Food Security in China: A Brief View of Rice Production in Recent 20 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Trends of Rice Production Are Different Depending on Rice Types, While TRP Keeps Rising
3.2. TPA and MPA Are Increasing, But EPA and LPA Are Decreasing
3.3. Grain Yield per Unit Planting Area in Rice Keeps Rising
3.4. Rice Production and Its Correlations with Planting Area and Grain Yield per Unit Area
3.5. Correlations of the GPA in Rice with the Consumption of Agricultural Resources
3.6. Relations of Rice Yield to the Number of Released Rice Cultivars
3.7. Rice Production in Different Provinces
3.8. Potentials for the Increment of Rice Production
4. Discussion
4.1. Why Does Rice Production in China in the Recent 20 Years Keep Rising?
4.1.1. Enhancing GAP by Breeding New Cultivars
4.1.2. GAP and Consumption of Agricultural Resources
4.1.3. GAP in Different Provinces
4.2. Could Rice Production in China Continue to Rise in the Future?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Food and Agriculture Organization (FAO); International Fund for Agricultural Development (IFAD); The United Nations Children’s Fund (UNICEF); World Food Programme (WFP); World Health Organization (WHO). In Brief to the State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization (FAO): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO); International Fund for Agricultural Development (IFAD); The United Nations Children’s Fund (UNICEF); World Food Programme (WFP); World Health Organization (WHO). The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; Food and Agriculture Organization (FAO): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Economic Research Service. Nathan Childs and Bonnie LeBeau, Rice Outlook: September 2022, RCS-22H; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2022.
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide; Springer International Publishing: Cham, Switzrland, 2017. [Google Scholar] [CrossRef]
- Molina, J.; Sikora, M.; Garud, N.; Flowers, J.M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B.A.; Bustamante, C.D.; et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. USA 2011, 108, 8351–8356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, L.; Peng, S. Rice Production in China. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 33–52. [Google Scholar] [CrossRef]
- Bandumula, N. Rice Production in Asia: Key to Global Food Security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current Status, Challenges, and Opportunities in Rice Production. In Rice Production Worldwide; Chauhan, B., Jabran, K., Mahajan, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–32. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Shoemaker, S.P. A look at food security in China. npj Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Li, Z.; Tang, P.; Li, Z.; Wu, W.; Yang, P.; You, L.; Tang, H. Change analysis of rice area and production in China during the past three decades. J. Geogr. Sci. 2013, 23, 1005–1018. [Google Scholar] [CrossRef]
- Tian, H.; Wu, M.; Wang, L.; Niu, Z. Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors 2018, 18, 185. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Peng, S. Input-output energy analysis of rice production in different crop management practices in central China. Energy 2017, 141, 1124–1132. [Google Scholar] [CrossRef]
- Yang, L.; Qin, Z.; Tu, L. Responses of rice yields in different rice-cropping systems to climate variables in the middle and lower reaches of the Yangtze River, China. Food Secur. 2015, 7, 951–963. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). National Data; National Bureau of Statistics of China: Beijing, China, 2022. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 26 August 2022).
- Lv, F.; Yang, F.; Fan, T.; Liu, J.; Li, Q.; Wang, L.; Long, X. Data analysis on the number of new released rice cultivars from 1977 to 2018. China Seed Ind. 2019, 2, 29–40. Available online: https://www.chinaseedqks.cn/zgzy/article/abstract/20181130003 (accessed on 30 August 2022).
- Lin, H.; Wang, Z.; Zhiguo, E.; Li, H.; Pang, Q. Analysis on characteristics of rice varieties registered in China in 2019. China Rice 2020, 26, 16–22. Available online: http://www.zgdm.net//CN/10.3969/j.issn.1006-8082.2020.06.003 (accessed on 30 August 2022).
