Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Vinification
2.2. Preparation of the Yeasts
2.3. Analysis of Volatile Aroma Compounds by Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry
2.4. Statistical Data Elaboration
3. Results and Discussion
3.1. Fermentation Dynamics
3.2. Volatile Aroma Compounds
3.2.1. Terpenes
3.2.2. C13-Norisoprenoids
3.2.3. C6-Alcohols
3.2.4. Higher Alcohols
3.2.5. Volatile Acids
3.2.6. Esters
3.2.7. Miscellaneous Compounds
3.2.8. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zott, K.; Miot-Sertier, C.; Claisse, O.; Lonvaud-Funel, A.; Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 2008, 125, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of Non-Saccharomyces Yeasts to Wine Freshness. Biomolecules 2020, 10, 34. [Google Scholar] [CrossRef]
- Lleixà, J.; Manzano, M.; Mas, A.; Portillo, M.D. Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions. Front. Microbiol. 2016, 7, 1959. [Google Scholar] [CrossRef]
- Blanco, P.; Rabuñal, E.; Neira, N.; Castrillo, D. Dynamic of Lachancea thermotolerans population in monoculture and mixed fermentations: Impact on wine characteristics. Beverages 2020, 6, 36. [Google Scholar] [CrossRef]
- Benito, S. The impacts of Schizosaccharomyces on winemaking. Appl. Microbiol. Biotechnol. 2019, 103, 4291–4312. [Google Scholar] [CrossRef]
- Loira, I.; Morata, A.; Palomero, F.; González, C.; Suárez-Lepe, J.A. Schizosaccharomyces pombe: A Promising Biotechnology for Modulating Wine Composition. Fermentation 2018, 4, 70. [Google Scholar] [CrossRef]
- Vejarano, R.; Gil-Calderón, A. Commercially available non-Saccharomyces yeasts for winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility and safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- Windholtz, S.; Redon, P.; Lacampagne, S.; Farris, L.; Lytra, G.; Cameleyre, M.; Barbe, J.C.; Coulon, J.; Thibon, J.; Masneuf-Pomarède, I. Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT—Food Sci. Technol. 2021, 149, 111781. [Google Scholar] [CrossRef]
- Jolly, N.; Pretorius, I.S.; Varela, C. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2013, 14, 215–237. [Google Scholar] [CrossRef]
- Benito, S.; Hofmann, T.; Laier, M.; Lochbühler, B.; Schüttler, A.; Ebert, K.; Fritsch, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Azzolini, M.; Fedrizzi, B.; Tosi, E.; Finato, F.; Vagnoli, P.; Scrinzi, C.; Zapparoli, G. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur. Food Res. Technol. 2012, 235, 303–313. [Google Scholar] [CrossRef]
