Evaluation of the Physical, Chemical, Technological, and Sensorial Properties of Extrudates and Cookies from Composite Sorghum and Cowpea Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtention and Characterization of Sorghum, Cowpea, and Composite Flours
2.3. Preparation of Extrudates
2.4. Formulation of Cookies
2.5. Physical and Chemical Characterization of Flours, Extrudates, and Cookies
2.5.1. Bulk Density (BD) of the Flour
2.5.2. Cookie Expansion Ratio and Weight Loss
2.5.3. Color Measurements
2.5.4. Proximate Composition Analysis
2.5.5. Free Phenolic Compounds
2.5.6. Total Condensed Tannins
2.5.7. Antioxidant Capacity
2.5.8. Resistant Starch Content
2.6. Technological Properties of Flour, Cookies, and Extrudates
2.6.1. Pasting Properties
2.6.2. Texture Analysis of Cookies and Extrudates
2.7. Sensory Evaluation of Extrudates and Cookies
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Flour, Cookies, and Extrudates
3.1.1. Particle Size Distribution and Bulk Density of Flour
3.1.2. Weight Loss, Expansion Rate, Water Activity, and Color
3.2. Chemical Properties of Flours, Extrudates, and Cookies
3.2.1. Proximate Composition of Flours, Extrudates, and Cookies
3.2.2. Free Phenolics, Tannin, Antioxidant Capacity, and Resistant Starch Contents of Samples
3.3. Technological Properties of Cookies and Extrudates
3.3.1. Texture Properties of Extrudates
3.3.2. Texture Properties of Cookies
3.3.3. Pasting Properties of Flour, Extrudates, and Cookies
3.4. Sensory Evaluation of Extrudates and Cookies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Gluten-Free Products Market Size, Share & Trends Analysis Report by Product (Bakery Products, Dairy/Dairy Alternatives), by Distribution Channel (Supermarkets & Hypermarkets, Convenience Stores), by Region, and Segment Forecasts, 2022–2030. 2021. Available online: https://www.grandviewresearch.com/industry-analysis/gluten-free-products-market (accessed on 6 May 2023).
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Islam, N.; Rahman, M.; Mostofa, M.G.; Khan, A.R. Sorghum: A prospective crop for climatic vulnerability, food, and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2007, 44, 236–251. [Google Scholar] [CrossRef]
- Girard, A.L.; Awika, J.M. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J. Cereal Sci. 2018, 84, 112–124. [Google Scholar] [CrossRef]
- Shen, S.; Huang, R.; Li, C.; Wu, W.; Chen, H.; Shi, J.; Ye, X. Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications. Molecules 2018, 23, E1203. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef]
- FAO. FAOSTAT, Food and Agriculture Organization of the United Nation. 2014. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 16 April 2023).
- Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata, L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 2013, 139, 35–43. [Google Scholar] [CrossRef]
- Quansah, J.K.; Udenigwe, C.C.; Saalia, F.K.; Yada, R.Y. The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins. Plant Foods Hum Nutr. 2013, 68, 31–38. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J. Sci. Food Agric. 2011, 90, 2512–2518. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Rose, D.J.; Simsek, S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct. 2018, 9, 1389–1409. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2022, 62, 5658–5677. [Google Scholar] [CrossRef]
