Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Color Stability of the BRA Solution against Metallic Ions
2.3. Screening of Chelators
2.4. Optimization of Chelator Combination
2.5. Determination of Anthocyanins Retention Rate
2.6. Coloration of Steamed Cold Noodles
2.7. Chromatic Aberration Determination of Steamed Cold Noodles
2.8. Textural Profile Analysis (TPA) of Steamed Cold Noodles
2.9. In Vitro Digestion of Steamed Cold Noodles
2.10. Determination of Starch Retrogradation in Steamed Cold Noodles
2.11. Determination of Total Polyphenols in Steamed Cold Noodles
2.12. Determination of Total Anthocyanins Contents in Steamed Cold Noodles
2.13. Determination of Antioxidant Capacity of Steamed Cold Noodles
2.14. Statistical Analysis
3. Results and Discussion
3.1. Effect of Metallic Ions on the Color Stability of BRA
3.2. Effects of Chelators on the Color Stability of BRA against Fe3+, Cu2+, and Fe2+
3.3. Effect of Chelator Combinations on the Color Stability of BRA in Tap Water
3.4. Effect of Chelators on the Color of Steamed Cold Noodles
3.5. Textural Profile Analysis of Steamed Cold Noodles
3.6. Retrogradation of Starch in Steamed Cold Noodles
3.7. In Vitro Digestibility of Steamed Cold Noodles
3.8. Antioxidant Capacity of Steamed Cold Noodles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Shi, Y.; Wang, R.; Su, D.D.; Tang, M.F.; Liu, Y.D.; Li, Z.G. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Med. Adv. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT. 2022, 153, 112527. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C.F.R. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 2016, 52, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.J.; Gupta, R.C.; Singh, S.; Bansal, A.K.; Singh, I.P. Stability of anthocyanins- and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (‘jamun’). Food Chem. 2016, 190, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.A.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef]
- Shozib, H.B.; Islam, M.M.; Mahmud, S.A.S.; Bari, M.N.; Akter, N.; Jahan, S.; Hosen, S.; Hossain, M.N.; Nabi, A.; Siddiquee, M.A.; et al. Application of Cyanidin-3-Glucosides as a functional food ingredient in rice-based bakery products. Saudi J. Biol. Sci. 2021, 28, 7472–7480. [Google Scholar] [CrossRef]
- Sethi, S.; Nanda, S.K.; Bala, M. Quality assessment of pasta enriched with anthocyanin-rich black rice bran. J. Food Process. Preserv. 2020, 44, 14952. [Google Scholar] [CrossRef]
- GB 5749-2006; Standard for Drinking Water Quality. Standards Press of China: Beijing, China, 2014; pp. 2–6.
- Cortez, R.; Luna-Vital, D.A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 180–198. [Google Scholar] [CrossRef]
- Yao, L.; Xu, J.; Zhang, L.; Zheng, T.; Liu, L.; Zhang, L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem. 2021, 362, 130101. [Google Scholar] [CrossRef]
- Tong, Y.; Deng, H.; Kong, Y.; Tan, C.; Chen, J.; Wan, M.; Wang, M.; Yan, T.; Meng, X.; Li, L. Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food Chem. 2020, 311, 125687. [Google Scholar] [CrossRef] [PubMed]
- GB 2760-2014; National Standards for Food Safety-Use of Food Additives. Standards Press of China: Beijing, China, 2014; pp. 41–101.