- Azzolini, M.; Tosi, E.; Lorenzini, M.; Finato, F.; Zapparoli, G. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2015, 31, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Li, S.; Boss, P.K.; Bindon, K.; Ristic, R.; Grbin, P.R.; Van der Westhuizen, T.; Jiranek, V. Chemical and sensory profiling of Shiraz wines co-fermented with commercial non-Saccharomyces inocula. Aust. J. Grape Wine Res. 2018, 24, 166–180. [Google Scholar] [CrossRef]
- Beckner Whitener, M.E.; Stanstrup, J.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust. J. Grape Wine Res. 2017, 23, 179–192. [Google Scholar] [CrossRef]
- Dutraive, O.; Benito, S.; Fritsch, S.; Beisert, B.; Patz, C.-D.; Rauhut, D. Effect of Sequential inoculation with non-Saccharomyces and Saccharomyces yeasts on Riesling wine chemical composition. Fermentation 2019, 5, 79. [Google Scholar] [CrossRef]
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.C.; Bely, M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- Barbosa, C.; Mendes-Faia, A.; Lage, P.; Mira, N.P.; Mendes-Ferreira, A. Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii. Microb. Cell Factories 2015, 14, 124. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Comitini, F.; Ciani, M. Torulospora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol. 2015, 56, 45–51. [Google Scholar] [CrossRef]
- Cioch-Skoneczny, M.; Grabowski, M.; Satora, P.; Skoneczny, S.; Klimczak, K. The use of yeast mixed cultures for deacidification and improvement of the composition of cold climate grape wines. Molecules 2021, 26, 2628. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Beckner Whitener, M.E.; Carlin, S.; Jacobson, D.; Weighill, D.; Divol, B.; Conterno, L.; Du Toit, M.; Vrhovsek, U. Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT—Food Sci. Technol. 2015, 64, 412–422. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications; John Wiley and Sons, Ltd.: Bordeaux, France, 2016. [Google Scholar]
- Bubola, M.; Lukić, I.; Radeka, S.; Sivilotti, P.; Grozic, K.; Vanzo, A.; Bavčar, D.; Lisjak, K. Enhancement of Istrian Malvasia wine aroma and hydroxycinnamate composition by hand and mechanical leaf removal. J. Sci. Food Agric. 2019, 99, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Lukić, I.; Carlin, S.; Vrhovsek, U. Comprehensive 2D Gas Chromatography with TOF-MS Detection Confirms the Matchless Discriminatory Power of Monoterpenes and Provides In-Depth Volatile Profile Information for Highly Efficient White Wine Varietal Differentiation. Foods 2020, 9, 1787. [Google Scholar] [CrossRef] [PubMed]
- Fernández-González, M.; Di Stefano, R.; Briones, A. Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol. 2003, 20, 35–41. [Google Scholar] [CrossRef]
