Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator
Abstract
1. Introduction
2. Experiment Setup
3. Fabrication and Properties of TiO2/SiO2 FMR
3.1. Fabrication of the TiO2/SiO2 FMR
3.2. Properties of TiO2/SiO2 FMR
4. Results and Discussion
4.1. Output Performance of the MLL
4.2. Comparison of MLL Performance in TiO2/SiO2 FMR vs. SiO2 MR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J.M. Real-time full-field characterization of transient dissipative soliton dynamics in a mode locked laser. Nat. Photonics 2018, 12, 221–227. [Google Scholar] [CrossRef]
- Torres-Company, V.; Schroder, J.; Fulop, A.; Mazur, M.; Lundberg, L.; Helgason, O.B.; Karlsson, M.; Andrekson, P.A. Laser frequency combs for coherent optical communications. J. Light. Technol. 2019, 37, 1663–1670. [Google Scholar] [CrossRef]
- Maniewski, P.; Brunzell, M.; Barrett, L.; Harvey, C.M.; Pasiskevicius, V.; Laurell, F. Er-doped silica fiber laser made by powder-based additive manufacturing. Optica 2023, 10, 1280–1286. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zhang, T. Passively Q-Switched and Mode-Locked Er3+-Doped Ring Fiber Laser with Pulse Width of Hundreds of Picoseconds. Photonics 2021, 8, 560. [Google Scholar] [CrossRef]
- Diddams, S.A.; Vahala, K.; Udem, T. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 2020, 369, 267. [Google Scholar] [CrossRef]
- Feng, N.; Zhou, R.; Wang, S.; Zhang, R.; Nakkeeran, K. Progressive pulse dynamics in a mode-locked fiber laser. Opt. Laser Technol. 2024, 168, 109827. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Tang, X.; Liu, Q.; Zou, H. Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror. Photonics 2023, 10, 261. [Google Scholar] [CrossRef]
- Qiu, J.; Lv, Z.; Li, X.; Wang, S. Co-existence of watt-level dissipative solitons and synchronous dual-wavelength mode-locked pulses in Yb fiber laser. IEEE Photonics Technol. Lett. 2023, 35, 625–628. [Google Scholar] [CrossRef]
- Deng, D.; Zhang, H.; Gong, Q.; He, L.; Li, D.; Gong, M. Energy scalability of the dissipative soliton in an all-normal-dispersion fiber laser with nonlinear amplifying loop mirror. Opt. Laser Technol. 2020, 125, 106010. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Wang, Z.; Shen, C. Narrow bandwidth mode-locked fiber laser with the GIMF-based saturable absorber. Opt. Fiber Technol. 2024, 87, 103906. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Kang, Z.; Yang, B.; Liu, J.; Wang, Y.; Tang, D.; Zhang, L.; Wang, K.; Yang, Y. Packaged ultrahigh-Q silica hollow microrod WGM resonator with simplified modes for nonlinear photonics. Opt. Laser Technol. 2025, 192, 113981. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Windeler, R.S. Super free spectral range tunable optical microbubble resonator. Opt. Lett. 2010, 35, 1866–1868. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, M.; Zhou, X.; Kan, C.; Shi, D. Performance-enhanced single-mode microlasers in an individual microwire covered by Ag nanowires. Opt. Laser Technol. 2022, 155, 108391. [Google Scholar] [CrossRef]
- Xu, K.; Wan, P.; Liu, M.; Tang, K.; Li, L.; He, T.; Shi, D.; Kan, C.; Jiang, M. High Q-factor and low threshold electrically pumped single-mode microlaser based on a single-microwire double-heterojunction device. ACS Photonics 2024, 11, 3276–3287. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Yang, X.; Ji, Y.; Xiong, B.; Du, Z.; Yang, X. Tunable laser absorption imaging for 2D gas measurement with an electronic rolling shutter camera. IEEE Photonics Technol. Lett. 2022, 34, 761–764. [Google Scholar] [CrossRef]
- Erushin, E.; Nyushkov, B.; Ivanenko, A.; Akhmathanov, A.; Shur, V.; Boyko, A.; Kostyukova, N.; Kolker, D. Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection. Laser Phys. Lett. 2021, 18, 116201. [Google Scholar] [CrossRef]
- Ghalanos, G.N.; Silver, J.M.; Bino, L.D.; Moroney, N.; Zhang, S.; Woodley, M.T. M.; Svela, A.Ø.; Haye, P.D. Kerr-Nonlinearity-Induced Mode-Splitting in Optical Microresonators. Phys. Rev. Lett. 2020, 124, 223901. [Google Scholar] [CrossRef]
- Chang, L.; Liu, S.; Bowers, J.E. Integrated optical frequency comb technologies. Nat. Photonics 2022, 16, 95–108. [Google Scholar] [CrossRef]
- Strekalov, D.V.; Marquardt, C.; Matsko, A.B.; Schwefel, H.G.L.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016, 18, 123002. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, S.K.; Lei, F.; Gianfreda, F.M.M.; Long, G.; Fan, S.; Nori, F.; Bender, C.M.; Yang, L. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar] [CrossRef]
- Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 2012, 3, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, W.; Chu, S.T.; Little, B.E.; Yang, Q.; Wang, L.; Hu, X.; Wang, L.; Wang, G.; Wang, Y.; et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics 2017, 4, 1677–1683. [Google Scholar] [CrossRef]
- Huang, X.; Guo, X.; Huang, X.; Peng, F.; Li, X.; Wei, Z.; Wang, Q. Highly Birefringence-Guided Microfiber Resonator for Ultra-High Repetition Rate Ultrashort Pulse. Laser Photonics Rev. 2024, 18, 2400166. [Google Scholar] [CrossRef]
- Kues, M.; Reimer, C.; Wetzel, B.; Roztocki, P.; Little, B.E.; Chu, S.T.; Hansson, T.; Viktorov, E.A.; Moss, D.J.; Morandotti, R. Passively mode-locked laser with an ultra-narrow spectral width. Nat. Photonics 2017, 11, 159–162. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Han, Y.; Chen, E.; Guo, P.; Zhang, W.; An, M.; Pan, Z.; Xu, Q.; Guo, X.; et al. High-performance γ-MnO2 Dual-Core, Pair-Hole Fiber for Ultrafast Photonics. Ultrafast Sci. 2023, 3, 0006. [Google Scholar] [CrossRef]
- Park, J.; Ozdemir, Ş.K.; Monifi, F.; Chadha, T.; Huang, S.H.; Biswas, P.; Yang, L. Titanium Dioxide Whispering Gallery Microcavities. Adv. Opt. Mater. 2014, 2, 711–717. [Google Scholar] [CrossRef]
- Silva, D.; Monteiro, C.S.; Silva, S.O.; Frazão, O.; Pinto, J.V.; Raposo, M.; Ribeiro, P.A.; Sério, S. Sputtering deposition of TiO2 thin film coatings for fiber optic sensors. Photonics 2022, 9, 342. [Google Scholar] [CrossRef]
- Li, G.; Fu, M.; Zheng, Y.; Guan, X. TiO2 microring resonators with high Q and compact footprint fabricated by a bottom-up method. Opt. Lett. 2020, 45, 5012–5015. [Google Scholar] [CrossRef]
- Wan, H.; Lu, Y.; Liang, Z.; Shen, Z.; Gu, P.; Hu, T.; Chen, J. Tunable, single-wavelength fiber laser based on hybrid microcavity functionalized by atomic layer deposition. J. Light. Technol. 2023, 41, 2513–2517. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, L.; Yang, W.; Hui, H.; Wang, J.; Xu, Q. Sol–gel preparation of a silica antireflective coating with enhanced hydrophobicity and optical stability in vacuum. Chin. Opt. Lett. 2014, 12, 071601. [Google Scholar]
- Lim, J.; Savchenkov, A.A.; Dale, E.; Liang, W.; Eliyahu, D.; Ilchenko, V.S.; Maleki, L.; Wong, C.W. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun. 2017, 8, 1338. [Google Scholar] [CrossRef] [PubMed]
- Zhadnov, N.; Masalov, A. Temperature-independent optical cavities for laser frequency stabilization. Laser Phys. Lett. 2023, 20, 030001. [Google Scholar] [CrossRef]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef]
- Sui, Y.; Jin, L.; Liu, Z.; Tao, L.; Zhang, H.; Bi, M.; Zhou, X. High signal-to-noise ratio harmonic mode-locking Mamyshev oscillator at 1550 nm. Opt. Commun. 2024, 569, 130787. [Google Scholar] [CrossRef]
- Rosol, A.H.A.; Latiff, A.A.; Abdul Khudus, M.I.M.; Harun, S.W. Nanosecond pulses generation with rose gold nanoparticles saturable absorber. Indian J. Phys. 2020, 94, 1079–1083. [Google Scholar] [CrossRef]
- Ismail, E.I.; Ahmad, F.; Shafie, S.; Yahaya, H.; Latif, A.A.; Muhammad, F.D. Copper nanowires based mode-locker for soliton nanosecond pulse generation in erbium-doped fiber laser. Results Phys. 2020, 18, 103228. [Google Scholar] [CrossRef]
- Wadi, N.I.S.; Jusoh, Z.; Muhammad, A.R.; Ahmad, B.A.; Salam, S. Nanosecond-pulse fiber laser mode-locked with iron phthalocyanine. Phys. Scr. 2024, 99, 095525. [Google Scholar] [CrossRef]
- Li, N.; Guo, M.; Zhang, W.; Guo, Z.X.; Li, H.; Li, X.W.; Yang, F. Sub-10 ns mode-locked fiber lasers with multimode fiber saturable absorber. Opt. Fiber Technol. 2024, 84, 103708. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, T.; Wang, T.; Li, B. Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator. Photonics 2026, 13, 37. https://doi.org/10.3390/photonics13010037
Wu T, Wang T, Li B. Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator. Photonics. 2026; 13(1):37. https://doi.org/10.3390/photonics13010037
Chicago/Turabian StyleWu, Tianjiao, Tianshu Wang, and Baoqun Li. 2026. "Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator" Photonics 13, no. 1: 37. https://doi.org/10.3390/photonics13010037
APA StyleWu, T., Wang, T., & Li, B. (2026). Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator. Photonics, 13(1), 37. https://doi.org/10.3390/photonics13010037
