Food Products. Curr. Opin. Food Sci. 2020, 32, 76–82. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Ho, C.L. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front. Bioeng. Biotechnol. 2021, 9, 770248. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, M.; Flores-Gallegos, A.C.; Kirchmayr, M.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Aguilar, C.N.; Muller, M.; Camacho-Ruíz, R.M. Bioprospection of Proteases from Halobacillus Andaensis for Bioactive Peptide Production from Fish Muscle Protein. Electron. J. Biotechnol. 2019, 39, 52–60. [Google Scholar] [CrossRef]
- Delgado-García, M.; Aguilar, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R. Screening for Ext Racellular Hydrolyt Ic Enzymes Product Ion by Different Halophilic Bacteria. Mycopath 2014, 12, 17–23. [Google Scholar]
- Gómez-garcía, R.; Medina, M.A.; Roussos, S. Producción de Enzimas Industriales Por Fermentación En Medio Sólido Empleando Residuos Agro-Industriales Como Sustrato de Trichoderma Harzianum Production of Industrial Enzymes by Solid State Fermentation Using Agro-Industrial Wastes as Substrate by Trich. Agron. Colomb. 2016, 34, S689–S692. [Google Scholar]
- Izarra, M.L.; Santayana, M.L.; Villena, G.K.; Gutiérrez-correa, M. Influencia de La Concentración de Inóculo En La Producción de Celulasa y Xilanasa Por Aspergillus Niger The Influence of Inoculum Concentration on Cellulase and Xylanase Production by Aspergillus Niger. Rev. Colomb. De Biotecnol. 2010, 12, 139–150. [Google Scholar]
- Torres-León, C.; de Azevedo Ramos, B.; dos Santos Correia, M.T.; Carneiro-da-Cunha, M.G.; Ramirez-Guzman, N.; Alves, L.C.; Brayner, F.A.; Ascacio-Valdes, J.; Álvarez-Pérez, O.B.; Aguilar, C.N. Antioxidant and Anti-Staphylococcal Activity of Polyphenolic-Rich Extracts from Ataulfo Mango Seed. LWT 2021, 148, 111653. [Google Scholar] [CrossRef]
- Seviour, R.J.; Trobe University, L.; Harvey, L.M.; Fazenda, M.; McNeil, B. 5 Production of Foods and Food Components by Microbial Fermentation: An Introduction; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 9780857093547. [Google Scholar]
- Kumar, D.; Gong, C. Trends in Insect Molecular Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783319613437. [Google Scholar]
- Mehta, V.J.; Thumar, J.T.; Singh, S.P. Production of Alkaline Protease from an Alkaliphilic Actinomycete. Bioresour. Technol. 2006, 97, 1650–1654. [Google Scholar] [CrossRef]
- Soil, P.; Tamilnadu, D.; Chandrasekaran, S.; Sundaram, S.; Kumaresan, P.; Manavalan, M. Production and Optimization of Protease by Filamentous Fungus Isolated from Paddy Soil in Thiruvarur District Tamilnadu. J. Appl. Biol. Biotechnol. 2015, 3, 66–69. [Google Scholar] [CrossRef]
- Miralles, I.; Domingo, F.; Cantón, Y.; Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Hydrolase Enzyme Activities in a Successional Gradient of Biological Soil Crusts in Arid and Semiarid Zones. Soil Biol. Biochem. 2012, 53, 124–132. [Google Scholar] [CrossRef]
- Chávez, R.M.T. Hongos Micorrízicos Asociados a Solanum hindsianum. Master’s Thesis, Center for Scientific Research and Higher Education, Ensenada, Mexico, 2018. [Google Scholar]
- Sawant, R.; Nagendran, S. Protease: An Enzyme With Multiple Industrial Applications. World J. Pharm. Pharm. Sci. 2014, 3, 568–579. [Google Scholar]
- Saadi, S.; Saari, N.; Anwar, F.; Abdul Hamid, A.; Ghazali, H.M. Recent Advances in Food Biopeptides: Production, Biological Functionalities and Therapeutic Applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef]
