Accuracy of One-Piece vs. Segmented Three-Dimensional Printed Transfer Trays for Indirect Bracket Placement
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zachrisson, B.U.; Brobakken, B.O. Clinical comparison of direct versus indirect bonding with different bracket types and adhesives. Am. J. Orthod. 1978, 74, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Hodge, T.; Dhopatkar, A.; Rock, W.; Spary, D. A randomized clinical trial comparing the accuracy of direct versus indirect bracket placement. J. Orthod. 2004, 31, 132–137. [Google Scholar] [CrossRef]
- Li, Y.; Mei, L.; Wei, J.; Yan, X.; Zhang, X.; Zheng, W.; Li, Y. Effectiveness, efficiency and adverse effects of using direct or indirect bonding technique in orthodontic patients: A systematic review and meta-analysis. BMC Oral Health 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.; Cohen, M.; Gianelly, A.A.; Dietz, V.S. A universal direct bonding system for both metal and plastic brackets. Am. J. Orthod. 1972, 62, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Layman, B. Digital bracket placement for indirect bonding. JCO 2019, 53, 387–396. [Google Scholar] [PubMed]
- Menini, A.; Cozzani, M.; Sfondrini, M.F.; Scribante, A.; Cozzani, P.; Gandini, P. A 15-month evaluation of bond failures of orthodontic brackets bonded with direct versus indirect bonding technique: A clinical trial. Prog. Orthod. 2014, 15, 70. [Google Scholar] [CrossRef]
- Yıldırım, K.; Saglam-Aydinatay, B. Comparative assessment of treatment efficacy and adverse effects during nonextraction orthodontic treatment of Class I malocclusion patients with direct and indirect bonding: A parallel randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 26–34.e1. [Google Scholar] [CrossRef]
- Wendl, B.; Droschl, H.; Muchitsch, P. Indirect bonding—A new transfer method. Eur. J. Orthod. 2008, 30, 100–107. [Google Scholar] [CrossRef]
- McLaughlin, R.P.; Bennett, J.C. Bracket placement with the preadjusted appliance. J. Clin. Orthod. 1995, 29, 302–311. [Google Scholar]
- Castilla, A.E.; Crowe, J.J.; Moses, J.R.; Wang, M.; Ferracane, J.L.; Covell Jr, D.A. Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques. Angle Orthod. 2014, 84, 607–614. [Google Scholar] [CrossRef]
- Mohlhenrich, S.C.; Alexandridis, C.; Peters, F.; Kniha, K.; Modabber, A.; Danesh, G.; Fritz, U. Three-dimensional evaluation of bracket placement accuracy and excess bonding adhesive depending on indirect bonding technique and bracket geometry: An in-vitro study. Head Face Med. 2020, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Ciuffolo, F.; Epifania, E.; Duranti, G.; De Luca, V.; Raviglia, D.; Rezza, S.; Festa, F. Rapid prototyping: A new method of preparing trays for indirect bonding. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Son, K.-H.; Park, J.-W.; Lee, D.-K.; Kim, K.-D.; Baek, S.-H. New virtual orthodontic treatment system for indirect bonding using the stereolithographic technique. Korean J. Orthod. 2011, 41, 138–146. [Google Scholar] [CrossRef]
