Comparative Analysis with GC–MS of Fatty Acids and Volatile Compounds of Taraxacum kok-saghyz Rodin and Taraxacum officinale as Edible Resource Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials
2.3. Determination of VCs using HS-SPME/GC–MS
2.3.1. HS-SPME Conditions
2.3.2. GC–MS Analysis
2.3.3. Qualitative and Quantitative Analysis
2.4. Fatty Acid Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of VCs in Taraxacum Leaves
3.2. Identification and Quantification of VCs in Taraxacum Roots
3.3. Fatty Acids Composition in Leaf of Taraxacum
3.4. Fatty Acid Composition in Taraxacum Roots
3.5. Principal Components Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krotkov, G. A review of literature on Taraxacum koksaghyz Rod. Bot. Rev. 1945, 11, 417–461. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Poirier, Y. Gunyule and Russian dandelion as alternative sources of natural rubber. Crit. Rev. Biotechnol. 2007, 27, 217–231. [Google Scholar] [CrossRef]
- Buranov, A.U.; Elmuradov, B.J. Extraction and Characterization of Latex and Natural Rubber from Rubber-Bearing Plants. J. Agric. Food Chem. 2010, 58, 734–743. [Google Scholar] [CrossRef]
- Ramirez-Cadavid, D.A.; Comish, K.; Michel, F.C. Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts. Ind. Crops Prod. 2017, 107, 624–640. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, T.; Ma, X.; Liu, J.; Dong, Y.; Zhang, J. Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography. Chromatographia 2019, 82, 1459–1466. [Google Scholar] [CrossRef]
- Ramirez-Cadavid, D.A.; Cornish, K.; Hathwaik, U.; Kozak, R.; McMahan, C.; Michel, F.C., Jr. Development of novel processes for the aqueous extraction of natural rubber from Taraxacum kok-saghyz (TK). J. Chem. Technol. Biotechnol. 2019, 94, 2452–2464. [Google Scholar] [CrossRef]
- Salehi, M.; Bahmankar, M.; Naghavi, M.R.; Cornish, K. Rubber and latex extraction processes for Taraxacum kok-saghyz. Ind. Crops Prod. 2022, 178, 114562. [Google Scholar] [CrossRef]
- Putter, K.M.; van Deenen, N.; Müller, B.; Fuchs, L.; Vorwerk, K.; Unland, K.; Bröker, J.N.; Scherer, E.; Huber, C.; Eisenreich, W.; et al. The enzymes OSC1 and CYP716A263 produce a high variety of triterpenoids in the latex of Taraxacum koksaghyz. Sci. Rep. 2019, 9, 5942. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Chen, J.; Yue, Y.; Ma, Q.; Dong, Y.; Zhang, J. Ultrasonic/microwave–assisted extraction and rapid quantitative determination of active ingredients in Taraxacum kok-saghyz Rodin by ultra-high-performance liquid chromatography tandem mass spectrometry. Int. J. Mass Spectrom. 2021, 470, 116700. [Google Scholar] [CrossRef]
- Molinu, M.G.; Piluzza, G.; Campesi, G.; Sulas, L.; Re, G.A. Antioxidant Sources from Leaves of Russian Dandelion. Chem. Biodivers. 2019, 16, e1900250. [Google Scholar] [CrossRef] [PubMed]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. BMJ—Br. Med. J. 2019, 366, l4697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guil-Guerrero, J.L.; Delgado, A.; Gonzalez, M.C.; Isasa, M.T. Fatty acids and carotenes in some ber (Ziziphus jujuba Mill) varieties. Plant Foods Hum. Nutr. 2004, 59, 23–27. [Google Scholar] [CrossRef]
- Savych, A.; Basaraba, R.; Muzyka, N.; Ilashchuk, P. Analysis of fatty acid composition content in the plant components of antidiabetic herbal mixture by GC-MS. Pharmacia 2021, 68, 433–439. [Google Scholar] [CrossRef]
- Sears, B.; Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Mizunoya, W.; Haramizu, S.; Shibakusa, T.; Okabe, Y.; Fushiki, T. Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise. Lipids 2005, 40, 265–271. [Google Scholar] [CrossRef]