- Agah, S.; Kim, H.; Mertens-Talcott, S.U.; Awika, J.M. Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts. Mol. Nutr. Food Res. 2017, 61, 71–78. [Google Scholar] [CrossRef]
- Apea-Bah, F.B.; Minnaar, A.; Bester, M.J.; Duodu, K.G. Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress? Food Chem. 2014, 157, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Rooney, L.W.; Waniska, R.D. Sorghum Food Industrial Utilization. In Sorghum: Origin, History, Technology, and Production; Smith, C.W., Frederiksen, R.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 2, pp. 689–729. [Google Scholar]
- Okaka, J.C.; Potter, N.N. Sensory, nutritional and storage properties of cowpea powders processed to reduce beany flavor. J. Food Sci. 1979, 44, 1539–1542. [Google Scholar] [CrossRef]
- Phebean, I.O.; Akinyele, O.; Toyin, A.; Folasade, O.; Olabisi, A.; Nnenna, E. Development and quality evaluation of carrot powder and cowpea flour enriched biscuits. Int. J. Food Sci. Biotechnol. 2017, 2, 67–72. [Google Scholar]
- Ngoma, T.N.; Chimimba, U.K.; Mwangwela, A.M.; Thakwalakwa, C.; Maleta, K.M.; Manary, M.J.; Trehan, I. Effect of cowpea flour processing on the chemical properties and acceptability of a novel cowpea blended maize porridge. PLoS ONE 2018, 13, e0200418. [Google Scholar] [CrossRef]
- Marchini, M.; Marti, A.; Folli, C.; Prandi, B.; Ganino, T.; Conte, P.; Fadda, C.; Mattarozzi, M.; Carini, E. Sprouting of sorghum (Sorghum bicolor [L.] Moench): Effect of drying treatment on protein and starch features. Foods 2021, 10, 407. [Google Scholar] [CrossRef]
- Adebo, J.A. A Review on the Potential Food Application of Lima Beans (Phaseolus lunatus L.), an Underutilized Crop. Appl. Sci. 2023, 13, 1996. [Google Scholar] [CrossRef]
- Gurusamy, S.; Vidhya, C.; Khasherao, B.Y.; Shanmugam, A. Pulses for health and their varied ways of processing and consumption in India—A review. Appl. Food Res. 2022, 2, 100171. [Google Scholar] [CrossRef]
- Queiroz, V.A.V.; Dizlek, H.; de Barros, F.A.R.; Tardin F d Figueiredo, J.E.F.; Awika, J.M. Baking Process Effects and Combined Cowpea Flour and Sorghum Bran on Functional Properties of Gluten-Free Cookies. Plant Foods Hum. Nutr. 2022, 77, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.N.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the Utilization of Sorghum Through Genetic Modification, Sorghum Biochemistry: An Industrial Perspective. In Sorghum Biochemistry: An Industrial Perspective; Academic Press: Cambridge, MA, USA, 2014; pp. 297–316. [Google Scholar]
- Galdeano, M.C.; Tonon, R.V.; Menezes, N.d.S.; de Carvalho, C.W.P.; Minguita, A.P.d.S.; Mattos, M.d.C. Influence of milling and extrusion on the sorption properties of sorghum. Braz. J. Food Technol. 2018, 21, e2017118. [Google Scholar] [CrossRef]
- Soares, R.R.A.; Vasconcelos, C.M.; Oliveria, M.V.; Minim, V.P.R.; Queiroz, V.A.V.; Barros, F. Starch digestibility and sensory acceptance of gluten-free foods prepared with tannin sorghum flour. Pesqui. Agropecu. Bras. 2019, 54, e01205. [Google Scholar] [CrossRef]
- Oladele, A.K.; Aina, J.O. Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). Afr. J. Biotechnol. 2007, 6, 2473–2476. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists—AACC. Approved methods of analysis. In Method 10-50.05: Baking Quality If Cookie Flour, 11th ed.; AACC: Saint Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists—AACC. Approved Methods, 10th ed.; AACC: Saint Paul, MN, USA, 2000. [Google Scholar]