- Kristamtini, K.; Wiranti, E.W. Clustering of 18 Local Black Rice Base on Total Anthocyanin. Biol. Med. Nat. Prod. Chem. 2017, 6, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Raharjo, S.; Purwandari, F.A.; Hastuti, P.; Olsen, K. Stabilization of Black Rice (Oryza Sativa, L. Indica) Anthocyanins Using Plant Extracts for Copigmentation and Maltodextrin for Encapsulation. J. Food Sci. 2019, 84, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Loypimai, P.; Moongngarm, A.; Chottanom, P.; Moontree, T. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innov. Food Sci. Emerg. Technol. 2015, 27, 102–110. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. J. Food Sci. Technol. 2016, 53, 461–470. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Safdar, B.; Li, H.; Song, W.; Li, L.; Chen, C.; Wu, M.; Liu, X. Influence of different polysaccharides and wobbling processing on the quality of steamed noodles with wheat starch (Niangpi). Int. J. Food Prop. 2022, 25, 1116–1131. [Google Scholar] [CrossRef]
- Akyuz, G.; Mazi, B.G. Physicochemical and sensory characterization of bread produced from different dough formulations by Kluyveromyces lactis. J. Food Process. Preserv. 2020, 44, 11498. [Google Scholar] [CrossRef]
- Zhongfu, C.; Yang, L.; Hong, Z.; Yisi, L.; Qian, X.; Cuiping, Y. Effect of soy protein isolate on textural properties, cooking properties and flavor of whole-grain flat rice noodles. Foods. 2021, 10, 1085. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and Measurement of Nutritionally Important Starch Fraction. Eur. J. Clin. Nutr. 1992, 46, 33–50. [Google Scholar]
- Zheng, Y.; Tian, J.; Ogawa, Y.; Kong, X.; Chen, S.; Liu, D.; Ye, X. Physicochemical properties and in vitro digestion of extruded rice with grape seed proanthocyanidins. J. Cereal Sci. 2020, 95, 103064. [Google Scholar] [CrossRef]
- Gogoi, P.; Chutia, P.; Singh, P.; Mahanta, C.L. Effect of optimized ultrasound-assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. J. Food Process Eng. 2019, 42, 13172. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.; Spigno, G. Modelling the stability of maltodextrin-encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chem. 2016, 209, 323–331. [Google Scholar] [CrossRef]
- Janarny, G.; Ranaweera, K.K.D.S.; Gunathilake, K.D.P.P. Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. Biocatal. Agric. Biotechnol. 2021, 35, 102081. [Google Scholar] [CrossRef]
- Fenger, J.A.; Sigurdson, G.T.; Robbins, R.J.; Collins, T.M.; Giusti, M.M.; Dangles, O. Acylated Anthocyanins from Red Cabbage and Purple Sweet Potato Can Bind Metal Ions and Produce Stable Blue Colors. Int. J. Mol. Sci. 2021, 22, 4551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Effects of Different Metal Ions on the Stability of Anthocyanins as Indicators. IOP Conf Ser Ear. En Sci. 2019, 300, 052015. [Google Scholar] [CrossRef]
- Qian, B.J.; Wu, C.F.; Lu, M.M.; Xu, W.; Jing, P. Effect of complexes of cyanidin-3-diglucoside-5-glucoside with rutin and metal ions on their antioxidant activities. Food Chem. 2017, 232, 545–551. [Google Scholar] [CrossRef]
- Bakker, J.; Bridle, P. Strawberry juice colour: The effect of sulphur dioxide and edta on the stability of anthocyanins. J. Sci. Food Agric. 1992, 60, 477–481. [Google Scholar] [CrossRef]
- Ifeduba, E.A.; Akoh, C.C. Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability. Food Hydrocoll. 2015, 51, 136–145. [Google Scholar] [CrossRef]
- Chen, M.; Wang, L.; Qian, H.; Zhang, H.; Li, Y.; Wu, G.; Qi, X. The effects of phosphate salts on the pasting, mixing and noodle-making performance of wheat flour. Food Chem. 2019, 283, 353–358. [Google Scholar] [CrossRef]
- Wang, L.; Hou, G.G.; Hsu, Y.-H.; Zhou, L. Effect of phosphate salts on the Korean non-fried instant noodle quality. J. Cereal Sci. 2011, 54, 506–512. [Google Scholar] [CrossRef]
