Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling
Abstract
1. Introduction
2. Result
2.1. Structural Design and Measurement
Design of the Wavelength-Selective Multilayer Film Emitter
2.2. Design of the Periodic Microstructure
2.2.1. Material Selection and Morphology Design of the Microstructure
2.2.2. Optimization of the Microstructure Parameters
- (1)
- Effect of the period .
- (2)
- Effect of the pillar height .
- (3)
- Effect of the fill factor .
2.3. FDTD Simulation
- (1)
- Low emissivity in the MWIR and LWIR bands
- (2)
- Broad emission peak in the 5–8 μm non-atmospheric window
- (3)
- Low reflectance in the visible spectrum
- (4)
- Strong narrowband absorption at the short-wave infrared wavelength of 1.55 μm
- (5)
- Narrowband high absorption near 10.6 μm
3. Conclusions
4. Simulations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Feng, Z.; Xu, C.; Chatterjee, A.; Gorodetsky, A.A. Reconfigurable Micro- and Nano-Structured Camouflage Surfaces Inspired by Cephalopods. ACS Nano 2021, 15, 17299−17309. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, H.; Zhu, R.; Zhao, M.; Qiu, M.; Li, Q. Space-to-ground Infrared Camouflage with Radiative Heat Dissipation. Light. Sci. Appl. 2025, 14, 137. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Zhou, J.; Yao, K.; Ma, X.; Gao, S.; Yu, X. Ultrathin, Soft, Radiative Cooling Interfaces for Advanced Thermal Management in Skin Electronics. Sci. Adv. 2023, 9, eadg1837. [Google Scholar] [CrossRef]
- Bao, A.T.; Xu, L.G.; Qu, H.Z.; Han, S.L.; Zhai, C.X.; Cao, S.Y.; Yang, J.J.; Li, A.K.; Wang, J.Z.; Chen, Y.F.; et al. Controlled Transmissivity, Absorptivity, and Reflectivity in IR Wavelengths Based on Multilayer Structure of Simulation. Cell Rep. Phys. Sci. 2025, 6, 102603. [Google Scholar] [CrossRef]
- He, M.; Nolen, J.R.; Nordlander, J.; Cleri, A.; McIlwaine, N.S.; Tang, Y.; Lu, G.; Folland, T.G.; Landman, B.A.; Maria, J.-P.; et al. Deterministic Inverse Design of Tamm Plasmon Thermal Emitters with Multi-Resonant Control. Nat. Mater. 2021, 20, 1663–1669. [Google Scholar] [CrossRef]
- Ying, Y.; Yu, J.; Qin, B.; Zhao, M.; Zhou, T.; Shen, W.; Qiu, M.; Li, Q. Directional Thermal Emission Covering Two Atmospheric Windows. Laser Photonics Rev. 2023, 17, 2300407. [Google Scholar] [CrossRef]
- Zhao, J.L.; Zhou, B.; Wang, G.L.; Ying, J.J.; Liu, J.; Chen, Q. Spectral Camouflage Characteristics and Recognition Ability of Targets Based on Visible/Near-Infrared Hyperspectral Images. Photonics 2022, 9, 957. [Google Scholar] [CrossRef]
- Ma, X.J.; Teng, X.Q.; Xu, L.G.; Zhu, J.Q.; Zhang, S.; Li, Q. Visible Light and Infrared Camouflage Based on Epsilon Near Zero Materials. Adv. Opt. Mater. 2025, 13, 2403438. [Google Scholar] [CrossRef]
- Ying, Y.; Yu, J.; Shen, W.; Ghosh, P.; Qiu, M.; Li, Q. Photonic Control of Thermal Radiation for Protective Windows. Light Adv. Manuf. 2025, 6, 34. [Google Scholar] [CrossRef]
- Tan, Q.; Qian, C.; Zhen, Z.; Xie, X.; Zou, X.; Yan, L. Inverse-Designed Multi-Directional Remote Cloak. Opt. Lett. 2025, 50, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gu, J.; Ren, F.; Geng, C.; Guan, H.; Liang, S.; Fan, Q.; Zhao, J.; Wang, C.; Dou, S.; et al. Kirigami-Inspired Reconfigurable Thermal Mimetic Device. Laser Photonics Rev. 2022, 16, 2200383. [Google Scholar] [CrossRef]