- King, A.; Dickinson, J.R. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 2020, 16, 499–506. [Google Scholar] [CrossRef]
- Escribano, R.; González-Arenzana, L.; Garijo, P.; Berlanas, C.; López-Alfaro, I.; López, R.; Gutiérrez, A.R.; Santamaría, P. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J. Food Sci. Technol. 2017, 54, 1555–1564. [Google Scholar] [CrossRef]
- Bisotto, A.; Julien, A.; Rigou, P.; Schneider, R.; Salmon, J.M. Evaluation of the inherent capacity of commercial yeast strains to release glycosidic aroma precursors from Muscat grape must. Aust. J. Grape Wine Res. 2015, 21, 194–199. [Google Scholar] [CrossRef]
- Čuš, F.; Jenko, M. The influence of yeast strains on the composition and sensory quality of Gewürztraminer wine. Food Technol. Biotechnol. 2013, 51, 547–553. [Google Scholar]
- Beckner Whitener, M.E.; Stanstrup, J.; Panzeri, V.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Untangling the wine metabolome by combining untargeted SPME-GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics 2016, 12, 53. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products—The norisoprenoids—In wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Lloyd, N.D.R.; Capone, D.L.; Ugliano, M.; Taylor, D.K.; Skouroumounis, G.K.; Sefton, M.A.; Elsey, G.M. Formation of Damascenone under both Commercial and Model Fermentation Conditions. J. Agric. Food Chem. 2011, 59, 1338–1343. [Google Scholar] [CrossRef]
- Ruiz, J.; Belda, I.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Santos, A.; Benito, S. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. Food Microbiol. 2017, 252, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulospora delbrueckii in wine fermentation and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef]
- Mylona, A.E.; Del Fresno, J.M.; Palomero, F.; Loira, I.; Bañuelos, M.A.; Morata, A.; Calderón, F.; Benito, S.; Suárez-Lepe, J.A. Use of Schizosaccharomyces strains for wine fermentation-Effect on the wine composition and food safety. Int. Int. J. Food Microbiol. 2016, 232, 63–72. [Google Scholar] [CrossRef] [PubMed]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Stribny, J.; Querol, A.; Pérez-Torrado, R. Differences in enzymatic properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum alcohol acetyltransferases and their impact on aroma-active compounds production. Front. Microbiol. 2016, 7, 897. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [CrossRef]
- Iranzo, J.U.; Perez, A.B.; Canas, P.I. Study of the oenological characteristics and enzymatic activities of wine yeasts. Food Microbiol. 1998, 15, 399–406. [Google Scholar] [CrossRef]