- Tang, Z.; Fan, J.; Zhang, Z.; Zhang, W.; Yang, J.; Liu, L.; Yang, Z.; Zeng, X. Insights into the structural characteristics and in vitro starch digestibility on steamed rice bread as affected by the addition of okara. Food Hydrocoll. 2021, 113, 106533. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, Q.; Liu, G.Q.; Yu, F. Evaluation of black tea polyphenol extract against the retrogradation of starches from various plant sources. Molecules 2012, 17, 8147–8158. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, J.; Chen, S.; Ye, X.; Liu, D. Inhibition effect of three common proanthocyanidins from grape seeds, peanut skins and pine barks on maize starch retrogradation. Carbohydr. Polym. 2021, 252, 117172. [Google Scholar] [CrossRef]
- Schwartz, J.M.; Le Bail, K.; Garnier, C.; Llamas, G.; Queveau, D.; Pontoire, B.; Srzednicki, G.; Le Bail, P. Available water in konjac glucomannan–starch mixtures. Influence on the gelatinization, retrogradation and complexation properties of two starches. Food Hydrocoll. 2014, 41, 71–78. [Google Scholar] [CrossRef]
- Camelo-Mendez, G.A.; Agama-Acevedo, E.; Sanchez-Rivera, M.M.; Bello-Perez, L.A. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chem. 2016, 211, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zheng, Y.; Kong, X.; Cao, S.; Chen, S.; Liu, D.; Ye, X.; Tian, J. RG-I pectin affects the physicochemical properties and digestibility of potato starch. Food Hydrocoll. 2021, 117, 106687. [Google Scholar] [CrossRef]
- Sean, O.; Dimeng, Y.; Hui, L.M. Effects of Black Rice Anthocyanin Enrichment on Bread Digestibility and Glycemic Index. Curr. Dev. Nutr. 2021, 5, 354. [Google Scholar] [CrossRef]
- Miao, L.; Xu, Y.; Jia, C.; Zhang, B.; Niu, M.; Zhao, S. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility. Carbohydr. Polym. 2021, 261, 117841. [Google Scholar] [CrossRef]
- González-Barrio, R.; Edwards, C.A.; Crozier, A. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: In vivo and in vitro studies. Drug Metab. Dispos. 2011, 39, 1680–1688. [Google Scholar] [CrossRef]
L* | a* | b* | ΔE | |
---|---|---|---|---|
NA | 40.91 ± 3.42 a | 0.10 ± 0.02 c | 1.21 ± 0.21 a | 15.39 ± 0.34 |
DIA | 37.10 ± 2.98 ab | 14.74 ± 0.38 a | −1.53 ± 0.43 c | - |
TWA | 33.70 ± 3.00 b | 12.70 ± 0.42 b | −1.78 ± 0.23 c | 3.98 ± 0.03 |
F1 | 36.69 ± 3.10 ab | 14.59 ± 0.94 a | −1.61 ± 0.45 c | 0.61 ± 0.24 |
F2 | 36.52 ± 2.38 ab | 14.46 ± 0.32 a | −0.61 ± 0.19 b | 1.24 ± 0.15 |
F3 | 35.95 ± 2.83 ab | 13.15 ± 0.73 b | −1.45 ± 0.24 c | 1.99 ± 0.20 |
Hardness (g) | Springiness | Gumminess (g) | Cohesivenes | Chewiness | Resilience | |
---|---|---|---|---|---|---|
NA | 608.61 ± 16.70 b | 0.19 ± 0.01 a | 125.67 ± 4.12 d | 0.22 ± 0.01 bc | 23.87 ± 3.02 bc | 0.03 ± 0.00 b |
DIA | 601.86 ± 9.98 b | 0.19 ± 0.00 a | 139.53 ± 4.45 c | 0.23 ± 0.00 b | 26.66 ± 1.59 ab | 0.04 ± 0.00 ab |
TWA | 609.45 ± 51.97 b | 0.19 ± 0.01 a | 126.98 ± 6.67 d | 0.21 ± 0.01 c | 23.34 ± 2.51 c | 0.03 ± 0.00 b |
F1 | 776.08 ± 46.81 a | 0.21 ± 0.00 b | 186.91 ± 4.72 a | 0.25 ± 0.01 a | 28.28 ± 1.00 a | 0.04 ± 0.00 ab |
F2 | 755.74 ± 24.53 a | 0.21 ± 0.00 b | 181.23 ± 3.75 ab | 0.25 ± 0.00 a | 26.83 ± 0.35 ab | 0.04 ± 0.00 ab |
F3 | 756.43 ± 60.18 a | 0.22 ± 0.00 b | 175.92 ± 3.46 b | 0.25 ± 0.00 a | 27.92 ± 1.11 a | 0.05 ± 0.00 a |
NA | DIA | TWA | F1 | F2 | F3 | |
---|---|---|---|---|---|---|
Total polyphenols (mg·(g)−1) | 0.00 ± 0.00 b | 0.03 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Total anthocyanins (mg·(kg)−1) | 0.00 ± 0.00 e | 24.19 ± 0.14 a | 20.85 ± 0.09 d | 23.78 ± 0.09 b | 23.37 ± 0.05 c | 23.45 ± 0.37 c |
Antioxidant capacity (%) | 1.37 ± 0.54 c | 20.21 ± 0.14 a | 19.49 ± 0.43 a | 19.91 ± 0.77 a | 14.70 ± 0.31 b | 15.01 ± 0.52 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Jiang, L.; Zhang, C.-Z.; Huang, G.-Q.; Guo, L.-P.; Xiao, J.-X. Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles. Foods 2022, 11, 3392. https://doi.org/10.3390/foods11213392
Zheng Y, Jiang L, Zhang C-Z, Huang G-Q, Guo L-P, Xiao J-X. Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles. Foods. 2022; 11(21):3392. https://doi.org/10.3390/foods11213392
Chicago/Turabian StyleZheng, Yi, Ling Jiang, Chun-Zhi Zhang, Guo-Qing Huang, Li-Ping Guo, and Jun-Xia Xiao. 2022. "Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles" Foods 11, no. 21: 3392. https://doi.org/10.3390/foods11213392
APA StyleZheng, Y., Jiang, L., Zhang, C.-Z., Huang, G.-Q., Guo, L.-P., & Xiao, J.-X. (2022). Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles. Foods, 11(21), 3392. https://doi.org/10.3390/foods11213392