Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT)
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Randomization and Blinding
2.3. Study Population
- No systemic diseases that could interfere with implant integration or healing.
- Satisfactory periodontal health, defined as a Modified Sulcus Bleeding Index below 30% and a Russell’s Periodontal Index below 2.
- No active or untreated chronic periodontal disease.
- Presence of adjacent natural teeth.
- At least 4 mm of apical bone to ensure primary stability, assessed via periapical radiographs.
- A buccal bone plate loss not exceeding 3 mm, determined by clinical sounding.
- No chronic periapical lesions resulting in significant bone loss.
- A minimum of 1 mm of keratinized marginal gingiva.
2.4. Surgical Procedures
2.5. Outcomes
- Three landmarks on the buccal and three landmarks on the lingual/palatal surface of the implant: most apical spire (AB for buccal surface and AL/P for lingual/palatal surface), medial spire (MB for buccal surface and ML/P for lingual/palatal surface), and bevel/marginal spire (BB for buccal surface and BL/P for lingual/palatal surface).
- Three corresponding external buccal and three corresponding external lingual/palatal bone landmarks determined perpendicular to the vertical axis of the implant (EAB for buccal bone and EAL/P for lingual/palatal bone, EMB for buccal bone and EML/P for lingual/palatal bone, EBB for buccal bone and EBL/P for lingual/palatal bone).
- The implant bevel plane (P).
2.6. Sample Size
2.7. Statistical Analysis
3. Results
4. Discussion
Strong Points and Novelty
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhurakivska, K.; Luciano, R.; Caponio, V.C.A.; Lo Russo, L.; Muzio, L.L.; Mascitti, M.; Troiano, G. Cost/effectiveness analysis of treatment options for the rehabilitation of the total edentulous mandible. J. Oral Rehabil. 2023, 50, 400–409. [Google Scholar] [CrossRef]
- Esposito, M.; Barausse, C.; Pistilli, R.; Jacotti, M.; Grandi, G.; Tuco, L.; Felice, P. Immediate loading of post-extractive versus delayed placed single implants in the anterior maxilla: Outcome of a pragmatic multicenter randomised controlled trial 1-year after loading. Eur. J. Oral Implantol. 2015, 8, 347–358. [Google Scholar] [PubMed]
- Qin, R.; Chen, Y.; Han, C.; Wu, D.; Yu, F.; He, D. Immediate Implant Placement With or Without Immediate Provisionalization in the Maxillary Esthetic Zone: A Systematic Review and Meta-analysis. Int. J. Oral Maxillofac. Implant. 2023, 38, 422–434c. [Google Scholar] [CrossRef] [PubMed]
- Naseri, R.; Asadollahi, S.; Shirani, M.; Pouremadi, N. Clinical outcomes of dental implants placed in fresh sockets: A five-year retrospective study. Saudi Dent. J. 2024, 36, 146–150. [Google Scholar] [CrossRef]
- Agarwal, B.; Bizzoca, M.E.; Musella, G.; De Vito, D.; Lo Muzio, L.; Ballini, A.; Cantore, S.; Pisani, F. Tooth Loss in Periodontitis Patients—A Risk Factor for Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Pers. Med. 2024, 14, 953. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Bizzoca, M.E.; Cantore, S.; Caloro, G.A.; Musella, G.; Mastrangelo, F.; Lo Muzio, L.; Ballini, A. Impact of cerebrovascular stroke on inflammatory periodontal indices: A systematic review with meta-analysis and trial sequential analysis of case-control studies. Front. Oral Health 2024, 5, 1473744. [Google Scholar] [CrossRef]