- Association of Official Analytical Chemists; AOAC. Official Methods of Analysis of AOAC International: Agricultural Chemicals, Contaminants, Drugs; AOAC International: Gaithersburg, MD, USA, 2012; Volume 16. [Google Scholar]
- Blainski, A.; Lopes, G.C.; de Mello, J.C. Application and analysis of the Folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Carvalho, C.W.P.; Takeiti, C.Y.; Onwulata, C.I.; Pordesimo, L.O. Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. J. Food Eng. 2010, 98, 103–109. [Google Scholar] [CrossRef]
- Alzuwaid, N.T.; Pleming, D.; Fellows, C.M.; Laddomada, B.; Sissons, M. Influence of Durum Wheat Bran Particle Size on Phytochemical Content and on Leavened Bread Baking Quality. Foods 2021, 10, 489. [Google Scholar] [CrossRef]
- Bouvier, J.M.; Bonneville, R.; Goullieux, A. Instrumental methods for the measurement of extrudate crispness. Agro Food Ind. Hi-Tech 1997, 8, 16–19. [Google Scholar]
- da Silva, E.M.M.; Ascheri, J.L.R.; de Carvalho, C.W.P.; Takeiti, C.Y.; Berrios, J.d.J. Physical characteristics of extrudates from corn flour and dehulled carioca bean flour blend. LWT-Food Sci. Technol. 2014, 58, 620–626. [Google Scholar] [CrossRef]
- Larmond, E. Laboratory Methods for Sensory Evaluation of Food, 2nd ed.; Canadian Department of Agriculture Publication: Ottawa, ON, Canada, 1991. [Google Scholar]
- Onwulata, C.I.; Konstance, R.P.; Smith, P.W.; Holsinger, V.H. Co-extrusion of dietary fiber and milk proteins in expanded corn products. LWT—Food Sci. Technol. 2001, 34, 424–429. [Google Scholar] [CrossRef]
- Amandikwa, C.; Iwe, M.O.; Uzomah, A.; Olawuni, A.I. Physicochemical properties of wheat-yam flour composite bread. Niger. Food J. 2015, 33, 12–17. [Google Scholar] [CrossRef]
- Elgeti, D.; Jekle, M.; Becker, T. Strategies for the aeration of gluten-free bread—A review. Trends Food Sci. Technol. 2015, 46, 75–84. [Google Scholar] [CrossRef]
- Moraru, C.I.; Kokini, J.L. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods. Compr. Rev. Food Sci. Food Saf. 2003, 2, 147–165. [Google Scholar] [CrossRef]
- de Moraes, K.S.; Zavareza, E.d.R.; de Miranda, M.Z.; Salas-Mellado, M.d.L.M. Avaliação tecnológica de biscoitos tipo cookie com variações nos teores de lipídio e de açúcar. Food Sci. Technol. 2010, 30, 233–242. [Google Scholar] [CrossRef]
- Ačkar, Đ.; Jozinović, A.; Babić, J.; Miličević, B.; Balentić, J.P.; Šubarić, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innov. Food Sci. Emerg. Technol. 2018, 47, 517–524. [Google Scholar] [CrossRef]
- Zambrano, M.V.; Dutta, B.; Mercer, D.G.; MacLean, H.L.; Touchie, M.F. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- De Pilli, T.; Derossi, A.; Talja, R.A.; Jouppila, K.; Severini, C. Starch–lipid complex formation during extrusion-cooking of model system (rice starch and oleic acid) and real food (rice starch and pistachio nut flour). Eur. Food Res. Technol. 2012, 234, 517–525. [Google Scholar] [CrossRef]
- Wang, Q.; Sivakumar, K.; Mohanasundaram, S. Impacts of extrusion processing on food nutritional components. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 364–374. [Google Scholar] [CrossRef]
- Gularte, M.A.; Gómez, M.; Rosell, C.M. Impact of Legume Flours on Quality and in vitro Digestibility of Starch and Protein from Gluten-Free Cakes. Food Bioprocess Technol. 2011, 5, 3142–3150. [Google Scholar] [CrossRef]