Volatile Compound | ID | LRIexp | LRIlit | Yeast Species | |||||
---|---|---|---|---|---|---|---|---|---|
Saccharomyces cerevisiae | Torulaspora delbrueckii | Metschnikowia pulcherrima | Pichia kluyveri | Lachancea thermotolerans | Schizosacchaomyces pombe | ||||
Terpenes | |||||||||
Camphene | MS, LRI | 1056 | 1056 | 0.024 ± 0.006 b | 0.024 ± 0.005 b | 0.023 ± 0.006 b | 0.039 ± 0.019 b | 0.041 ± 0.015 b | 0.093 ± 0.051 a |
β-Pinene | MS, LRI | 1146 | 1145 | 0.16 ± 0.01 bc | 0.13 ± 0.00 d | 0.14 ± 0.01 cd | 0.16 ± 0.01 bc | 0.16 ± 0.00 ab | 0.17 ± 0.01 a |
Limonene | MS, LRI | 1191 | 1196 | 0.30 ± 0.04 | 0.35 ± 0.08 | 0.39 ± 0.18 | 0.28 ± 0.03 | 0.25 ± 0.02 | 0.27 ± 0.02 |
β-Phellandrene | MS, LRI | 1208 | 1218 | 0.068 ± 0.004 | 0.070 ± 0.012 | 0.064 ± 0.002 | 0.064 ± 0.008 | 0.061 ± 0.015 | 0.064 ± 0.003 |
Eucalyptol | MS, LRI | 1216 | 1224 | 0.061 ± 0.004 b | 0.092 ± 0.028 a | 0.071 ± 0.014 ab | 0.067 ± 0.018 ab | 0.055 ± 0.018 b | 0.067 ± 0.002 ab |
Menthol | MS, LRI | 1637 | 1641 | 1.55 ± 0.10 b | 1.48 ± 0.23 b | 1.30 ± 0.20 b | 2.55 ± 1.42 ab | 2.01 ± 0.64 b | 4.97 ± 3.02 a |
6,10-Dihydromyrcenol | MS, LRI | 1473 | 1475 | 0.09 ± 0.01 c | 0.12 ± 0.01 bc | 0.12 ± 0.02 bc | 0.16 ± 0.06 ab | 0.11 ± 0.05 bc | 0.18 ± 0.03 a |
Linalool | S, MS, LRI | 1542 | 1542 | 3.76 ± 0.08 c | 3.90 ± 0.07 bc | 4.15 ± 0.22 bc | 4.75 ± 0.24 a | 4.05 ± 0.12 bc | 4.27 ± 0.39 b |
α-Farnesene | MS, LRI | 1752 | 1762 | 0.037 ± 0.011 | 0.032 ± 0.004 | 0.031 ± 0.007 | 0.022 ± 0.013 | 0.033 ± 0.010 | 0.030 ± 0.016 |
Geranyl acetate | MS, LRI | 1764 | 1768 | 0.099 ± 0.029 ab | 0.049 ± 0.007 c | 0.067 ± 0.011 bc | 0.079 ± 0.028 abc | 0.108 ± 0.021 a | 0.111 ± 0.027 a |
Geranyl acetone | MS, LRI | 1849 | 1845 | 0.17 ± 0.04 | 0.40 ± 0.18 | 0.39 ± 0.33 | 0.34 ± 0.14 | 0.22 ± 0.02 | 0.41 ± 0.25 |
C13-norisoprenoids | |||||||||
β-Damascenone | MS, LRI | 1809 | 1809 | 0.35 ± 0.00 d | 0.50 ± 0.03 c | 0.54 ± 0.04 bc | 0.61 ± 0.01 a | 0.57 ± 0.05 ab | 0.58 ± 0.03 ab |
α-Isomethylionone | MS, LRI | 1835 | 1848 | 0.24 ± 0.03 ab | 0.20 ± 0.01 b | 0.23 ± 0.02 ab | 0.68 ± 0.45 ab | 0.43 ± 0.32 ab | 0.70 ± 0.42 a |
β-Ionone | MS, LRI | 1916 | 1915 | 0.20 ± 0.02 ab | 0.18 ± 0.01 b | 0.20 ± 0.01 ab | 0.52 ± 0.33 ab | 0.33 ± 0.22 ab | 0.54 ± 0.28 a |
β-Methylionone | MS, LRI | 2012 | 1988 | 1.87 ± 0.11 | 1.40 ± 0.14 | 1.46 ± 0.19 | 4.89 ± 3.52 | 2.89 ± 2.12 | 4.83 ± 2.56 |
6-Methylionone | MS | 2098 | n/a | 0.19 ± 0.02 abc | 0.15 ± 0.01 c | 0.16 ± 0.02 bc | 0.38 ± 0.21 ab | 0.24 ± 0.15 abc | 0.41 ± 0.18 a |
Alcohols | |||||||||
