Novel SrSnO3/AgBr Heterojunction for Dye Degradation Under Simulated Sunlight
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.2. XPS Quantitative Surface Analysis
2.3. Evaluation of the Catalytic Activity
2.4. I-T and EIS
2.5. Mechanism of Photocatalytic Reactions
3. Conclusions
4. Experimental
4.1. Materials
4.2. Preparation of SrSnO3
4.3. Preparation of SrSnO3/AgBr
4.4. Characterizations and Activity Testing of Photocatalysts
4.5. Electrochemical Testing Experiment

Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- do Rosário, L.O.; Silva, U.C.; Tranquilin, R.L.; Teodoro, M.D.; Melo, M.C.N.; Motta, F.V.; Bomio, M.R.D. Development and application of a novel CaTiO3/NiO/AgBr ternary heterostructure for the treatment of highly concentrated dyes and its performance as an antimicrobial agent. Ceram. Int. 2025, 51, 43156–43177. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Chen, P.; Liang, Y.; Xu, Y.; Zhao, Y.; Song, S. Synchronous photosensitized degradation of methyl orange and methylene blue in water by visible-light irradiation. J. Mol. Liq. 2021, 334, 116159. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Zenebe, A.; Dikamu, M.; Ezez, D. Synthesis of Chitosan-Natrolite modified magnetite nanocomposite (Chio/Fe3O4@NAT) for photocatalytic degradation of methyl orange using response surface model (RSM). Sci. Afr. 2025, 30, e03004. [Google Scholar] [CrossRef]
- Faisal, M.; Rashed, M.A.; Ahmed, J.; Alsaiari, M.; Jalalah, M.; Alsareii, S.A.; Harraz, F.A. Ag nanoparticle-decorated chitosan/SrSnO3 nanocomposite for ultrafast elimination of antibiotic linezolid and methylene blue. Environ. Sci. Pollut. Res. 2022, 29, 52900–52914. [Google Scholar] [CrossRef]
- Xu, H.; Yan, J.; Xu, Y.; Song, Y.; Li, H.; Xia, J.; Huang, C.; Wan, H. Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B Environ. 2013, 129, 182–193. [Google Scholar] [CrossRef]
- Guo, H.; Niu, C.-G.; Wen, X.-J.; Zhang, L.; Liang, C.; Zhang, X.-G.; Guan, D.-L.; Tang, N.; Zeng, G.-M. Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: Performance and mechanism insight. J. Colloid Interface Sci. 2018, 513, 852–865. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, Y.; Fan, C. Novel visible-light AgBr/Ag3PO4 hybrids photocatalysts with surface plasma resonance effects. J. Solid State Chem. 2013, 202, 51–56. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Wang, H.; Han, M.; Guan, W.; Huang, H.; Liu, Y.; Kang, Z. Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J. Hazard. Mater. 2018, 349, 111–118. [Google Scholar] [CrossRef]
- Zheng, X.-h.; Chen, W.; Xu, M.-n.; Cai, C.-b.; Yang, F.-e. Photocatalytic properties of BiOBr/BiOCl/AgBr ternary photocatalysts for degradation of RhB dye. J. Nanoparticle Res. 2023, 25, 96. [Google Scholar] [CrossRef]
- Baba, E.; Kan, D.; Yamada, Y.; Haruta, M.; Kurata, H.; Kanemitsu, Y.; Shimakawa, Y. Optical and transport properties of transparent conducting La-doped SrSnO3 thin films. J. Phys. D Appl. Phys. 2015, 48, 455106. [Google Scholar] [CrossRef]
- Zhang, W.F.; Tang, J.; Ye, J. Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chem. Phys. Lett. 2006, 418, 174–178. [Google Scholar] [CrossRef]
- Teixeira, A.R.F.A.; de Meireles Neris, A.; Longo, E.; de Carvalho Filho, J.R.; Hakki, A.; Macphee, D.; dos Santos, I.M.G. SrSnO3 perovskite obtained by the modified Pechini method—Insights about its photocatalytic activity. J. Photochem. Photobiol. A Chem. 2019, 369, 181–188. [Google Scholar] [CrossRef]
- Junploy, P.; Thongtem, T.; Thongtem, S.; Phuruangrat, A.; Liu, T. Decolorization of Methylene Blue by Ag/SrSnO3 Composites under Ultraviolet Radiation. J. Nanomater. 2014, 2014, 261395. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, M.; Wang, Q.; Sun, X.; Lan, J. One-step reduction synthesis of Ag/Ag3PO4/AgBr sub-micron composites for enhanced visible photocatalytic degradation of methyl orange. Mater. Res. Bull. 2018, 104, 149–154. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, P.; Liang, Y.; Zhao, M.; Jiang, Y.; Wang, G.; Zou, P.; Zeng, J.; Zhang, Y.; Wang, Y. Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities. J. Colloid Interface Sci. 2019, 536, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Ma, B.; Liu, K.; Pu, F.; Yang, Z.; Yang, S. Templated-synthesis of hierarchical Ag-AgBr hollow cubes with enhanced visible-light-responsive photocatalytic activity. Appl. Surf. Sci. 2018, 443, 492–496. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Zhou, D.; Dong, S. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation. J. Mol. Liq. 2018, 262, 194–203. [Google Scholar] [CrossRef]