- Muro Urista, C.; Álvarez Fernández, R.; Riera Rodriguez, F.; Arana Cuenca, A.; Téllez Jurado, A. Review: Production and Functionality of Active Peptides from Milk. Food Sci. Technol. Int. 2011, 17, 293–317. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.A.; Main, B.J.; Rodgers, K.J. The Deleterious Effects of Non-Protein Amino Acids from Desert Plants on Human and Animal Health. J. Arid Environ. 2015, 112, 152–158. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-Based Proteins and Their Multifaceted Industrial Applications. LWT 2022, 154, 112620. [Google Scholar] [CrossRef]
- Ventura-Sobrevilla, J.; Torres-Leon, C.; Aguillón-Gutierrez, D.; Boone-Villa, D.; Aguirre-Joya, J.A. Edible Plants from Mexican Semidesertic Zones: Beneficial Potencial for Human Healt. In Integral Health, Nutrition and Quality of Life; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ahmed, Z.G.; Radwan, U.; El-Sayed, M.A. Eco-Physiological Responses of Desert and Riverain Legume Plant Species to Extreme Environmental Stress. Biocatal. Agric. Biotechnol. 2020, 24, 101531. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.M.; Cordova-Torres, A.V.; García-Gasca, T.; Kawas, J.R. Alternative Foods for Small Ruminants in Semiarid Zones, the Case of Mesquite (Prosopis laevigata Spp.) and Nopal (Opuntia Spp.). Small Rumin. Res. 2011, 98, 83–92. [Google Scholar] [CrossRef]
- Singh, A.; Abhilash, P.C. Varietal Dataset of Nutritionally Important Lablab purpureus (L.) Sweet from Eastern Uttar Pradesh, India. Data Br. 2019, 24, 103935. [Google Scholar] [CrossRef]
- Naeem, M.; Shabbir, A.; Ansari, A.A.; Aftab, T.; Khan, M.M.A.; Uddin, M. Hyacinth Bean (Lablab purpureus L.)—An Underutilised Crop with Future Potential. Sci. Hortic. 2020, 272, 109551. [Google Scholar] [CrossRef]
- Mohan, N.; Mellem, J.J. Functional Properties of the Protein Isolates of Hyacinth Bean [Lablab Purpureus (L.) Sweet]: An Effect of the Used Procedures. LWT 2020, 129, 109572. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Córdoba-Díaz, D.; de Cortes Sánchez-Mata, M.; Díez-Marqués, C.; Goñi, I. Effect of Boiling on Nutritional, Antioxidant and Physicochemical Characteristics in Cladodes (Opuntia ficus indica). LWT-Food Sci. Technol. 2013, 51, 296–302. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Dijkshoorn, R.; Maloncy, M.; Finimundy, T.; Calhelha, R.C.; Pereira, C.; Stojković, D.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; et al. Nutritive and Bioactive Properties of Mesquite (Prosopis pallida) Flour and Its Technological Performance in Breadmaking. Foods 2020, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Montemayor, H.; Alegría-Ríos, F.; Pacheco-López, M.; Aguilar-Borjas, H.; Villegas-Díaz, J.L.O.; Basurto-Gutierrez, R.; Jimenez-Severiano, H.; Vera-Ávila, H.R. Effect of Dry Roasting on Composition, Digestibility and Degradability of Fiber Fractions of Mesquite Pods (Prosopis laevigata) as Feed Supplement in Goats. Trop. Subtrop. Agroecosyst. 2009, 10, 29–44. [Google Scholar]
- Garg, D.; Chakraborty, S.; Gokhale, J.S. Optimizing the Extraction of Protein from Prosopis Cineraria Seeds Using Response Surface Methodology and Characterization of Seed Protein Concentrate. LWT 2020, 117, 108630. [Google Scholar] [CrossRef]
- Solanki, D.S.; Kumar, S.; Parihar, K.; Tak, A.; Gehlot, P.; Pathak, R.; Singh, S.K. Characterization of a Novel Seed Protein of Prosopis Cineraria Showing Antifungal Activity. Int. J. Biol. Macromol. 2018, 116, 16–22. [Google Scholar] [CrossRef]
- Cattaneo, F.; Sayago, J.E.; Alberto, M.R.; Zampini, I.C.; Ordoñez, R.M.; Chamorro, V.; Pazos, A.; Isla, M.I. Anti-Inflammatory and Antioxidant Activities, Functional Properties and Mutagenicity Studies of Protein and Protein Hydrolysate Obtained from Prosopis alba Seed Flour. Food Chem. 2014, 161, 391–399. [Google Scholar] [CrossRef]