3-Buten-2-ol | MS, LRI | 1051 | NA | 0.19 ± 0.01 c | 0.23 ± 0.01 c | 0.43 ± 0.22 ab | 0.58 ± 0.05 a | 0.26 ± 0.06 bc | 0.35 ± 0.04 bc |
Isobutanol | MS, LRI | 1090 | 1098 | 5.50 ± 0.52 abc | 4.71 ± 0.11 c | 4.94 ± 0.45 bc | 5.54 ± 1.23 abc | 6.30 ± 0.67 a | 6.19 ± 1.00 ab |
Isoamyl alcohol | MS, LRI | 1229 | 1229 | 328.6 ± 9.9 a | 213.5 ± 3.2 d | 269.6 ± 14.01 c | 307.9 ± 24.1 ab | 313.1 ± 13.0 ab | 281.1 ± 35.4 bc |
1-Hexanol | S, MS, LRI | 1357 | 1357 | 1107.0 ± 33.5 b | 1336.0 ± 35.3 a | 1359.0 ± 179.6 a | 1213.8 ± 94.3 ab | 1273.7 ± 62.9 a | 1072.2 ± 20.3 b |
trans-3-Hexen-1-ol | S, MS, LRI | 1366 | 1361 | 63.02 ± 1.19 bc | 78.85 ± 1.78 a | 68.22 ± 11.29 b | 64.91 ± 2.90 bc | 65.22 ± 3.25 bc | 57.13 ± 3.42 c |
cis-3-Hexen-1-ol | S, MS, LRI | 1389 | 1389 | 70.51 ± 5.11 ab | 75.03 ± 1.69 a | 75.09 ± 6.97 a | 69.15 ± 7.52 ab | 66.13 ± 5.80 ab | 61.48 ± 2.78 b |
cis-2-Hexen-1-ol | MS, LRI | 1416 | 1413 | 0.10 ± 0.02 b | 0.08 ± 0.01 b | 0.11 ± 0.01 ab | 0.09 ± 0.01 b | 0.08 ± 0.01 b | 0.13 ± 0.03 a |
6-Methyl-5-hepten-2-ol | MS, LRI | 1463 | 1466 | 0.22 ± 0.03 bc | 0.26 ± 0.01 a | 0.23 ± 0.02 abc | 0.25 ± 0.02 ab | 0.23 ± 0.02 abc | 0.21 ± 0.01 c |
2-Phenylethanol | S, MS, LRI | 1891 | 1893 | 5053.5 ± 743.7 a | 3371.6 ± 517.4 b | 3278.1 ± 663.2 b | 2924.3 ± 438.0 b | 3004.9 ± 670.3 b | 2791.9 ± 354.7 b |
Volatile acids | |||||||||
Acetic acid | MS, LRI | 1445 | 1439 | 10.42 ± 2.17 ab | 8.12 ± 1.94 b | 8.76 ± 0.60 ab | 11.44 ± 2.16 a | 10.66 ± 2.10 ab | 8.89 ± 1.12 ab |
Butyric acid | S, MS, LRI | 1617 | 1612 | 970.6 ± 21.8 a | 499.1 ± 38.1 c | 570.6 ± 33.8 bc | 560.8 ± 79.1 c | 645.4 ± 19.8 b | 530.4 ± 56.3 c |
Hexanoic acid | S, MS, LRI | 1824 | 1828 | 3070.9 ± 24.4 b | 1879.9 ± 72.1 d | 2609.9 ± 105.9 c | 2991.7 ± 487.6 bc | 3298.9 ± 219.4 b | 3768.8 ± 272.6 a |
Octanoic acid | S, MS, LRI | 2043 | 2042 | 3878.1 ± 187.6 a | 2347.1 ± 120.0 c | 3213.4 ± 23.8 b | 3092.8 ± 304.0 b | 3312.5 ± 88.4 b | 3847.4 ± 288.5 a |
Nonanoic acid | MS, LRI | 2155 | 2119 | 63.60 ± 15.87 a | 59.29 ± 6.65 ab | 58.67 ± 8.51 ab | 26.12 ± 29.93 bc | 42.46 ± 31.64 ab | 7.74 ± 0.54 c |
Decanoic acid | S, MS, LRI | 2257 | 2258 | 1874.6 ± 64.6 a | 1349.3 ± 220.0 bc | 1506.3 ± 94.3 b | 1322.4 ± 261.6 bc | 1107.6 ± 134.7 c | 1622.8 ± 277.3 ab |
Ethyl esters | |||||||||
Ethyl acetate | MS, LRI | <1000 | 885 | 96.29 ± 4.21 a | 96.16 ± 7.77 a | 44.00 ± 7.12 c | 77.64 ± 5.72 b | 85.32 ± 7.35 ab | 79.22 ± 15.74 b |
Ethyl propanoate | MS, LRI | <1000 | 949 | 0.20 ± 0.01 b | 0.87 ± 0.01 a | 0.07 ± 0.01 e | 0.10 ± 0.02 d | 0.14 ± 0.01 c | 0.07 ± 0.01 e |