- Pastor-Cavada, E.; Drago, S.R.; Gonzalez, R.J.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Effects of the addition of wild legumes (Lathyrus annuus and Lathyrus clymenum) on the physical and nutritional properties of extruded products based on whole corn and brown rice. Food Chem. 2011, 128, 961–967. [Google Scholar] [CrossRef]
- Zucco, F.; Borsuk, Y.; Arntfield, S.D. Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT-Food Sci. Technol. 2011, 44, 2070–2076. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.; Weickert, M.O. The health benefits of dietary fiber. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Moraes, É.A.; Da Silva Marineli, R.; Lenquiste, S.A.; Steel, C.J.; De Menezes, C.B.; Queiroz, V.A.V.; Júnior, M.R.M. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins, and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Chiremba, C.; Taylor, J.R.N.; Duodu, K.G. Phenolic content, antioxidant activity, and consumer acceptability of sorghum cookies. Cereal Chem. 2009, 86, 590–594. [Google Scholar] [CrossRef]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Emmambux, N.M.; Taylor, J. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407. [Google Scholar] [CrossRef]
- Taylor, J.R.; Duodu, K.G. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 2015, 95, 225–237. [Google Scholar] [CrossRef]
- Dlamini, N.R.; Taylor, J.R.; Rooney, L.W. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007, 105, 1412–1419. [Google Scholar] [CrossRef]
- Awika, J.M.; Dykes, L.; Gu, L.; Rooney, L.W.; Prior, R.L. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 2003, 51, 5516–5521. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I. Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn. Antioxidants 2022, 11, 1059. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Czechowska, K. Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technol. Biotechnol. 2007, 45, 139–146. [Google Scholar]
- Delgado-Licon, E.; Ayala, A.L.M.; Rocha-Guzman, N.E.; Gallegos-Infante, J.A.; AtienzoLazos, M.; Drzewiecki, J.; Martínez-Sánchez, C.E.; Gorinstein, S. Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. Int. J. Food Sci. Nutr. 2009, 60, 522–532. [Google Scholar] [CrossRef]
- Shafi, M.; Baba, W.N.; Masoodi, F.A.; Bazaz, R. Wheat-water chestnut flour blends: Effect of baking on antioxidant properties of cookies. J. Food Sci. Technol. 2016, 53, 4278–4288. [Google Scholar] [CrossRef]
- Teixeira, N.d.C.; Queiroz, V.A.V.; Rocha, M.C.; Amorim, A.C.P.; Soares, T.O.; Monteiro, M.A.M.; De Menezes, C.B.; Schaffert, R.E.; Garcia, M.A.V.T.; Junqueira, R.G. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chem. 2016, 197, 291–296. [Google Scholar] [CrossRef]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 29–339. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef]
- Chanvrier, H.; Jakubczyk, E.; Gondek, E.; Gumy, J.C. Insights into the texture of extruded cereals: Structure and acoustic properties. Innov. Food Sci. Emerg. Technol. 2014, 24, 61–68. [Google Scholar] [CrossRef]
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of formulation and process conditions on microstructure, texture, and digestibility of extruded insect-riched snacks. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Saeleaw, M.; Dürrschmid, K.; Schleining, G. The effect of extrusion conditions on mechanical-sound and sensory evaluation of rye expanded snack. J. Food Eng. 2012, 110, 532–540. [Google Scholar] [CrossRef]
- Pezzali, J.G.; Suprabha-Raj, A.; Siliveru, K.; Aldrich, C.G. Characterization of white and red sorghum flour and their potential use for production of extrudate crisps. PLoS ONE 2020, 15, e0234940. [Google Scholar] [CrossRef]