- Bannour, M.; Lachenmeier, D.W.; Straub, I.; Kohl-Himmelseher, M.; Khadhri, A.; Aschi-Smiti, S.; Kuballa, T.; Belgacem, H. Evaluation of Calligonum Azel Maire, a North African Desert Plant, for Its Nutritional Potential as a Sustainable Food and Feed. Food Res. Int. 2016, 89, 558–564. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and Quantification of Individual Betalain and Phenolic Compounds in Mexican and Spanish Prickly Pear (Opuntia ficus-indica L. Mill) Tissues: A Comparative Study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- de Albuquerque, J.G.; de Souza Aquino, J.; de Albuquerque, J.G.; de Farias, T.G.S.; Escalona-Buendía, H.B.; Bosquez-Molina, E.; Azoubel, P.M. Consumer Perception and Use of Nopal (Opuntia Ficus-Indica): A Cross-Cultural Study between Mexico and Brazil. Food Res. Int. 2019, 124, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Batalla, L.; Hernández-Uribe, J.P.; Gutiérrez-Dorado, R.; Téllez-Jurado, A.; Castro-Rosas, J.; Pérez-Cadena, R.; Gómez-Aldapa, C.A. Nutritional Characterization of Prosopis Laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on Its Bioactive Components. Foods 2018, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Bigne, F.; Puppo, M.C.; Ferrero, C. Mesquite (Prosopis alba) Flour as a Novel Ingredient for Obtaining a “Panettone-like” Bread. Applicability of Part-Baking Technology. LWT 2018, 89, 666–673. [Google Scholar] [CrossRef]
- Bewal, S.; Sharma, S.K.; Rama Rao, S. Analysis of Intraspecific Genetic Variation in Calligonum polygonoides L. (Polygonaceae)—A Keystone Species of Indian Desert. Cytologia 2008, 73, 411–423. [Google Scholar] [CrossRef][Green Version]
- Huang, T.; Jander, G.; De Vos, M. Non-Protein Amino Acids in Plant Defense against Insect Herbivores: Representative Cases and Opportunities for Further Functional Analysis. Phytochemistry 2011, 72, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Subagio, A. Characterization of Hyacinth Bean (Lablab purpureus (L.) Sweet) Seeds from Indonesia and Their Protein Isolate. Food Chem. 2006, 95, 65–70. [Google Scholar] [CrossRef]
- Torres-León, C.; Ventura-Sobrevilla, J.; Serna-Cock, L.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.; Aguilar, C.N. Pentagalloylglucose (PGG): A Valuable Phenolic Compound with Functional Properties. J. Funct. Foods 2017, 37, 176–189. [Google Scholar] [CrossRef]
- Torres, C.; Rojas, R.; Contreras, J.; Serna, L.; Belmares, R.; Aguilar, C. Mango Seed: Functional and Nutritional Properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Arntfield, S.D. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments 2. Anti-nutritional Factors. LWT-Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- van Huis, A.; Halloran, A.; Van Itterbeeck, J.; Klunder, H.; Vantomme, P. How Many People on Our Planet Eat Insects: 2 Billion? J. Insects Food Feed. 2022, 8, 1–4. [Google Scholar] [CrossRef]
- Van Huis, A. Edible Insects Are the Future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Baigts-Allende, D.; Doost, A.S.; Ramírez-Rodrigues, M.; Dewettinck, K.; Van der Meeren, P.; de Meulenaer, B.; Tzompa-Sosa, D. Insect Protein Concentrates from Mexican Edible Insects: Structural and Functional Characterization. LWT 2021, 152, 112267. [Google Scholar] [CrossRef]
- Esparza-Frausto, G.; Macías-Rodríguez, F.J.; Martínez-Salvador, M.; Jiménez- Guevara, M.A.; Méndez-Gallegos, S.d.J. Insectos Comestibles Asociados a Las Magueyeras En El Ejido Tolosa, Pinos, Zacatecas, México. Agrociencia 2008, 42, 243–252. [Google Scholar]
- Ambrosio-Arzate, G.A.; Nieto-Hernandez, C.R.; Aguilar-Medel, S.; Espinoza-Ortega, A. Los Insectos Comestibles: Un Recurso Para El Desarrollo Local En El Centro de México. In Proceedings of the 116th EAAE Seminar “Spatial Dynamics In Agri-Food Systems: Implications For Sustainability And Consumer Welfare”, Parma, Italy, 27–30 October 2010. [Google Scholar]