- Yun, L.; Hong-ming, G. A computer-aided indirect bonding system for lingual brackets. Beijing J. Stomatol. 2009, 17, 220–222. [Google Scholar]
- Niu, Y.; Zeng, Y.; Zhang, Z.; Xu, W.; Xiao, L. Comparison of the transfer accuracy of two digital indirect bonding trays for labial bracket bonding. Angle Orthod. 2021, 91, 67–73. [Google Scholar] [CrossRef]
- McLaughlin, R.P.; Bennett, J.C. Finishing and detailing with a preadjusted appliance system. J. Clin. Orthod. 1991, 4, 251–264. [Google Scholar]
- Carlson, S.K.; Johnson, E. Bracket positioning and resets: Five steps to align crowns and roots consistently. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 76–80. [Google Scholar] [CrossRef]
- Meyer, M.; Nelson, G. Preadjusted edgewise appliances: Theory and practice. Am. J. Orthod. 1978, 73, 485–498. [Google Scholar] [CrossRef]
- Khan, H.; Mheissen, S.; Iqbal, A.; Jafri, A.R.; Alam, M.K. Bracket Failure in Orthodontic Patients: The Incidence and the Influence of Different Factors. BioMed Res. Int. 2022, 2022, 5128870. [Google Scholar] [CrossRef]
- Shpack, N.; Geron, S.; Floris, I.; Davidovitch, M.; Brosh, T.; Vardimon, A.D. Bracket placement in lingual vs labial systems and direct vs indirect bonding. Angle Orthod. 2007, 77, 509–517. [Google Scholar] [CrossRef]
- Nichols, D.A.; Gardner, G.; Carballeyra, A.D. Reproducibility of bracket positioning in the indirect bonding technique. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Dalessandri, D.; Dalessandri, M.; Bonetti, S.; Visconti, L.; Paganelli, C. Effectiveness of an indirect bonding technique in reducing plaque accumulation around braces. Angle Orthod. 2012, 82, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Nojima, L.I.; Araújo, A.S.; Alves, M. Indirect orthodontic bonding—A modified technique for improved efficiency and precision. Dent. Press J. Orthod. 2015, 20, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.R.; Cope, J.B. (Eds.) Digital technology for indirect bonding. In Seminars in Orthodontics; WB Saunders: Philadelphia, PA, USA; Elsevier: Amsterdam, The Netherlands, 2018; Volume 24, pp. 451–460. [Google Scholar]
- Spitz, A.; Gribel, B.F.; Marassi, C. CAD/CAM Technology for digital indirect bonding. J. Clin. Orthod. 2018, 52, 621–628. [Google Scholar]
- Kim, J.; Chun, Y.-S.; Kim, M. Accuracy of bracket positions with a CAD/CAM indirect bonding system in posterior teeth with different cusp heights. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 298–307. [Google Scholar] [CrossRef]
- Chaudhary, V.; Batra, P.; Sharma, K.; Raghavan, S.; Gandhi, V.; Srivastava, A. A comparative assessment of transfer accuracy of two indirect bonding techniques in patients undergoing fixed mechanotherapy: A randomised clinical trial. J. Orthod. 2021, 48, 13–23. [Google Scholar] [CrossRef]
- Grünheid, T.; Lee, M.S.; Larson, B.E. Transfer accuracy of vinyl polysiloxane trays for indirect bonding. Angle Orthod. 2016, 86, 468–474. [Google Scholar] [CrossRef]
- Schmid, J.; Brenner, D.; Recheis, W.; Hofer-Picout, P.; Brenner, M.; Crismani, A.G. Transfer accuracy of two indirect bonding techniques—An in vitro study with 3D scanned models. Eur. J. Orthod. 2018, 40, 549–555. [Google Scholar] [CrossRef]