- Gu, R.; Huang, Z.; Lv, L.; Zhang, J.; Feng, S.; Xu, Y.; Xie, M. Functionalized fabric with Ag/AgBr/Fe2O3 for optimized outdoor applications. J. Mater. Sci. Technol. 2025, 227, 32–40. [Google Scholar] [CrossRef]
- Kaynar, Ü.H.; Coban, M.B.; Madkhli, A.Y.; Ayvacikli, M.; Can, N. Phase transition and luminescence characteristics of dysprosium doped strontium stannate phosphor synthesized using hydrothermal method. Ceram. Int. 2023, 49, 11641–11646. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, M.; Yu, M.; Zhang, T.; Wang, J.; Bi, J.; Dong, F. Efficient photo-degradation of antibiotics by waste eggshells derived AgBr-CaCO3 heterostructure under visible light. Sep. Purif. Technol. 2023, 314, 123573. [Google Scholar] [CrossRef]
- Ghubish, Z.; Kamal, R.; Mahmoud, H.R.; Saif, M.; Hafez, H.; El-Kemary, M. Photocatalytic activation of Ag-doped SrSnO3 nanorods under visible light for reduction of p-nitrophenol and methylene blue mineralization. J. Mater. Sci. Mater. Electron. 2022, 33, 24322–24339. [Google Scholar] [CrossRef]
- Huang, S.; Yuan, H.; Dong, W.; Wu, X.; Wang, G. Visible-light-driven removal of AO7 by peroxymonosulfate-assisted Z-scheme AgBr/LaFeO3 heterojunction vis accelerated electronic transfer. Mater. Sci. Semicond. Process. 2023, 160, 107414. [Google Scholar] [CrossRef]
- Yasin, U.A.A.; Ahmed, M.M.; Zhang, J.; Jia, Z.; Guo, T.; Zhao, R.; Shi, J.; Du, J. Engineering the band structure of CuO via decoration with AgBr to enhance its photocatalytic degradation performance. J. Mater. Sci. 2023, 58, 7333–7346. [Google Scholar] [CrossRef]
- Alammar, T.; Hamm, I.; Grasmik, V.; Wark, M.; Mudring, A.-V. Microwave-Assisted Synthesis of Perovskite SrSnO3 Nanocrystals in Ionic Liquids for Photocatalytic Applications. Inorg. Chem. 2017, 56, 6920–6932. [Google Scholar] [CrossRef]
- Honorio, L.M.C.; Oliveira, A.L.M.d.; Silva Filho, E.C.d.; Osajima, J.A.; Hakki, A.; Macphee, D.E.; Santos, I.M.G.d. Supporting the photocatalysts on ZrO2: An effective way to enhance the photocatalytic activity of SrSnO3. Appl. Surf. Sci. 2020, 528, 146991. [Google Scholar] [CrossRef]
- Stranick, M.A.; Moskwa, A. SnO2 by XPS. Surf. Sci. Spectra 1993, 2, 50–54. [Google Scholar] [CrossRef]
- Barreca, D.; Garon, S.; Tondello, E.; Zanella, P. SnO2 Nanocrystalline Thin Films by XPS. Surf. Sci. Spectra 2000, 7, 81–85. [Google Scholar] [CrossRef]
- Alammar, T.; Slowing, I.I.; Anderegg, J.; Mudring, A.V. Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr1−xBaxSnO3 Perovskite for Photocatalytic Applications. ChemSusChem 2017, 10, 3387–3401. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Kim, D.W.; Cho, I.S.; Park, S.; Shin, S.S.; Seo, S.W.; Hong, K.S. Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. Int. J. Hydrogen Energy 2012, 37, 10557–10563. [Google Scholar] [CrossRef]
- Aragón, F.H.; Gonzalez, I.; Coaquira, J.A.H.; Hidalgo, P.; Brito, H.F.; Ardisson, J.D.; Macedo, W.A.A.; Morais, P.C. Structural and Surface Study of Praseodymium-Doped SnO2 Nanoparticles Prepared by the Polymeric Precursor Method. J. Phys. Chem. C 2015, 119, 8711–8717. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Gao, D.; Wang, Y. Effect of oxide defect on photocatalytic properties of MSnO3 (M = Ca, Sr, and Ba) photocatalysts. Appl. Catal. B Environ. 2019, 243, 428–437. [Google Scholar] [CrossRef]
- Chen, Y.; Pu, S.; Wang, D.; Zhang, Y.; Wan, G.; Zhao, Q.; Sun, Y. Facile synthesis of AgBr@ZIF-8 hybrid photocatalysts for degradation of Rhodamine B. J. Solid State Chem. 2023, 321, 123857. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, J.; Shi, H. Double-vacancy-induced polarization and intensified built-in electric field in S-Scheme heterojunction for removal of antibiotics and Cr (VI). Chin. J. Catal. 2025, 76, 50–64. [Google Scholar] [CrossRef]