- Deng, W.; Shang, S.; Cai, N.; Zhao, H.; Song, Y.; Xu, J. An Improved Differential Evolution Algorithm and Its Application in Optimization Problem. Soft Comput. 2021, 25, 5277–5298. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, W.; Wei, Y.; Li, H.; Li, X.; Ma, C.; Zhang, C. Flexible Ge/Cu/ZnSe multilayer photonic structures for triple-band infrared camouflage, visible camouflage, and radiative cooling. Opt. Express 2024, 32, 37295–37309. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pu, M.; Zhao, Z.; Li, X.; Ma, X.; Luo, X. Hierarchical Visible-Infrared-Microwave Scattering Surfaces for Multispectral Camouflage. Nanophotonics 2022, 11, 3613–3622. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhao, M.Y.; Li, Q.; Qiu, M.H.; Zhang, X.F.; Wang, J.Z. Adaptive Visible-Infrared Camouflage with Wide-Range Radiation Control for Extreme Ambient Temperatures. PhotoniX 2025, 6, 25. [Google Scholar] [CrossRef]
- Nong, J.Y.; Li, Q.; Qiu, M.H.; Zhang, X.F.; Wang, J.Z.; Chen, Y.F. Multifunctional Emitter Based on Inverse Design for Infrared camouflage, Thermal Imaging and Radiative Cooling. Opt. Express 2024, 32, 3379–3393. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, Q.; Qiu, M.H.; Zhang, X.F.; Wang, J.Z.; Chen, Y.F.; Han, S.L. 3D Intelligent Cloaked Vehicle Equipped with Thousand-Level Reconfigurable Full-Polarization Metasurfaces. Adv. Mater. 2024, 36, 2400797. [Google Scholar] [CrossRef]
- Zhou, Y.; Rather, L.J.; Yu, K.; Yang, M.; Lu, M.; Li, Q. Research Progress and Recent Advances in Development and Applications of Infrared camouflage Materials: A Comprehensive Review. Laser Photonics Rev. 2024, 18, 2400530. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, Y.; Zhou, Y.; Qiu, M.; Li, Q. Whole-Infrared-Band Camouflage with Dual-Band Radiative Heat Dissipation. Light-Sci. Appl. 2023, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guo, H.; Chang, H.; Qu, Y.; Xiao, L. Infrared Camouflage and Radar Compatible camouflage Structure Based on Metamaterial. Opt. Mater. Express 2023, 13, 1513–1521. [Google Scholar] [CrossRef]
- Jiang, X.L.; Li, Q.; Qiu, M.H.; Zhang, X.F.; Wang, J.Z. Implementing of Infrared Camouflage with Thermal Management Based on Inverse Design and Hierarchical Metamaterial. Nanophotonics 2023, 12, 1891–1902. [Google Scholar] [CrossRef]
- Yu, J.; Qin, R.; Ying, Y.; Qiu, M.; Li, Q. Asymmetric Directional Control of Thermal Emission. Adv. Mater. 2023, 35, 2302478. [Google Scholar] [CrossRef]
- Kang, Y.L.; Liu, J.H.; Zhang, M.Y.; Wang, X.D.; Li, C.H.; Zhao, Y.N.; Sun, Q.J.; Guo, Z.G. One-dimension Hybrid Ge/ZnS Photonic Crystal Film Tailored for Thermal-stable Laser-infrared Compatible Camouflage. Opt. Mater. 2025, 161, 116776. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, W.; Qian, M.; Shen, P.; Liu, Y. Multiband Metamaterial Emitters for Infrared and Laser Compatible camouflage with Thermal Management Based on Dissipative Dielectrics. Photon. Res. 2023, 11, 290–298. [Google Scholar] [CrossRef]
- Lin, H.J.; Zhang, M.L.; Liu, Y.H.; Chen, W.D.; Zhao, J.N.; Sun, X.Y.; Li, Q. Trans-scale Hierarchical Metasurfaces for Multispectral Compatible Regulation of Lasers, Infrared Light, and Microwaves. Nanophotonics 2025, 14, 2939–2952. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Liu, C.H.; Zhang, J.X.; Wang, H.B.; Li, S.Q.; Zhou, Y.M.; Gu, C.D.; Qiu, M.H. High-Temperature camouflage Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management. Nano-Micro Lett. 2025, 17, 199. [Google Scholar] [CrossRef]