- Arnold, C.; Monsees, D.; Hey, J.; Schweyen, R. Surface quality of 3D-printed models as a function of various printing parameters. Materials 2019, 12, 1970. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.-B.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef]
- Stasinopoulos, D.; Papageorgiou, S.N.; Kirsch, F.; Daratsianos, N.; Jäger, A.; Bourauel, C. Failure patterns of different bracket systems and their influence on treatment duration: A retrospective cohort study. Angle Orthod. 2018, 88, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Choi, S.; Myung, J.Y.; Chun, Y.S.; Kim, M. Impact of orthodontic brackets on the intraoral scan data accuracy. BioMed Res. Int. 2016, 2016, 5075182. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J.; Kee, Y.-J.; Lee, K.C. Effect of the presence of orthodontic brackets on intraoral scans. Angle Orthod. 2021, 91, 98–104. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | Full | Segmented | p-Value |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
CG15 | 2.6 (0.0) | 2.6 (0.0) | 2.6 (0.0) | 1.00 |
CI15 | 3.7 (0.03) | 3.7 (0.0) | 3.7 (0.0) | 0.13 |
CM15 | 2.6 (0.0) | 2.6 (0.0) | 2.6 (0.0) | 1.00 |
CD15 | 3.8 (0.0) | 3.8 (0.0) | 3.8 (0.0) | 1.00 |
CG14 | 3.3 (0.0) | 3.3 (0.0) | 3.3 (0.0) | 1.00 |
CI14 | 4.1 (0.02) | 4.1 (0.0) | 4.1 (0.0) | 1.00 |
CM14 | 3.3 (0.0) | 3.3 (0.0) | 3.3 (0.0) | 0.37 |
CD14 | 3.7 (0.0) | 3.7 (0.0) | 3.7 (0.0) | 1.00 |
CG13 | 3.7 (0.0) | 3.7 (0.0) | 3.7 (0.0) | 1.00 |
CI13 | 5.1 (0.0) | 5.2 (0.0) | 5.0 (0.0) | 1.00 |
CM13 | 3.2 (0.0) | 3.2 (0.0) | 3.2 (0.0) | 1.00 |
CD13 | 5.1 (0.0) | 5.1 (0.0) | 5.1 (0.0) | 1.00 |
CG12 | 6.1 (0.02) | 6.1 (0.0) | 6.1 (0.0) | 1.00 |
CI12 | 4.2 (0.03) | 4.1 (0.0) | 4.0 (0.0) | 0.13 |
CM12 | 3.2 (0.0) | 3.2 (0.0) | 3.2 (0.0) | 1.00 |
CD12 | 3.5 (0.0) | 3.4 (0.0) | 3.4 (0.0) | <0.001 * |
CG11 | 5.4 (0.0) | 5.4 (0.0) | 5.4 (0.0) | 1.00 |
CI11 | 4.5 (0.02) | 4.5 (0.0) | 4.5 (0.0) | 0.37 |
CM11 | 4.2 (0.0) | 4.2 (0.02) | 4.2 (0.0) | 1.00 |
CD11 | 3.7 (0.0) | 3.7 (0.0) | 3.7 (0.0) | 1.00 |
CG21 | 6.5 (0.0) | 6.5 (0.0) | 6.5 (0.0) | 1.00 |
CI21 | 4.6 (0.02) | 4.6 (0.0) | 4.6 (0.0) | 0.37 |
CM21 | 4.4 (0.0) | 4.4 (0.02) | 4.4 (0.0) | 0.37 |
CD21 | 4.1 (0.0) | 4.1 (0.0) | 4.1 (0.0) | <0.001 * |
CG22 | 5.4 (0.0) | 5.4 (0.0) | 5.4 (0.0) | 1.00 |
CI22 | 4.4 (0.02) | 4.4 (0.02) | 4.4 (0.0) | 0.23 |
CM22 | 3.3 (0.02) | 3.3 (0.02) | 3.3 (0.0) | 0.38 |
CD22 | 3.6 (0.02) | 3.6 (0.0) | 3.6 (0.0) | 1.00 |
CG23 | 3.1 (0.0) | 3.1 (0.0) | 3.1 (0.0) | 1.00 |
CI23 | 5.3 (0.0) | 5.3 (0.0) | 5.3 (0.0) | 1.00 |
CM23 | 3.6 (0.0) | 3.6 (0.0) | 3.6 (0.0) | 1.00 |
CD23 | 4.3 (0.0) | 4.3 (0.0) | 4.3 (0.0) | 1.00 |
CG24 | 3.3 (0.0) | 3.3 (0.0) | 3.3 (0.0) | 1.00 |
CI24 | 3.8 (0.0) | 3.8 (0.0) | 3.8 (0.0) | 1.00 |
CM24 | 3.7 (0.0) | 3.7 (0.0) | 3.7 (0.0) | 1.00 |
CD24 | 4.0 (0.02) | 4.1 (0.0) | 4.0 (0.0) | 0.39 |
CG25 | 2.5 (0.0) | 2.7 (0.0) | 2.5 (0.0) | 0.10 |
CI25 | 3.2 (0.02) | 3.3 (0.0) | 3.3 (0.0) | <0.001 * |