- Yu, Y.; Huang, Y.; Zhang, W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res. 2012, 136, 65–75. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Cai, Y.; Wang, B.; Luo, X. A cost-effective serpentine micromixer utilizing ellipse curve. Anal. Chim. Acta 2021, 1155, 338355. [Google Scholar] [CrossRef]
- Burkholder, T.J.; Lieber, R.L. Stepwise regression is an alternative to splines for fitting noisy data. J. Biomech. 1996, 29, 235–238. [Google Scholar] [CrossRef]
- Denman, D.J.; Contreras, D. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map. Cereb. Cortex 2014, 24, 2707–2720. [Google Scholar] [CrossRef]
- Wang, D.; Huang, J.; Nie, L.; Wang, F.; Ling, X.; Cui, K.; Li, Y.; Peng, S. Integrated crop management practices for maximizing grain yield of double-season rice crop. Sci. Rep. 2017, 7, 38982. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, L.; Zhang, J. Ratoon rice production in central China: Environmental sustainability and food production. Sci. Total Environ. 2021, 764, 142850. [Google Scholar] [CrossRef]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef]
- Zhang, G.; Kobayashi, K.; Wu, H.; Shang, B.; Wu, R.; Zhang, Z.; Feng, Z. Ethylenediurea (EDU) protects inbred but not hybrid cultivars of rice from yield losses due to surface ozone. Environ. Sci. Pollut. Res. Int. 2021, 28, 68946–68956. [Google Scholar] [CrossRef]
- Harun, S.N.; Hanafiah, M.M.; Aziz, N.I.H.A. An LCA-Based Environmental Performance of Rice Production for Developing a Sustainable Agri-Food System in Malaysia. Environ. Manag. 2021, 67, 146–161. [Google Scholar] [CrossRef]
- Huang, M.; Tang, Q.; Ao, H.; Zou, Y. Yield potential and stability in super hybrid rice and its production strategies. J. Integr. Agric. 2017, 16, 1009–1017. [Google Scholar] [CrossRef]
- Ma, G.; Yuan, L. Hybrid rice achievements, development and prospect in China. J. Integr. Agric. 2015, 14, 197–205. [Google Scholar] [CrossRef]
- China Rice Data Center. 2022. Available online: https://www.ricedata.cn/variety/ (accessed on 26 August 2022).
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the Relationships between Yield and Yield-Related Traits for Rice Varieties Released in China from 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhang, J.; Liu, S.; Ashraf, U.; Zhao, B.; Qiu, S. Mixed-cropping systems of different rice cultivars have grain yield and quality advantages over mono-cropping systems. J. Sci. Food Agric. 2019, 99, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J. Agriculture: Is China ready for GM rice? Nature 2008, 455, 850–852. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, E.; Zhu, Y.; Tang, L.; Cao, W. Quantifying three-decade changes of single rice cultivars in China using crop modeling. Field Crops Res. 2013, 149, 84–94. [Google Scholar] [CrossRef]
- Ganie, S.A.; Wani, S.H.; Henry, R.; Hensel, G. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 2021, 60, 101996. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.; Zhou, X.; Chen, J.; Cao, F.; Jiang, L.; Zou, Y. Agronomic performance of late-season rice in South China. Plant Prod. Sci. 2018, 21, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ye, T.; Wang, J.; Cheng, Z.; Shi, P. Contribution of climatic and technological factors to crop yield: Empirical evidence from late paddy rice in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 2019–2030. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, Y.H.; Wang, X.; Zhao, C.; Zeng, Z.; Piao, S. Timing of rice maturity in China is affected more by transplanting date than by climate change. Agric. For. Meteorol. 2016, 216, 215–220. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Shi, W.; Liu, Y.; Xiao, D.; Zhang, S.; Zhu, Z.; Wang, M.; Liu, F. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Glob. Chang. Biol. 2013, 19, 3200–3209. [Google Scholar] [CrossRef]