- Zhang, L.; Xuan, Y.; Wang, Q.; Zhao, D.; Liu, X. Synergistic Effect of Photochromism and Vacancy Engineering within Z-Scheme Doped BiOBr-BaTiO3 Heterostructures Promoting CO2 Photocatalysis. Adv. Funct. Mater. 2025, e14966. [Google Scholar] [CrossRef]
- de Sousa Filho, I.A.; Arana, L.R.; Doungmo, G.; Grisolia, C.K.; Terrashke, H.; Weber, I.T. SrSnO3/g-C3N4 and sunlight: Photocatalytic activity and toxicity of degradation byproducts. J. Environ. Chem. Eng. 2020, 8, 103633. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Lin, H.; Xu, B.; Chen, S. Ag/AgBr/g-C3N4: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light. Mater. Res. Bull. 2013, 48, 3873–3880. [Google Scholar] [CrossRef]
- Gómez-Solís, C.; Oliva, J.; Diaz-Torres, L.A.; Bernal-Alvarado, J.; Reyes-Zamudio, V.; Abidov, A.; Torres-Martinez, L.M. Efficient photocatalytic activity of MSnO3 (M: Ca, Ba, Sr) stannates for photoreduction of 4-nitrophenol and hydrogen production under UV light irradiation. J. Photochem. Photobiol. A Chem. 2019, 371, 365–373. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, J.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40, 1119–1126. [Google Scholar] [CrossRef]
- Lin, H.; Cao, J.; Luo, B.; Xu, B.; Chen, S. Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation. Chin. Sci. Bull. 2012, 57, 2901–2907. [Google Scholar] [CrossRef]
- Adeel, M.; Saeed, M.; Khan, I.; Muneer, M.; Akram, N. Synthesis and Characterization of Co–ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega 2021, 6, 1426–1435. [Google Scholar] [CrossRef]
- Wang, D.; Duan, Y.; Luo, Q.; Li, X.; Bao, L. Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method. Desalination 2011, 270, 174–180. [Google Scholar] [CrossRef]
- Wang, X.J.; Yang, W.Y.; Li, F.T.; Zhao, J.; Liu, R.H.; Liu, S.J.; Li, B. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. J. Hazard. Mater. 2015, 292, 126–136. [Google Scholar] [CrossRef]
- Tun, P.; Wang, K.; Naing, H.; Wang, J.; Zhang, G. Facile preparation of visible-light-responsive kaolin-supported Ag@AgBr composites and their enhanced photocatalytic properties. Appl. Clay Sci. 2019, 175, 76–85. [Google Scholar] [CrossRef]
- Lin, C.; Wang, H.; Liu, S.; Li, C.; Chu, B.; Yan, Q. Preparation of magnetic Co0.5Zn0.5Fe2O4/AgBr hybrids for the visible-light-driven degradation of methyl orange. Mater. Sci. Semicond. Process. 2018, 73, 67–71. [Google Scholar] [CrossRef]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos. Part B Eng. 2020, 183, 107712. [Google Scholar] [CrossRef]
- Khorasanizadeh, M.H.; Monsef, R.; Salavati-Niasari, M.; Majdi, H.S.; Al-Azzawi, W.K.; Hashim, F.S. Schiff-base ligand assisted synthesis of DyVO4/AgBr nanocomposites, characterization, and investigation of photocatalytic activity over organic dye contaminants. Arab. J. Chem. 2023, 16, 105020. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian-Wu, S.-H.; Liu, S.-M.; Zhong, Y.; Hu, C.-H.; Wang, D.-H.; Liu, H.; Xiong, Z.-Y.; Sang, T.; Zeng, B.-S.; Zhang, Q. Novel SrSnO3/AgBr Heterojunction for Dye Degradation Under Simulated Sunlight. Inorganics 2025, 13, 406. https://doi.org/10.3390/inorganics13120406
Tian-Wu S-H, Liu S-M, Zhong Y, Hu C-H, Wang D-H, Liu H, Xiong Z-Y, Sang T, Zeng B-S, Zhang Q. Novel SrSnO3/AgBr Heterojunction for Dye Degradation Under Simulated Sunlight. Inorganics. 2025; 13(12):406. https://doi.org/10.3390/inorganics13120406
Chicago/Turabian StyleTian-Wu, Si-Hao, Shi-Mei Liu, Yan Zhong, Chao-Hao Hu, Dian-Hui Wang, Hao Liu, Zhang-Yi Xiong, Tian Sang, Bing-Sen Zeng, and Qi Zhang. 2025. "Novel SrSnO3/AgBr Heterojunction for Dye Degradation Under Simulated Sunlight" Inorganics 13, no. 12: 406. https://doi.org/10.3390/inorganics13120406
APA StyleTian-Wu, S.-H., Liu, S.-M., Zhong, Y., Hu, C.-H., Wang, D.-H., Liu, H., Xiong, Z.-Y., Sang, T., Zeng, B.-S., & Zhang, Q. (2025). Novel SrSnO3/AgBr Heterojunction for Dye Degradation Under Simulated Sunlight. Inorganics, 13(12), 406. https://doi.org/10.3390/inorganics13120406