- Garzón, A.G.; Erben, M.; Osella, C.A.; Drago, S.R. Effects of baking on γ-aminobutyric acid and free phenolic acids from gluten-free cookies made with native and malted whole sorghum flours. J. Food Process Preserv. 2020, 44, e14571. [Google Scholar] [CrossRef]
- Ibrahim, O.S. Utilization of sorghum, broken rice, and white beans flours for producing high nutritional value and high-quality gluten-free biscuits. Curr. Sci. Int. 2017, 6, 670–683. [Google Scholar]
- Belorio, M.; Sahagún, M.; Gómez, M. Influence of Flour Particle Size Distribution on the Quality of Maize Gluten-Free Cookies. Foods 2019, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Brites, L.T.G.F.; Ortolan, F.; da Silva, D.W.; Bueno, F.R.; Rocha, T.d.S.; Kil Chang, Y.; Steel, C.J. Gluten-free cookies elaborated with buckwheat flour, millet flour and chia seeds. Food Sci. Technol. 2019, 39, 458–466. [Google Scholar] [CrossRef]
- Celia, J.A.; Resende, O.; de Lima, M.S.; Correia, J.S.; de Oliveria, K.B.; Takeuchi, K.P. Technological properties of gluten-free biscuits from sorghum flour granifero (Sorghum bicolor (L.) Moench). Food Sci. Technol. 2022, 42, e29222. [Google Scholar] [CrossRef]
- Hashimoto, J.M.; Schmiele, M.; Nabeshima, E.H. Pasting properties of raw and extruded cowpea cotyledons flours. Braz. J. Food Technol. 2020, 23, e2019303. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Y.; Niefer, S.; Nickerson, M. Effect of barrel temperature and feed moisture on the physical properties of chickpea, sorghum and maize extrudates and, the functionality of their resultant flours—Part 1. Cereal Chem. 2019, 96, 609–620. [Google Scholar] [CrossRef]
- Adegunwa, M.O.; Bakare, H.A.; Alamu, E.O.; Abiodun, O.K. Processing effects on chemical, functional and pasting properties of cowpea flour from different varieties. Niger. Food J. 2012, 30, 67–73. [Google Scholar] [CrossRef]
- Kesselly, S.R.; Mugabi, R.; Byaruhanga, Y.B. Effect of soaking and extrusion on functional and pasting properties of cowpeas flour. Sci. Afr. 2023, 19, e01532. [Google Scholar] [CrossRef]
- Kaur, M.; Shandu, K.S.; Singh, N. Comparative study of the functional, thermal, and pasting properties of flour from different chickpea cultivars. J. Food Chem. 2007, 104, 259–267. [Google Scholar]
- Adebowale, A.A.; Sanni, L.O.; Awonarin, S.O. Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Sci. Technol. Int. 2005, 11, 373–382. [Google Scholar] [CrossRef]
- Palavecino, P.; Penci, M.; Calderón-Domínguez, G.; Ribotta, P. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina. Starch/Staerke 2016, 68, 1055–1064. [Google Scholar] [CrossRef]
- Naiker, T.S.; Gerrano, A.; Mellem, J. Physicochemical properties of flour produced from different cowpea (Vigna unguiculata) cultivars of Southern African origin. J. Food Sci. Technol. 2019, 56, 1541–1550. [Google Scholar] [CrossRef]
- Giuberti, G.; Rocchetti, G.; Sigolo, S.; Fortunati, P.; Lucini, L.; Gallo, A. Exploitation of alfalfa seed (Medicago sativa L.) flour into gluten-free rice cookies: Nutritional, antioxidant and quality characteristics. Food Chem. 2018, 239, 679–687. [Google Scholar] [CrossRef]
- Hussain, S.; Alamri, M.S.; Mohamed, A.A. Rheological, Thermal and Textural Properties of Starch Blends Prepared from Wheat and Turkish Bean Starches. Food Sci. Technol. Res. 2013, 19, 1141–1147. [Google Scholar] [CrossRef]