- Skamnioti, P.; Gurr, S.J. Against the grain: Safeguarding rice from rice blast disease. Trends Biotechnol. 2009, 27, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, I. Overview on the Chemical Control of Rice Blast Disease. In Rice Blast: Interaction with Rice and Control; Kawasaki, S., Ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Bonman, J.M. Durable resistance to rice blast disease-environmental influences. Euphytica 1992, 63, 115–123. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, G.; Zhang, W.; Hu, Y.; Zhang, J. Biological control of rice insect pests in China. Biol. Control 2013, 67, 8–20. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Shen, J.; Cui, Z.; Miao, Y.; Mi, G.; Zhang, H.; Fan, M.; Zhang, C.; Jiang, R.; Zhang, W.; Li, H.; et al. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Secur. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Li, Y.; Peng, S. Leaf lateral asymmetry in morphological and physiological traits of rice plant. PLoS ONE 2015, 10, e0129832. [Google Scholar] [CrossRef]
- Tian, G.; Gao, L.; Kong, Y.; Hu, X.; Xie, K.; Zhang, R.; Ling, N.; Shen, Q.; Guo, S. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS ONE 2017, 12, e0182310. [Google Scholar] [CrossRef]
Provinces | Early Rice | Middle Rice | Late Rice |
---|---|---|---|
Beijing | ● | ||
Chongqing | ● | ||
Gansu | ● | ||
Guizhou | ● | ||
Hebei | ● | ||
Heilongjiang | ● | ||
Henan | ● | ||
Inner Mongolia | ● | ||
Jiangsu | ● | ||
Jilin | ● | ||
Liaoning | ● | ||
Ningxia | ● | ||
Shaanxi | ● | ||
Shandong | ● | ||
Shanghai | ● | ||
Shanxi | ● | ||
Sichuan | ● | ||
Tianjin | ● | ||
Tibet | ● | ||
Xinjiang | ● | ||
Guangdong | ● | ● | |
Hainan | ● | ● | |
Anhui | ● | ● | ● |
Fujian | ● | ● | ● |
Guangxi | ● | ● | ● |
Hubei | ● | ● | ● |
Hunan | ● | ● | ● |
Jiangxi | ● | ● | ● |
Yunnan | ● | ● | ● |
Zhejiang | ● | ● | ● |
Qinghai |
TRP | ERP | MRP | LRP | TPA | EPA | MPA | LPA | GPA | EGPA | MGPA | LGPA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | *** | ** | *** | ns | *** | *** | *** | *** | *** | *** | *** | *** |
megaton | kilohectare | kg/hectare | ||||||||||
Mean | 197 | 31 | 128 | 35 | 29635 | 5589 | 17823 | 6116 | 6561 | 5580 | 7177 | 5677 |
Max | 213 | 34 | 152 | 40 | 30784 | 6388 | 20125 | 7054 | 7059 | 5967 | 7559 | 5992 |
Min | 161 | 26 | 99 | 31 | 26508 | 4450 | 14881 | 5273 | 6061 | 5158 | 6671 | 5179 |
Changes (%) | ||||||||||||
Latest vs. 2001 | 19.9 | −17.6 | 46.2 | −20.5 | 3.8 | −30.3 | 30.9 | −25.2 | 14.5 | 10.9 | 11.7 | 6.3 |
Latest vs. mean | 8.1 | 10.2 | 18.6 | 14.1 | 3.9 | 14.3 | 12.9 | 15.3 | 7.6 | 6.9 | 5.3 | 5.6 |
Latest vs. min | 32.5 | 6.7 | 53.2 | 0.0 | 12.9 | 0.0 | 35.2 | 0.0 | 16.5 | 14.4 | 13.3 | 15.0 |
Max vs. mean | 8.1 | 10.2 | 18.6 | 14.1 | 3.9 | 14.3 | 12.9 | 15.3 | 7.6 | 6.9 | 5.3 | 5.6 |
Min vs. mean | −18.4 | −14.9 | −22.6 | −9.3 | −10.6 | −20.4 | −16.5 | −13.8 | −7.6 | −7.6 | −7.1 | −8.8 |
GPA | EGPA | MGPA | LGPA | TRP | ERP | MRP | LRP | |
---|---|---|---|---|---|---|---|---|
From central government | 0.473 * | 0.437 † | 0.423 † | 0.348 | 0.382 † | −0.613 ** | 0.472 * | −0.612 ** |
From local provinces | 0.557 * | 0.420 † | 0.526 * | 0.474 * | 0.486 * | −0.511 * | 0.592 ** | −0.480 * |
From country | 0.571 * | 0.461 * | 0.531 * | 0.465 * | 0.465 * | −0.591 ** | 0.595 ** | −0.568 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Risalat, H.; Cao, R.; Hu, Q.; Pan, X.; Hu, Y.; Zhang, G. Food Security in China: A Brief View of Rice Production in Recent 20 Years. Foods 2022, 11, 3324. https://doi.org/10.3390/foods11213324
Tang L, Risalat H, Cao R, Hu Q, Pan X, Hu Y, Zhang G. Food Security in China: A Brief View of Rice Production in Recent 20 Years. Foods. 2022; 11(21):3324. https://doi.org/10.3390/foods11213324
Chicago/Turabian StyleTang, Ling, Hamdulla Risalat, Rong Cao, Qinan Hu, Xiaoya Pan, Yaxin Hu, and Guoyou Zhang. 2022. "Food Security in China: A Brief View of Rice Production in Recent 20 Years" Foods 11, no. 21: 3324. https://doi.org/10.3390/foods11213324
APA StyleTang, L., Risalat, H., Cao, R., Hu, Q., Pan, X., Hu, Y., & Zhang, G. (2022). Food Security in China: A Brief View of Rice Production in Recent 20 Years. Foods, 11(21), 3324. https://doi.org/10.3390/foods11213324