Ethyl isobutyrate | MS, LRI | <1000 | 965 | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.01 ab | 0.01 ± 0.00 b | 0.01 ± 0.00 b |
Ethyl butyrate | S, MS, LRI | 1030 | 1030 | 81.37 ± 7.02 a | 30.04 ± 3.65 c | 48.17 ± 10.95 b | 48.58 ± 6.44 b | 70.07 ± 7.51 a | 79.58 ± 14.44 a |
Ethyl hexanoate | S, MS, LRI | 1242 | 1236 | 678.4 ± 49.5 b | 363.9 ± 35.8 c | 706.2 ± 134.6 b | 756.6 ± 143.3 b | 921.6 ± 39.2 a | 924.4 ± 75.5 a |
Ethyl octanoate | S, MS, LRI | 1435 | 1435 | 1744.0 ± 132.2 b | 779.2 ± 193.8 c | 1981.0 ± 525.5 b | 2738.0 ± 432.3 a | 2599.5 ± 83.1 a | 2265.1 ± 400.8 ab |
Ethyl nonanoate | MS, LRI | 1530 | 1535 | 6.14 ± 0.54 a | 4.54 ± 0.67 b | 5.37 ± 0.27 ab | 5.84 ± 0.56 a | 5.44 ± 0.83 ab | 5.93 ± 0.56 a |
Ethyl 2-furoate | MS, LRI | 1609 | 1606 | 0.022 ± 0.002 ab | 0.021 ± 0.005 ab | 0.025 ± 0.006 a | 0.014 ± 0.012 b | 0.018 ± 0.004 ab | 0.022 ± 0.004 ab |
Ethyl decanoate | S, MS, LRI | 1645 | 1638 | 1192.0 ± 167.1 ab | 1038.2 ± 132.9 b | 1467.3 ± 336.7 a | 1499.1 ± 199.3 a | 1571.7 ± 244.7 a | 1563.4 ± 269.3 a |
Ethyl 9-decenoate | MS, LRI | 1694 | 1688 | 0.64 ± 0.32 d | 1.09 ± 0.35 cd | 1.64 ± 0.48 cd | 2.12 ± 0.61 bc | 3.89 ± 1.52 a | 3.19 ± 0.53 ab |
Ethyl dodecanoate | MS, LRI | 1843 | 1843 | 56.14 ± 9.48 b | 49.71 ± 14.43 b | 95.08 ± 17.94 a | 94.53 ± 11.58 a | 98.13 ± 12.49 a | 91.20 ± 16.02 a |
Acetate esters | |||||||||
Methyl acetate | MS, LRI | <1000 | 813 | 0.14 ± 0.02 b | 0.15 ± 0.00 b | 0.15 ± 0.01 b | 0.22 ± 0.04 a | 0.18 ± 0.02 ab | 0.20 ± 0.03 a |
Propyl acetate | MS, LRI | <1000 | 982 | 1.34 ± 0.09 a | 0.99 ± 0.05 bc | 0.69 ± 0.11 d | 0.94 ± 0.14 c | 1.13 ± 0.05 b | 1.12 ± 0.12 b |
Isobutyl acetate | S, MS, LRI | 1015 | 1009 | 89.76 ± 2.57 a | 60.13 ± 5.31 cd | 52.15 ± 5.24 d | 66.99 ± 3.82 bc | 77.25 ± 6.30 ab | 65.71 ± 14.23 bc |
Butyl acetate | MS, LRI | 1062 | 1064 | 0.19 ± 0.05 ab | 0.15 ± 0.01 b | 0.14 ± 0.02 b | 0.19 ± 0.03 ab | 0.22 ± 0.01 a | 0.23 ± 0.05 a |
Isoamyl acetate | S, MS, LRI | 1133 | 1133 | 1893.4 ± 50.2 b | 1188.6 ± 91.2 d | 1494.3 ± 219.2 c | 2231.5 ± 223.6 a | 2084.3 ± 112.1 ab | 2028.5 ± 142.8 ab |
Hexyl acetate | S, MS, LRI | 1272 | 1272 | 486.0 ± 29.5 b | 340.1 ± 17.4 c | 452.3 ± 41.1 b | 556.3 ± 45.0 a | 459.1 ± 23.2 b | 554.4 ± 24.03 a |
cis-3-Hexen-1-yl acetate | MS, LRI | 1304 | 1300 | 2.73 ± 0.09 c | 1.66 ± 0.09 d | 2.04 ± 0.24 d | 4.20 ± 0.63 a | 2.78 ± 0.21 bc | 3.30 ± 0.31 b |
trans-3-Hexen-1-yl acetate | MS, LRI | 1313 | 1316 | 2.78 ± 0.09 b | 1.53 ± 0.18 d | 2.0 ± 0.16 cd | 5.21 ± 0.86 a | 2.59 ± 0.20 bc | 3.13 ± 0.28 b |
Heptyl acetate | MS, LRI | 1374 | 1374 | 0.085 ± 0.009 b | 0.043 ± 0.014 c | 0.094 ± 0.011 ab | 0.097 ± 0.027 ab | 0.075 ± 0.007 b | 0.119 ± 0.013 a |