- Aljobair, M.O. Physicochemical properties and sensory attributes of cookies prepared from sorghum and millet composite flour. Food Sci. Nutr. 2022, 10, 3415–3423. [Google Scholar] [CrossRef] [PubMed]
- Paesani, C.; Bravo-Núñez, Á.; Gómez, M. Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. LWT 2020, 132, 109931. [Google Scholar] [CrossRef]
- Rai, S.; Kaur, A.; Singh, B. Quality characteristics of gluten free cookies prepared from different flour combinations. J. Food Sci. Technol. 2014, 51, 785–789. [Google Scholar] [CrossRef] [PubMed]
Sample | 100S | 70S:30C | 50S:50C | 30S:70C | 100C |
---|---|---|---|---|---|
Sorghum flour | 700 | 490 | 350 | 210 | - |
Cowpea flour | - | 210 | 350 | 490 | 700 |
White Sugar | 245 | 245 | 245 | 245 | 245 |
Margarine | 345 | 345 | 345 | 345 | 345 |
Baking powder | 21 | 21 | 21 | 21 | 21 |
Cocoa powder | 35 | 35 | 35 | 35 | 35 |
Egg yolk | 14 | 14 | 14 | 14 | 14 |
Spice | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Sample | 100S | 70S:30C | 50S:50C | 30S:70C | 100C |
---|---|---|---|---|---|
D10 | 15.63 ± 0.30 a | 11.92 ± 0.55 c | 9.64 ± 0.61 e | 10.81 ± 0.35 d | 12.43 ± 0.15 b |
D50 | 136.00 ± 7.20 a | 80.31 ± 12.09 c | 63.14 ± 9.80 e | 68.31 ± 7.66 d | 84.66 ± 6.55 b |
D90 | 391.90 ± 45.70 a | 290.00 ± 39.20 e | 307.80 ± 30.60 d | 333.30 ± 30.00 c | 371.10 ± 38.20 b |
Bulk density | 0.09 ± 0.00 c | 0.17 ± 0.00 a | 0.15 ± 0.00 b | 0.17 ± 0.00 a | 0.15 ± 0.00 b |
Sample | 100S | 70S:30C | 50S:50C | 30S:70C | 100C |
---|---|---|---|---|---|
Cookies | |||||
Weight loss (%) | 8.50 ± 0.23 a | 9.06 ± 0.20 a | 7.48 ± 0.58 a | 9.71 ± 0.20 a | 8.80 ± 0.45 a |
Expansion ratio | 5.18 ± 0.00 d | 5.32 ± 0.00 c | 5.38 ± 0.00 b | 5.45 ± 0.00 a | 5.26 ± 0.00 c |
Color parameters | |||||
Luminosity (L*) | 33.75 ± 0.44 a | 32.73 ± 0.61 b | 34.22 ± 0.50 a | 34.13 ± 0.39 a | 34.42 ± 0.88 a |
Redness (a*) | 7.38 ± 0.25 bc | 7.13 ± 0.29 c | 7.90 ± 0.30 ab | 7.80 ± 0.28 ab | 8.15 ± 0.63 a |
Yellowness (b*) | 9.08 ± 0.34 c | 9.10 ± 0.44 c | 10.02 ± 0.44 b | 10.10 ± 0.46 b | 10.97 ± 0.70 a |
Chroma (C) | 11.70 ± 0.43 b | 11.57 ± 0.50 b | 12.78 ± 0.52 a | 12.77 ± 0.49 a | 13.65 ± 0.52 a |
Hue (h) | 50.83 ± 0.20 c | 51.95 ± 0.31 b | 51.68 ± 0.59 b | 52.33 ± 0.42 b | 53.33 ± 0.46 a |
Extrudates | |||||
Color parameters | |||||
Luminosity (L*) | 42.18 ± 1.62 c | 42.15 ± 1.07 c | 45.83 ± 0.87 c | 49.97 ± 1.57 b | 54.75 ± 2.68 a |
Redness (a*) | 10.35 ± 2.93 a | 10.62 ± 0.88 a | 11.22 ± 1.18 a | 10.95 ± 0.45 a | 10.20 ± 0.68 a |
Yellowness (b*) | 12.32 ± 2.26 c | 12.28 ± 1.60 c | 13.62 ± 0.88 bc | 15.43 ± 1.22 b | 19.02 ± 1.05 a |
Chroma (C) | 16.18 ± 3.09 e | 16.25 ± 1.75 d | 17.68 ± 1.27 c | 18.93 ± 1.23 b | 21.58 ± 0.72 a |
Hue (H) | 50.52 ± 7.21 b | 48.98 ± 1.64 b | 50.60 ± 2.26 b | 54.62 ± 1.42 b | 61.70 ± 2.75 a |
Sample | Moisture | Fat | Protein | Ash | Total Dietary Fiber | Soluble Fiber | Insoluble Fiber | Carbohydrate |
---|---|---|---|---|---|---|---|---|
Flours | ||||||||
Sorghum | 12.97 ± 0.16 a | 2.95 ± 0.17 a | 9.19 ± 0.05 b | 1.46 ± 0.09 b | 14.77 ± 2.78 b | 0.87 ± 2.73 a | 13.90 ± 0.05 b | 73.43 ± 0.00 a |
Cowpea | 11.73 ± 0.08 b | 0.84 ± 0.30 b | 18.69 ± 0.10 a | 2.80 ± 0.00 a | 20.11 ± 0.55 a | 0.49 ± 0.55 b | 19.63 ± 0.00 a | 65.94 ± 0.00 b |
Extrudates | ||||||||
100S | 6.14 ± 0.04 c | 0.34 ± 0.03 c | 8.60 ± 0.00 e | 1.73 ± 0.09 e | 10.63 ± 0.02 b | 0.39 ± 0.39 e | 10.24 ± 0.37 a | 83.19 ± 0.00 a |
70S:30C | 8.00 ± 0.05 a | 0.44 ± 0.07 a | 11.27 ± 0.00 d | 2.13 ± 0.09 d | 11.47 ± 1.22 a | 2.38 ± 0.71 a | 9.09 ± 0.51 c | 78.16 ± 0.00 b |