- Melo-Ruíz, V.; Quirino-Barreda, T.; Díaz-García, R.; Falcón-Gerónimo, J.; Gazga-Urioste, C. Insects as Food from Deserted Areas in Mexico. J. Appl. Life Sci. Int. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Tarango Arambula, L.A. Problemática y Alternativas de Desarrollo de Las Zonas Áridas y Semiáridas de México. Rev. Chapingo Ser. Zo. Áridas 2005, 4, 17–21. [Google Scholar]
- Ramos-Elorduy, J.; Pino, J.M.; Correa, S.C. Edible Insects of the State of Mexico and Determination of Their Nutritive Values. An. del Inst. Biol. Univ. Nac. Auton. Mex. Ser. Zool. 1998, 69, 65–104. [Google Scholar]
- Lizhang, W.; Viejo Montesinos, J.L.; Dinghong, Y.I. Los Insectos Como Fuente de Alimento: Análisis Del Contenido En Proteína y Grasa de 100 Especies. Museum Nat. Hist. Funchal 2008, 14, 55–70. [Google Scholar]
- Sogari, G.; Riccioli, F.; Moruzzo, R.; Menozzi, D.; Tzompa Sosa, D.A.; Li, J.; Liu, A.; Mancini, S. Engaging in Entomophagy: The Role of Food Neophobia and Disgust between Insect and Non-Insect Eaters. Food Qual. Prefer. 2023, 104, 104764. [Google Scholar] [CrossRef]
Enzyme | Source of Obtaining | Area | Reference |
---|---|---|---|
Protease | Streptomyces sp. | Saurashtra region, Gujarat, India | [35] |
Protease | Aspergillus flavus and Aspergillus niger | Thiruvarur district, Tamilnadu | [36] |
Hydrolase | Diploschistes diacapsis and Lepraria crassissima | Tabernas Desert, Spain | [37] |
Hydrolase | Glomus sp., Acaulospora sp. and Scutellospora sp. | Baja California and Baja California Sur, México | [38] |
Common Name/Part Used | Scientific Name | Country | Protein (%) | Molecules | Functional Properties | Source |
---|---|---|---|---|---|---|
Kashrangeeg | Lablab purpureus (L.) | Egypt | 15 | Not mentioned | Not mentioned | [45] |
Hyacinth bean | Lablab purpureus (L.) | India | 28 | Glycosides viz. aloe-emodin, emodin, chrysophenol, rhein | Cytostatic potential and anticancer activities | [48] |
Hyacinth bean | Lablab purpureus (L.) | South Africa | 87.8 | Arginine and lysine | Digestibility | [49] |
Cacti pads | Opuntia ficus-indica | Mexico | 7.7 | Not mentioned | Not mentioned | [46] |
Cladodes | Opuntia ficus-indica | Mexico | 13.8 | Not mentioned | Not mentioned | [50] |
Mesquite | Prosopis pallida | Peru | 9.5 | Not mentioned | Not mentioned | [51] |
Mesquite pods | Prosopis laevigata | Mexico | 11.7 | Not mentioned | Not mentioned | [52] |
Sangri pods | Prosopis cineraria | India | 31 | Not mentioned | Antioxidant activity | [53] |
Sangri pods | Prosopis cineraria | India | 24.9 | Not mentioned | Antifungal activity | [54] |
Algarrobo | Prosopis alba | Argentina | 85.5 | Not mentioned | Anti-inflammatory and antioxidant activities | [55] |
Flowers | Calligonum azel | Tunisia | 17.8 | Not mentioned | Not mentioned | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Guzmán, N.; Torres-León, C.; Aguillón-Gutiérrez, D.; Aguirre-Joya, J.A. Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption. Foods 2023, 12, 4284. https://doi.org/10.3390/foods12234284
Ramírez-Guzmán N, Torres-León C, Aguillón-Gutiérrez D, Aguirre-Joya JA. Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption. Foods. 2023; 12(23):4284. https://doi.org/10.3390/foods12234284
Chicago/Turabian StyleRamírez-Guzmán, Nathiely, Cristian Torres-León, David Aguillón-Gutiérrez, and Jorge Alejandro Aguirre-Joya. 2023. "Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption" Foods 12, no. 23: 4284. https://doi.org/10.3390/foods12234284
APA StyleRamírez-Guzmán, N., Torres-León, C., Aguillón-Gutiérrez, D., & Aguirre-Joya, J. A. (2023). Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption. Foods, 12(23), 4284. https://doi.org/10.3390/foods12234284