Octyl acetate | MS, LRI | 1481 | 1483 | 0.21 ± 0.07 a | 0.02 ± 0.00 d | 0.17 ± 0.06 ab | 0.12 ± 0.06 bc | 0.08 ± 0.01 cd | 0.11 ± 0.02 bc |
Isobornyl acetate | MS, LRI | 1570 | 1571 | 1.65 ± 0.10 b | 1.43 ± 0.30 b | 1.40 ± 0.32 b | 2.71 ± 1.43 b | 2.66 ± 0.67 b | 6.74 ± 4.54 a |
2-Phenethyl acetate | S, MS, LRI | 1803 | 1801 | 101.80 ± 10.66 b | 74.36 ± 12.22 bc | 57.37 ± 15.66 c | 187.70 ± 24.84 a | 58.27 ± 13.48 c | 79.33 ± 13.59 bc |
Other esters | |||||||||
Methyl hexanoate | MS, LRI | 1170 | 1172 | 0.60 ± 0.04 b | 0.47 ± 0.02 c | 0.79 ± 0.03 a | 0.79 ± 0.12 a | 0.79 ± 0.12 a | 0.76 ± 0.04 a |
Isoamyl propanoate | MS, LRI | 1179 | 1181 | 0.020 ± 0.017 ab | 0.040 ± 0.003 a | 0.015 ± 0.021 b | 0.013 ± 0.003 b | 0.005 ± 0.001 b | 0.014 ± 0.020 b |
Isoamyl butyrate | MS, LRI | 1262 | 1266 | 0.050 ± 0.021 ab | 0.036 ± 0.004 b | 0.043 ± 0.005 ab | 0.057 ± 0.026 ab | 0.064 ± 0.024 ab | 0.073 ± 0.004 a |
Propyl hexanoate | MS, LRI | 1324 | 1319 | 0.107 ± 0.037 a | 0.033 ± 0.008 b | 0.079 ± 0.011 a | 0.088 ± 0.024 a | 0.110 ± 0.010 a | 0.095 ± 0.012 a |
Methyl 2-methyloctanoate | MS, LRI | 1399 | 1380 | 11.27 ± 0.77 | 10.53 ± 0.86 | 10.52 ± 0.28 | 10.66 ± 0.24 | 10.16 ± 1.42 | 11.56 ± 1.00 |
Methyl octanoate | MS, LRI | 1407 | 1404 | 1.27 ± 0.50 c | 1.13 ± 0.34 c | 2.78 ± 0.68 b | 3.79 ± 0.72 a | 3.22 ± 0.15 ab | 2.85 ± 0.50 b |
Isoamyl hexanoate | MS, LRI | 1457 | 1458 | 0.33 ± 0.15 b | 0.30 ± 0.05 b | 0.82 ± 0.20 a | 1.02 ± 0.46 a | 1.11 ± 0.08 a | 0.80 ± 0.11 a |
Propyl octanoate | MS, LRI | 1520 | 1510 | 0.16 ± 0.07 a | 0.07 ± 0.02 b | 0.16 ± 0.04 a | 0.18 ± 0.08 a | 0.20 ± 0.02 a | 0.17 ± 0.03 a |
Isobutyl octanoate | MS, LRI | 1550 | 1551 | 0.030 ± 0.008 b | 0.037 ± 0.005 b | 0.082 ± 0.019 a | 0.100 ± 0.034 a | 0.090 ± 0.020 a | 0.082 ± 0.005 a |
Methyl decanoate | MS, LRI | 1594 | 1593 | 0.34 ± 0.07 b | 0.33 ± 0.05 b | 0.57 ± 0.11 a | 0.58 ± 0.15 a | 0.60 ± 0.07 a | 0.56 ± 0.09 a |
Diethyl succinate | MS, LRI | 1677 | 1669 | 3.00 ± 0.31 b | 6.98 ± 1.61 a | 7.11 ± 3.29 a | 5.08 ± 0.47 ab | 6.90 ± 2.65 a | 5.61 ± 0.90 ab |
Ester m/z 131, 43, 70, 113 | n.i. | 1713 | n/a | 1.66 ± 0.11 a | 1.21 ± 0.21 b | 1.45 ± 0.15 ab | 1.53 ± 0.09 a | 1.43 ± 0.30 ab | 1.69 ± 0.08 a |
Isobutyl decanoate | MS, LRI | 1774 | 1756 | 0.007 ± 0.005 c | 0.014 ± 0.003 bc | 0.022 ± 0.005 ab | 0.023 ± 0.003 a | 0.017 ± 0.006 ab | 0.020 ± 0.005 ab |
Isobutyl 4-ethylbenzoate | MS, LRI | 1788 | n/a | 0.38 ± 0.07 ab | 0.14 ± 0.12 c | 0.39 ± 0.16 ab | 0.54 ± 0.19 a | 0.40 ± 0.13 ab | 0.29 ± 0.08 bc |