- Grassi, F.R.; Capogreco, M.; Consonni, D.; Bilardi, G.; Buti, J.; Kalemaj, Z. Immediate occlusal loading of one-piece zirconia implants: Five-year radiographic and clinical evaluation. Int. J. Oral Maxillofac. Implant. 2015, 30, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Seyssens, L.; Eeckhout, C.; Cosyn, J. Immediate implant placement with or without socket grafting: A systematic review and meta-analysis. Clin. Implant Dent. Relat. Res. 2022, 24, 339–351. [Google Scholar] [CrossRef]
- Couso-Queiruga, E.; Stuhr, S.; Tattan, M.; Chambrone, L.; Avila-Ortiz, G. Post-extraction dimensional changes: A systematic review and meta-analysis. J. Clin. Periodontol. 2021, 48, 126–144. [Google Scholar] [CrossRef] [PubMed]
- Suaid, F.A.; Novaes, A.B., Jr.; Queiroz, A.C.; Muglia, V.A.; Almeida, A.L.; Grisi, M.F. Buccal bone plate remodeling after immediate implants with or without synthetic bone grafting and flapless surgery: A histomorphometric and fluorescence study in dogs. Clin. Oral Implant. Res. 2014, 25, e10–e21. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Teng, F.; Zhao, A.; Wu, Y.; Yu, D. Effects of Post-Extraction Alveolar Ridge Preservation Versus Immediate Implant Placement: A Systematic Review and Meta-Analysis. J. Evid. Based Dent. Pract. 2022, 22, 101734. [Google Scholar] [CrossRef]
- Bressan, E.; Guazzo, R.; Tomasi, C.; Pena, T.G.; Galindo-Moreno, P.; Caponio, V.C.A.; Sbricoli, L.; Canullo, L. Influence of soft tissue thickness on marginal bone level around dental implants: A systematic review with meta-analysis and trial-sequential analysis. Clin. Oral Implant. Res. 2023, 34, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Bagde, H.S.; Alam, M.K.; Almohammed, Y.E.M.; Almaqawid, S.M.M.; Alanazi, A.W.N.; Alanazi, F.T.F.; Sghaireen, M.G. The Efficacy of Platelet-Rich Plasma as an Adjunct to Bone Grafting in Alveolar Ridge Preservation Following Tooth Extraction. J. Pharm. Bioallied Sci. 2024, 16, S564–S566. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Rathan, A.C.; Satheesan, S.; Divya, V.C.; Narayanan, V.; Ramakrishnan, K. Comparison of activated Platelet Rich Fibrin and Platelet Rich Fibrin in osseous regeneration of freshly extracted socket- A double blinded randomized clinical study. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101919. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Mikulewicz, M.; Laskowska, J.; Karolewicz, B.; Owczarek, A. The Importance of Chitosan Coatings in Dentistry. Mar. Drugs 2023, 21, 613. [Google Scholar] [CrossRef]
- Bhargava, N.; Perrotti, V.; Caponio, V.C.A.; Matsubara, V.H.; Patalwala, D.; Quaranta, A. Comparison of heat production and bone architecture changes in the implant site preparation with compressive osteotomes, osseodensification technique, piezoelectric devices, and standard drills: An ex vivo study on porcine ribs. Odontology 2023, 111, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Ferreira, I.; da Costa Valente, M.L.; Dos Reis, A.C. Relationship between dental implant macro-design and osseointegration: A systematic review. Oral Maxillofac. Surg. 2024, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.F.; Faot, F.; Possebon, A.; da Silva, W.J.; Del Bel Cury, A.A. Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. J. Mech. Behav. Biomed. Mater. 2021, 119, 104515. [Google Scholar] [CrossRef] [PubMed]
- Reis-Neta, G.R.D.; Cerqueira, G.F.M.; Ribeiro, M.C.O.; Magno, M.B.; Vasquez, G.A.M.; Maia, L.C.; Del Bel Cury, A.A.; Marcello-Machado, R.M. Is the clinical performance of dental implants influenced by different macrogeometries? A systematic review and meta-analysis. J. Prosthet. Dent. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Abuhussein, H.; Pagni, G.; Rebaudi, A.; Wang, H.L. The effect of thread pattern upon implant osseointegration. Clin. Oral Implant. Res. 2010, 21, 129–136. [Google Scholar] [CrossRef]