CM25 | 3.0 (0.00) | 3.0 (0.0) | 3.0 (0.0) | 0.10 |
CD25 | 3.0 (0.00) | 3.0 (0.0) | 3.0 (0.0) | 0.10 |
Parameter | Control | Full | Segmented | p-Value |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
CM15 | 4.0 (0.0) | 4.0 (0.0) | 4.0 (0.0) | 0.10 |
CD15 | 2.5 (0.0) | 2.5 (0.0) | 2.5 (0.0) | 1.00 |
CG14 | 2.6 (0.0) | 2.6 (0.0) | 2.6 (0.0) | 0.10 |
CI14 | 3.9 (0.0) | 3.9 (0.0) | 3.9 (0.0) | 1.00 |
CM14 | 4.0 (0.0) | 4.0 (0.0) | 4.0 (0.0) | 1.00 |
CD14 | 3.7 (0.02) | 3.7 (0.0) | 3.7 (0.0) | 0.37 |
CG13 | 3.5 (0.0) | 3.5 (0.0) | 3.5 (0.0) | 1.00 |
CI13 | 4.5 (0.0) | 4.5 (0.0) | 4.5 (0.0) | 0.10 |
CM13 | 3.6 (0.1) | 3.6 (0.0) | 3.6 (0.0) | 0.13 |
CD13 | 4.1 (0.0) | 4.1 (0.0) | 4.1 (0.0) | 1.00 |
CG12 | 3.4 (0.0) | 3.4 (0.0) | 3.4 (0.0) | 1.00 |
CI12 | 3.4 (0.0) | 3.4 (0.0) | 3.4 (0.0) | 1.00 |
CM12 | 3.5 (0.0) | 3.5 (0.0) | 3.5 (0.0) | 1.00 |
CD12 | 3.5 (0.0) | 3.5 (0.0) | 3.5 (0.0) | 1.00 |
CG11 | 4.6 (0.0) | 4.6 (0.0) | 4.6 (0.0) | 1.00 |
CI11 | 4.4 (0.0) | 4.4 (0.0) | 4.4 (0.0) | 1.00 |
CM11 | 4.5 (0.0) | 4.5 (0.0) | 4.5 (0.0) | 1.00 |
CD11 | 4.5 (0.0) | 4.5 (0.0) | 4.5 (0.0) | 1.00 |
CG21 | 3.4 (0.03) | 3.4 (0.0) | 3.4 (0.0) | 0.37 |
CI21 | 4.7 (0.0) | 4.7 (0.0) | 4.7 (0.0) | 1.00 |
CM21 | 4.2 (0.0) | 4.2 (0.0) | 4.2 (0.0) | 1.00 |
CD21 | 4.5 (0.0) | 4.5 (0.0) | 4.5 (0.0) | 1.00 |
CG22 | 3.4 (0.02) | 3.4 (0.0) | 3.4 (0.0) | 0.37 |
CI22 | 3.1 (0.0) | 3.1 (0.0) | 3.1 (0.0) | 1.00 |
CM22 | 3.2 (0.0) | 3.2 (0.0) | 3.2 (0.0) | 1.00 |
CD22 | 3.5 (0.0) | 3.5 (0.0) | 3.5 (0.0) | 1.00 |
CG23 | 3.0 (0.02) | 3.0 (0.0) | 3.0 (0.0) | 0.37 |
CI23 | 3.4 (0.3) | 3.8 (0.0) | 3.8 (0.0) | 0.15 |
CM23 | 3.4 (0.0) | 3.4 (0.0) | 3.4 (0.0) | 1.00 |
CD23 | 3.9 (0.0) | 3.9 (0.0) | 3.9 (0.0) | 1.00 |
CG24 | 2.5 (0.0) | 2.5 (0.0) | 2.5 (0.0) | 1.00 |
CI24 | 3.4 (0.0) | 3.4 (0.0) | 3.4 (0.0) | 1.00 |
CM24 | 3.7 (0.0) | 3.7 (0.0) | 3.7 (0.0) | 1.00 |
CD24 | 4.0 (0.02) | 4.0 (0.0) | 4.0 (0.0) | 0.37 |
CG25 | 2.2 (0.0) | 2.2 (0.0) | 2.2 (0.0) | 1.00 |
CI25 | 3.5 (0.02) | 3.5 (0.0) | 3.5 (0.0) | 0.39 |
CM25 | 3.5 (0.0) | 3.5 (0.0) | 3.5 (0.0) | 1.00 |
CD25 | 3.3 (0.0) | 3.3 (0.0) | 3.3 (0.0) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyammahi, B.; Khamis, A.H.; Ghoneima, A. Accuracy of One-Piece vs. Segmented Three-Dimensional Printed Transfer Trays for Indirect Bracket Placement. Dent. J. 2024, 12, 352. https://doi.org/10.3390/dj12110352
Alyammahi B, Khamis AH, Ghoneima A. Accuracy of One-Piece vs. Segmented Three-Dimensional Printed Transfer Trays for Indirect Bracket Placement. Dentistry Journal. 2024; 12(11):352. https://doi.org/10.3390/dj12110352
Chicago/Turabian StyleAlyammahi, Bayan, Amar Hassan Khamis, and Ahmed Ghoneima. 2024. "Accuracy of One-Piece vs. Segmented Three-Dimensional Printed Transfer Trays for Indirect Bracket Placement" Dentistry Journal 12, no. 11: 352. https://doi.org/10.3390/dj12110352
APA StyleAlyammahi, B., Khamis, A. H., & Ghoneima, A. (2024). Accuracy of One-Piece vs. Segmented Three-Dimensional Printed Transfer Trays for Indirect Bracket Placement. Dentistry Journal, 12(11), 352. https://doi.org/10.3390/dj12110352