- Zhu, R.H.; Zhao, M.Y.; Li, Q.; Qiu, M.H.; Zhang, X.F.; Wang, J.Z.; Chen, Y.F.; Han, S.L. Digital Camouflage Encompassing Optical Hyperspectra and Thermal Infrared-Terahertz-Microwave Tri-Bands. Nat. Commun. 2025, 16, 8112. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, A.; Drummond, K.; McCarthy, A.; Steinlehner, U.K.; Tachella, J.; Aguirre Garcia, D.; Pawlikowska, A.; Lamb, R.A.; Henderson, R.K.; McLaughlin, S.; et al. Submerged Single-Photon LiDAR Imaging Sensor Used for Real-Time 3D Scene Reconstruction in Scattering Underwater Environments. Opt. Express 2023, 31, 16690–16708. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.M.; Zhang, C.Y.; Wang, T.; Li, M.N.; Zhao, X.J. High-Sensitivity Photonic Sensors for Real-Time Monitoring of Atmospheric Particulates. Photonics 2025, 12, 840. [Google Scholar]
- Belmekki, M.A.A.; Leach, J.; Tobin, R.; Buller, G.S.; McLaughlin, S.; Halimi, A. 3D Target Detection and Spectral Classification for Single-Photon LiDAR Data. Opt. Express 2023, 31, 23729–23745. [Google Scholar] [CrossRef]
- Kim, K.; Eliezer, Y.; Spitz, O.; Cao, H. Parallel Random LiDAR with Spatial Multiplexing of a Many-Mode Laser. Opt. Express 2023, 31, 11966–11981. [Google Scholar] [CrossRef]
- Xue, T.; Liu, J.Y.; Lu, C.; Liu, G.D. High Precision Range Extracting Method for FMCW LiDAR Using Semiconductor Laser Based on EO-PLL and NUDFT. Photonics 2025, 12, 466. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, H.B.; Zhao, J.N.; Liu, Y.H. Design and Optimization of Multilayer Infrared Absorbing Coatings for camouflage Applications. Opt. Laser Eng. 2023, 166, 107493. [Google Scholar]
- Chen, S.Y.; Wu, L.; Xu, L.; Zhang, Y.; Zhang, J.L. Photonic Signal Processing in Phase-Coded Lidar System. Photonics 2023, 10, 598. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Liu, M.; Zhao, Y. Spatial-Temporal Variations of Forest Carbon Storage Estimated by Integrating Airborne LiDAR and Satellite Remote Sensing Data. Remote Sens. Environ. 2024, 308, 114161. [Google Scholar]
- Huang, L.; Li, H.; Li, Z.; Zhang, W.; Ma, C.; Zhang, C.; Wei, Y.; Zhou, X.; Li, Z.; Cheng, X.; et al. Multiband Camouflage Design with Thermal Management. Photon. Res. 2023, 11, 839–851. [Google Scholar] [CrossRef]
- Chen, X.; Qin, L.; Huang, J.; Liu, Y.; Zheng, S.; Qian, M. Controlling Thermal Radiation by Metasurface for Infrared and Laser Compatible camouflage with Radiative Cooling. Opt. Laser Technol. 2025, 189, 113017. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Burlington, VT, USA, 1997; pp. 5–114. [Google Scholar]






| Stack Order | Material | Thickness (nm) |
|---|---|---|
| 1 | YbF3 | 633.0 |
| 2 | Ge | 112.0 |
| 3 | YbF3 | 683.2 |
| 4 | Ge | 255.4 |
| 5 | YbF3 | 626.9 |
| 6 | Ge | 130.0 |
| 7 | YbF3 | 778.1 |
| 8 | Ge | 287.8 |
| 9 | YbF3 | 352.8 |
| 10 | Ge | 286.7 |
| 11 | YbF3 | 321.9 |
| 12 | Ge | 373.6 |
| 13 | YbF3 | 594.9 |
| 14 | Ge | 84.9 |
| 15 | YbF3 | 844.1 |
| 16 | Ge | 692.5 |
| 17 | YbF3 | 1880.7 |
| 18 | Ge | 685.7 |
| 19 | YbF3 | 1977.4 |
| 20 | Ge | 692.0 |
| 21 | YbF3 | 801.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, L.; Gao, Y.; Peng, B.; Ma, C. Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling. Photonics 2026, 13, 31. https://doi.org/10.3390/photonics13010031
Huang L, Gao Y, Peng B, Ma C. Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling. Photonics. 2026; 13(1):31. https://doi.org/10.3390/photonics13010031
Chicago/Turabian StyleHuang, Lehong, Yuting Gao, Bo Peng, and Caiwen Ma. 2026. "Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling" Photonics 13, no. 1: 31. https://doi.org/10.3390/photonics13010031
APA StyleHuang, L., Gao, Y., Peng, B., & Ma, C. (2026). Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling. Photonics, 13(1), 31. https://doi.org/10.3390/photonics13010031