- Fernandez-Dominguez, M.; Ortega-Asensio, V.; Fuentes-Numancia, E.; Aragoneses, J.M.; Barbu, H.M.; Ramirez-Fernandez, M.P.; Delgado-Ruiz, R.A.; Calvo-Guirado, J.L.; Samet, N.; Gehrke, S.A. Can the Macrogeometry of Dental Implants Influence Guided Bone Regeneration in Buccal Bone Defects? Histomorphometric and Biomechanical Analysis in Beagle Dogs. J. Clin. Med. 2019, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gotzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Peralvo, A.O.; Mateos-Moreno, M.V.; Velasco-Ortega, E.; Pena-Cardelles, J.F.; Kewalramani, N. Preventive antibiotic therapy in bone augmentation procedures in oral implantology: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 74–80. [Google Scholar] [CrossRef]
- Zhurakivska, K.; Russo, L.L.; Muzio, L.L.; Caponio, V.C.A.; Laino, L.; Arena, C.; Cirillo, N.; Troiano, G. Antibiotic prophylaxis at the time of dental implant placement: A cost-effectiveness analysis. BMC Health Serv. Res. 2022, 22, 1073. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Huang, Y.C.; Ding, S.J. Primary stability of implant placement and loading related to dental implant materials and designs: A literature review. J. Dent. Sci. 2023, 18, 1467–1476. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Pontes, A.E.; Piattelli, A.; Iezzi, G. Primary Stability of Dental Implants in Low-Density (10 and 20 pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants. Int. J. Environ. Res. Public Health 2020, 17, 2617. [Google Scholar] [CrossRef]
- Staedt, H.; Palarie, V.; Staedt, A.; Wolf, J.M.; Lehmann, K.M.; Ottl, P.; Kammerer, P.W. Primary Stability of Cylindrical and Conical Dental Implants in Relation to Insertion Torque-A Comparative Ex Vivo Evaluation. Implant. Dent. 2017, 26, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Dedavid, B.A.; Aramburu, J.S.J.; Perez-Diaz, L.; Calvo Guirado, J.L.; Canales, P.M.; De Aza, P.N. Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. BioMed Res. Int. 2018, 2018, 4265474. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Junior, J.A.; Treichel, T.L.E.; do Prado, T.D.; Dedavid, B.A.; de Aza, P.N. Effects of insertion torque values on the marginal bone loss of dental implants installed in sheep mandibles. Sci. Rep. 2022, 12, 538. [Google Scholar] [CrossRef]
- Calvo-Guirado, J.L.; Jimenez-Soto, R.; Perez Albacete-Martinez, C.; Fernandez-Dominguez, M.; Gehrke, S.A.; Mate-Sanchez de Val, J.E. Influence of Implant Neck Design on Peri-Implant Tissue Dimensions: A Comparative Study in Dogs. Materials 2018, 11, 2007. [Google Scholar] [CrossRef]
- Jin, Z.H.; Peng, M.D.; Li, Q. The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis. J. Dent. Sci. 2020, 15, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Rocha, F.A.; Nascimento, A.L.; Coelho, P.G. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J. Mech. Behav. Biomed. Mater. 2012, 16, 169–180. [Google Scholar] [CrossRef]
- Shah, F.A.; Sayardoust, S.; Omar, O.; Thomsen, P.; Palmquist, A. Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket? Calcif. Tissue Int. 2019, 105, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Caponio, V.C.A.; Sharma, A.; Musella, G.; Perrotti, V.; Quaranta, A. Survival of dental implants placed in a postgraduate educational setting: A retrospective cohort study. J. Dent. 2024, 153, 105531. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.A.; Wilson, R.F.; Palmer, R.M. The effect of smoking on periodontal bone regeneration: A systematic review and meta-analysis. J. Periodontol. 2012, 83, 143–155. [Google Scholar] [CrossRef]