Isoamyl decanoate | MS, LRI | 1859 | 1856 | 2.15 ± 0.51 | 1.86 ± 0.18 | 2.19 ± 0.15 | 2.28 ± 0.13 | 2.19 ± 0.31 | 2.17 ± 0.24 |
2-Phenethyl propanoate | MS, LRI | 1872 | 1880 | n.d. | 0.930 ± 0.084 a | 0.233 ± 0.131 b | 0.057 ± 0.042 c | 0.023 ± 0.013 c | 0.018 ± 0.004 c |
Hexyl salicylate | MS, LRI | 2186 | 2206 | 0.43 ± 0.06 ab | 0.26 ± 0.02 b | 0.27 ± 0.02 b | 0.47 ± 0.22 a | 0.41 ± 0.07 ab | 0.59 ± 0.10 a |
Miscellaneous | |||||||||
3-Methylbutanal | MS, LRI | <1000 | 901 | 0.099 ± 0.005 b | 0.024 ± 0.002 d | 0.157 ± 0.022 a | 0.147 ± 0.006 a | 0.083 ± 0.009 bc | 0.071 ± 0.003 c |
Hexanal | MS, LRI | 1068 | 1070 | 9.39 ± 0.55 b | 5.73 ± 0.53 c | 12.08 ± 2.75 a | 7.02 ± 1.24 bc | 5.19 ± 0.99 c | 4.87 ± 0.33 c |
2-Octanone | MS, LRI | 1279 | 1284 | 0.33 ± 0.01 a | 0.34 ± 0.03 a | 0.34 ± 0.04 a | 0.34 ± 0.06 a | 0.31 ± 0.01 ab | 0.26 ± 0.02 b |
Benzaldehyde | S, MS, LRI | 1500 | 1505 | 1.94 ± 0.35 a | 0.88 ± 0.16 bc | 0.94 ± 0.12 b | 0.80 ± 0.12 bc | 0.61 ± 0.09 c | 0.71 ± 0.02 bc |
Dihydro-2-methyl-3(2H)-thiophenone | MS, LRI | 1512 | 1506 | 0.41 ± 0.01 e | 1.11 ± 0.04 a | 0.79 ± 0.02 c | 0.80 ± 0.05 c | 0.96 ± 0.10 b | 0.61 ± 0.08 d |
Benzothiazole | MS, LRI | 1930 | 1937 | 0.36 ± 0.06 b | 0.38 ± 0.03 ab | 0.40 ± 0.02 ab | 0.42 ± 0.07 ab | 0.49 ± 0.08 a | 0.46 ± 0.06 ab |
2-(Methylmercapto) benzothiazole | MS, LRI | 2433 | 2422 | 1.82 ± 0.50 bc | 0.85 ± 0.06 c | 0.88 ± 0.14 c | 2.06 ± 1.59 bc | 3.77 ± 1.10 a | 2.90 ± 0.70 ab |
Homosalate | MS | 2577 | n/a | 0.054 ± 0.010 | 0.070 ± 0.013 | 0.075 ± 0.026 | 0.103 ± 0.042 | 0.065 ± 0.043 | 0.098 ± 0.039 |
p-tert-Amylphenol | MS | 2776 | n/a | 1.18 ± 0.18 b | 1.51 ± 0.26 ab | 1.71 ± 0.18 a | 1.16 ± 0.42 b | 1.14 ± 0.12 b | 1.07 ± 0.27 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delač Salopek, D.; Horvat, I.; Hranilović, A.; Plavša, T.; Radeka, S.; Pasković, I.; Lukić, I. Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods 2022, 11, 3088. https://doi.org/10.3390/foods11193088
Delač Salopek D, Horvat I, Hranilović A, Plavša T, Radeka S, Pasković I, Lukić I. Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods. 2022; 11(19):3088. https://doi.org/10.3390/foods11193088
Chicago/Turabian StyleDelač Salopek, Doris, Ivana Horvat, Ana Hranilović, Tomislav Plavša, Sanja Radeka, Igor Pasković, and Igor Lukić. 2022. "Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation" Foods 11, no. 19: 3088. https://doi.org/10.3390/foods11193088
APA StyleDelač Salopek, D., Horvat, I., Hranilović, A., Plavša, T., Radeka, S., Pasković, I., & Lukić, I. (2022). Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods, 11(19), 3088. https://doi.org/10.3390/foods11193088