50S:50C | 5.74 ± 0.76 d | 0.39 ± 0.08 b | 13.43 ± 0.00 c | 2.40 ± 0.00 c | 09.09 ± 0.19 d | 0.61 ± 0.04 d | 9.29 ± 0.22 b | 78.04 ± 0.00 c |
30S:70C | 6.40 ± 0.12 b | 0.35 ± 0.02 bc | 15.26 ± 0.20 b | 2.60 ± 0.00 b | 10.15 ± 0.64 c | 1.08 ± 0.20 c | 9.07 ± 0.84 c | 75.39 ± 0.00 d |
100C | 4.96 ± 0.02 e | 0.34 ± 0.00 c | 18.01 ± 0.05 a | 3.40 ± 0.00 a | 11.43 ± 1.15 ab | 1.19 ± 0.75 b | 10.24 ± 1.90 a | 73.29 ± 0.00 e |
Cookies | ||||||||
100S | 5.10 ± 0.12 b | 24.20 ± 0.35 a | 5.98 ± 0.05 e | 1.92 ± 0.04 c | 11.06 ± 2.59 b | 0.21 ± 0.30 d | 10.92 ± 2.19 b | 62.82 ± 0.00 a |
70S:30C | 4.95 ± 0.22 b | 23.22 ± 1.39 a | 7.47 ± 0.05 d | 2.12 ± 0.01 bc | 12.94 ± 1.02 a | 0.52 ± 0.00 b | 12.42 ± 0.86 a | 61.20 ± 0.00 c |
50S:50C | 5.80 ± 0.07 a | 22.11 ± 0.08 a | 8.29 ± 0.05 c | 2.26 ± 0.04 b | 09.47 ± 0.66 d | 0.27 ± 0.07 c | 9.31 ± 0.89 c | 61.57 ± 0.00 b |
30S:70C | 3.71 ± 0.12 c | 22.86 ± 0.16 a | 9.67 ± 0.05 b | 2.64 ± 0.11 a | 09.15 ± 0.27 e | 0.13 ± 0.18 e | 9.06 ± 0.02 d | 61.23 ± 0.00 c |
100C | 5.01 ± 0.25 b | 23.66 ± 0.01 a | 11.28 ± 0.05 a | 2.81 ± 0.01 a | 09.55 ± 0.21 c | 1.89 ± 0.72 a | 7.65 ± 0.51 e | 57.27 ± 0.00 d |
Sample | Free Phenolics (mg GAE/g) | Tannin (mg Catechin equiv./g) | Antioxidant Capacity (Micromol TE/g Sample) | Resistant Starch (g/100 g) |
---|---|---|---|---|
Flours | ||||
Sorghum | 45.34 ± 1.44 a | 47.25 ± 0.00 a | 211.20 ± 13.50 a | 36.29 ± 3.13 a |
Cowpea | 0.90 ± 0.00 b | 0.65 ± 0.01 b | 20.10 ± 1.90 b | 2.18 ± 0.19 b |
Extrudates | ||||
100 S | 2.56 ± 0.01 a | 5.53 ± 0.01 a | 38.10 ± 4.10 a | 0.52 ± 0.10 a |
70 S:30 C | 2.22 ± 0.02 b | 4.58 ± 0.02 b | 27.70 ± 3.50 b | 0.16 ± 0.01 d |
50 S:50 C | 1.95 ± 0.01 c | 4.05 ± 0.01 c | 19.70 ± 1.10 c | 0.28 ± 0.02 c |
30 S:70 C | 1.38 ± 0.00 d | 2.78 ± 0.00 d | 12.90 ± 0.90 d | 0.31 ± 0.04 c |
100 C | 0.62 ± 0.00 e | 0.38 ± 0.00 e | 7.40 ± 0.70 e | 0.48 ± 0.04 b |
Cookies | ||||
100 S | 7.16 ± 0.01 a | 30.51 ± 0.02 a | 60.20 ± 5.30 a | 4.67 ± 0.42 a |
70 S:30 C | 5.28 ± 0.01 b | 15.84 ± 0.01 b | 49.30 ± 3.60 b | 3.68 ± 0.42 b |
50 S:50 C | 3.90 ± 0.03 c | 9.22 ± 0.00 c | 36.40 ± 2.90 c | 3.03 ± 0.08 c |
30 S:70 C | 2.53 ± 0.02 d | 5.12 ± 0.01 d | 21.10 ± 2.70 d | 2.79 ± 0.23 d |
100 C | 1.48 ± 0.01 e | 2.30 ± 0.02 e | 12.60 ± 0.90 e | 2.06 ± 0.24 e |
Sample | 100S | 70S:30C | 50S:50C | 30S:70C | 100C |
---|---|---|---|---|---|
Cookies | |||||
Hardness (N) | 12.75 ± 1.07 bc | 20.98 ± 4.61 a | 9.41 ± 2.32 c | 19.24 ± 5.14 ab | 16.03 ± 1.92 abc |
Extrudates | |||||
Frequency of structural ruptures (mm−1) | 0.76 ± 0.15 a | 0.49 ± 0.12 b | 0.59 ± 0.23 ab | 0.68 ± 0.17 ab | 0.52 ± 0.17 b |
Av. Spec. force of structural ruptures (N) | 0.02 ± 0.01 a | 0.03 ± 0.03 a | 0.04 ± 0.04 a | 0.03 ± 0.02 a | 0.02 ± 0.01 a |
Average of compression force (N) | 0.23 ± 0.12 b | 0.53 ± 0.16 ab | 0.36 ± 0.37 b | 0.44 ± 0.36 b | 0.86 ± 0.31 a |
Crispness work (N mm) | 0.31 ± 0.17 b | 1.21 ± 0.58 ab | 0.83 ± 0.94 b | 0.75 ± 0.72 b | 1.98 ± 1.37 a |
Sample | Trough Viscosity | Peak Viscosity | Final Viscosity | Breakdown Viscosity | Set Back Viscosity |
---|---|---|---|---|---|
Flours | |||||
100S | 26.50 ± 1.00 d | 1069.00 ± 1.00 a | 2708.00 ± 1.00 a | 1042.50 ± 1.00 a | 1639.00 ± 1.00 a |
70S:30C | 49.00 ± 2.00 a | 988.00 ± 2.00 b | 1743.00 ± 2.00 d | 939.00 ± 2.00 b | 755.00 ± 2.00 d |
50S:50C | 27.00 ± 3.00 d | 805.50 ± 3.00 d | 1541.50 ± 3.00 e | 778.50 ± 3.00 d | 736.00 ± 3.00 e |