- Tumedei, M.; Petrini, M.; Pietropaoli, D.; Cipollina, A.; La Torre, C.; Di Carmine, M.S.; Piattelli, A.; Iezzi, G. The Influence of the Implant Macrogeometry on Insertion Torque, Removal Torque, and Periotest Implant Primary Stability: A Mechanical Simulation on High-Density Artificial Bone. Symmetry 2021, 13, 776. [Google Scholar] [CrossRef]
Patient Data | Treatment Group | |
---|---|---|
System 2P | Dura-Vit 3P | |
Age (mean, SD) | 50.3 (15.8) | 55.1 (12.7) |
Sex | ||
Female | 8 | 11 |
Male | 7 | 4 |
Smoke | ||
Yes (1–10/day) | 4 | 3 |
No | 11 | 12 |
Gingiva biotype | ||
Thin | 5 | 7 |
Thick | 10 | 8 |
Jaw | Diameter | Insertion Torque | |||||||
---|---|---|---|---|---|---|---|---|---|
Upper | Lower | 3.5 mm | 4 mm | Mean (SD) | |||||
Molar | Premolar | Frontal | Molar | Premolar | Frontal | ||||
System 2P | 4 | 4 | 1 | 3 | 2 | 1 | 4 | 11 | 44.5 (5.4) |
Dura-Vit 3P | 4 | 2 | 1 | 4 | 3 | 2 | 12 | 3 | 49.7 (2.9) |
T0 Mean (SD) | T1 Mean (SD) | ||
---|---|---|---|
System 2P | Maxilla | 51.25 (4.39) | 67.32 (5.24) |
Mandible | 56.83 (6.75) | 75.89 (7.21) | |
Dura-Vit 3P | Maxilla | 68.94 (7.12) | 70.16 (5.38) |
Mandible | 77.98 (5.74) | 79.47 (6.82) |
System 2P Mean (SD) | Dura-Vit 3P Mean (SD) | p-Value | |
---|---|---|---|
Palatal/lingual base | |||
T1 | 2.77 (1.97) | 2.25 (1.21) | 0.421 |
T2 | 2.21 (1.85) | 2.19 (1.01) | 0.972 |
T2-T1 | −0.56 (0.62) | −0.06 (0.46) | 0.026 * |
Palatal/lingual medial | |||
T1 | 3.08 (2.46) | 2.59 (1.84) | 0.558 |
T2 | 2.93 (2.44) | 2.96 (1.51) | 0.643 |
T2-T1 | −0.15 (0.66) | 0.37 (0.41) | 0.022 * |
Palatal/lingual apex | |||
T1 | 4.07 (2.65) | 4.25 (2.16) | 0.846 |
T2 | 4.01 (2.60) | 4.47 (2.06) | 0.531 |
T2-T1 | −0.06 (0.55) | 0.22 (0.26) | 0.108 |
Vestibular base | |||
T1 | 1.57 (1.27) | 1.46 (1.41) | 0.833 |
T2 | 1.02 (1.04) | 1.43 (1.14) | 0.348 |
T2-T1 | −0.55 (0.48) | −0.03 (0.56) | 0.016 * |
Vestibular medial | |||
T1 | 3.74 (1.16) | 3.01 (1.28) | 0.133 |
T2 | 3.02 (1.46) | 2.98 (1.08) | 0.937 |
T2-T1 | −0.72 (0.70) | −0.02 (0.92) | 0.035 * |
Vestibular apex | |||
T1 | 5.32 (2.93) | 4.87 (2.62) | 0.679 |
T2 | 5.07 (1.32) | 4.83 (1.44) | 0.655 |
T2-T1 | −0.25 (0.53) | −0.04 (0.83) | 0.437 |
Vertical gap gap | |||
T1 | 6.12 (3.21) | 5.09 (3.82) | 0.454 |
T2 | 2.25 (1.59) | 1.02 (1.47) | 0.132 |
T2-T1 | −3.87 (0.88) | −4.07 (0.19) | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassi, R.; Silva, F.F.V.e.; Musella, G.; Pettini, F.; Camolesi, G.C.V.; Coppini, M.; Cantore, S. Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT). Dent. J. 2025, 13, 78. https://doi.org/10.3390/dj13020078
Grassi R, Silva FFVe, Musella G, Pettini F, Camolesi GCV, Coppini M, Cantore S. Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT). Dentistry Journal. 2025; 13(2):78. https://doi.org/10.3390/dj13020078
Chicago/Turabian StyleGrassi, Roberta, Fábio França Vieira e Silva, Gennaro Musella, Francesco Pettini, Gisela Cristina Vianna Camolesi, Martina Coppini, and Stefania Cantore. 2025. "Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT)" Dentistry Journal 13, no. 2: 78. https://doi.org/10.3390/dj13020078
APA StyleGrassi, R., Silva, F. F. V. e., Musella, G., Pettini, F., Camolesi, G. C. V., Coppini, M., & Cantore, S. (2025). Bone Remodeling Around Implants with Different Macro-Design Placed in Post-Extraction Sockets: A Cone-Beam Computed Tomography (CBCT) Randomized Controlled Clinical Trial (RCT). Dentistry Journal, 13(2), 78. https://doi.org/10.3390/dj13020078