30S:70C | 36.00 ± 3.50 c | 766.50 ± 3.50 e | 1907.00 ± 3.50 c | 730.50 ± 3.50 e | 1140.50 ± 3.50 b |
100C | 47.50 ± 1.42 b | 852.50 ± 1.42 c | 1963.50 ± 1.42 b | 805.00 ± 1.42 c | 1111.00 ± 1.42 c |
Extrudates | |||||
100S | 81.00 ± 2.00 c | 123.00 ± 2.00 a | 134.00 ± 2.00 b | 82.00 ± 2.00 a | 11.00 ± 2.00 d |
70S:30C | 87.50 ± 7.00 a | 118.50 ± 7.00 b | 146.50 ± 7.00 a | 71.00 ± 7.00 b | 28.00 ± 7.00 a |
50S:50C | 85.00 ± 0.50 b | 115.00 ± 0.50 c | 127.00 ± 0.50 c | 70.00 ± 0.50 c | 12.00 ± 0.50 c |
30S:70C | 67.50 ± 2.00 d | 93.00 ± 2.00 d | 94.00 ± 2.00 d | 65.50 ± 2.00 d | 1.00 ± 2.00 e |
100C | 52.00 ± 1.00 e | 53.00 ± 1.00 e | 68.50 ± 1.00 e | 41.00 ± 1.00 e | 15.50 ± 1.00 b |
Cookies | |||||
100S | 48.00 ± 0.00 a | 95.50 ± 0.00 a | 165.50 ± 0.00 a | 47.50 ± 0.00 a | 70.00 ± 0.00 a |
70S:30C | 35.00 ± 1.50 d | 75.00 ± 1.50 d | 97.00 ± 1.50 e | 40.00 ± 1.50 c | 22.00 ± 1.50 e |
50S:50C | 33.50 ± 1.00 e | 91.00 ± 1.00 b | 137.00 ± 1.00 b | 57.50 ± 1.00 b | 46.00 ± 1.00 b |
30S:70C | 36.50 ± 0.50 c | 75.00 ± 0.50 d | 98.00 ± 0.50 d | 38.50 ± 0.50 d | 23.00 ± 0.50 d |
100C | 43.00 ± 1.50 b | 83.50 ± 1.50 c | 111.50 ± 1.50 c | 40.50 ± 1.50 c | 28.00 ± 1.50 c |
Sample | Appearance | Aroma | Flavour | Texture | Overall Acceptance | Intention to Purchase (%) | |
---|---|---|---|---|---|---|---|
Extrudates | Yes | No | |||||
100S | 7.35 ± 1.31 a | 6.77 ± 1.48 a | 6.20 ± 1.77 a | 7.16 ± 1.71 a | 6.52 ± 1.60 a | 68.33 | 31.67 |
70S:30C | 6.43 ± 1.41 b | 6.45 ± 1.48 a | 5.43 ± 2.10 ab | 5.68 ± 2.35 b | 5.58 ± 5.58 b | 43.33 | 56.67 |
50S:50S | 7.33 ± 1.87 a | 6.22 ± 1.81 a | 4.98 ± 2.47 b | 6.43 ± 2.13 ab | 5.31 ± 5.31 b | 38.33 | 61.67 |
Cookies | |||||||
100S | 7.00 ± 1.56 a | 6.65 ± 1.78 a | 6.48 ± 1.85 ab | 6.23 ± 2.01 a | 6.45 ± 1.67 ab | 58.33 | 41.67 |
70S:30C | 6.97 ± 1.59 a | 6.47 ± 1.96 a | 6.73 ± 1.51 ab | 6.43 ± 1.95 a | 6.50 ± 1.64 ab | 76.67 | 23.33 |
50S:50C | 6.60 ± 1.68 a | 6.58 ± 1.53 a | 5.98 ± 1.90 b | 6.13 ± 1.82 a | 6.07 ± 1.61 b | 46.67 | 53.33 |
30S:70C | 6.75 ± 1.73 a | 6.70 ± 1.66 a | 7.00 ± 1.56 a | 6.97 ± 1.78 a | 7.03 ± 1.52 a | 76.67 | 23.33 |
100C | 6.58 ± 1.65 a | 6.48 ± 1.63 a | 5.88 ± 2.02 b | 6.12 ± 2.06 a | 5.80 ± 1.77 b | 55.00 | 45.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mba, J.C.; Paes, L.T.; Viana, L.M.; Ferreira, A.J.C.; Queiroz, V.A.V.; Martino, H.S.D.; Azevedo, L.; de Carvalho, C.W.P.; Felisberto, M.H.F.; de Barros, F.A.R. Evaluation of the Physical, Chemical, Technological, and Sensorial Properties of Extrudates and Cookies from Composite Sorghum and Cowpea Flours. Foods 2023, 12, 3261. https://doi.org/10.3390/foods12173261
Mba JC, Paes LT, Viana LM, Ferreira AJC, Queiroz VAV, Martino HSD, Azevedo L, de Carvalho CWP, Felisberto MHF, de Barros FAR. Evaluation of the Physical, Chemical, Technological, and Sensorial Properties of Extrudates and Cookies from Composite Sorghum and Cowpea Flours. Foods. 2023; 12(17):3261. https://doi.org/10.3390/foods12173261
Chicago/Turabian StyleMba, Joy Chinenye, Laise Trindade Paes, Leonara Martins Viana, Ana Júlia Carmanini Ferreira, Valéria Aparecida Vieira Queiroz, Hércia Stampini Duarte Martino, Luciana Azevedo, Carlos Wanderlei Piler de Carvalho, Mária Herminia Ferrari Felisberto, and Frederico Augusto Ribeiro de Barros. 2023. "Evaluation of the Physical, Chemical, Technological, and Sensorial Properties of Extrudates and Cookies from Composite Sorghum and Cowpea Flours" Foods 12, no. 17: 3261. https://doi.org/10.3390/foods12173261