- Boutros, C.; Somasundar, P.; Razzak, A.; Helton, S.; Espat, N.J. Omega-3 Fatty Acids: Investigations from Cytokine Regulation to Pancreatic Cancer Gene Suppression. Arch. Surg. 2010, 145, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, A.; Grahn, P. Outdoor environments in healthcare settings: A quality evaluation tool for use in designing healthcare gardens. Urban For. Urban Green. 2014, 13, 878–891. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.W.; Li, R.-P.; Li, M.; Wang, S.-Y.; Zhang, X.; Niu, X.-X.; Li, W.; Yan, L.; Wang, Y.; Fu, Q.; et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin. J. Nat. Med. 2014, 12, 753–759. [Google Scholar] [CrossRef]
- Meng, X.X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016, 194, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified Essential Oil from Ocimum sanctum Linn. Triggers the Apoptotic Mechanism in Human Breast Cancer Cells. Pharmacogn. Mag. 2016, 12, S327–S331. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.J.; Hu, R.; Chu, Z.; Zhao, J.; Tan, L. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chem. 2017, 234, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.H.; Li, D.; Zang, M.; Zhang, Z.; Li, X.; Wang, S.; Zhang, S.; Zhao, B. Comparative characterization of fatty acids, reheating volatile compounds, and warmed-over flavor (WOF) of Chinese indigenous pork and hybrid pork. LWT—Food Sci. Technol. 2022, 155, 112981. [Google Scholar] [CrossRef]
- Wang, L.N.; Wang, Y.; Wang, W.; Zheng, F.; Chen, F. Comparison of volatile compositions of 15 different varieties of Chinese jujube (Ziziphus jujuba Mill.). J. Food Sci. Technol. Mysore 2019, 56, 1631–1640. [Google Scholar] [CrossRef]
- Kiyama, R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur. J. Pharmacol. 2017, 815, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Huang, R.; Liu, D.; Ye, X.; Guo, M. Potential valorisation of baobab (Adansonia digitata) seeds as a coffee substitute: Insights and comparisons on the effect of roasting on quality, sensory profiles, and characterisation of volatile aroma compounds by HS-SPME/GC-MS. Food Chem. 2022, 394, 133475. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Sylvester, D.M. Antithrombotic/antiplatelet activity of tetramethylpyrazine. Thromb. Res. 1990, 58, 129–140. [Google Scholar] [CrossRef]
- Jeyadevi, R.; Sivasudha, T.; Ilavarasi, A.; Thajuddin, N. Chemical Constituents and Antimicrobial Activity of Indian Green Leafy Vegetable Cardiospermum halicacabum. Indian J. Microbiol. 2013, 53, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghnia, H.R.; Kamkar, M.; Assadpour, E.; Boroushaki, M.T.; Ghorbani, A. Protective Effect of Safranal, a Constituent of Crocus sativus, on Quinolinic Acid-induced Oxidative Damage in Rat Hippocampus. Iran. J. Basic Med. Sci. 2013, 16, 73–82. [Google Scholar] [PubMed]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira MB, P.; Santos-Buelga, C.; Ferreira, I.C. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Liu, L.X.; Howe, P.; Zhou, Y.; Hocart, C.; Zhang, R. Fatty acid profiles of leaves of nine edible wild plants: An Australian study. J. Food Lipids 2002, 9, 65–71. [Google Scholar] [CrossRef]
- Souza, C.O.; Teixeira, A.A.S.; Lima, E.A.; Batatinha, H.A.P.; Gomes, L.M.; Carvalho-Silva, M.; Mota, I.T.; Streck, E.L.; Hirabara, S.M.; Neto, J.C.R. Palmitoleic Acid (N-7) Attenuates the Immunometabolic Disturbances Caused by a High-Fat Diet Independently of PPAR alpha. Mediat. Inflamm. 2014, 2014, 582197. [Google Scholar] [CrossRef] [Green Version]
- Luan, D.; Wang, D.; Campos, H.; Baylin, A. Adipose tissue palmitoleic acid is inversely associated with nonfatal acute myocardial infarction in Costa Rican adults. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Alonso, D.L.; Maroto, F.G. Plants as ‘chemical factories’ for the production of polyunsaturated fatty acids. Biotechnol. Adv. 2000, 18, 481–497. [Google Scholar] [CrossRef]
‘TK-H’ | ‘TK-Y’ | ‘TK-A’ | ‘A17’ | ‘A44’ | ‘PZ’ | ‘YS’ | |
---|---|---|---|---|---|---|---|
Decanoic acid (C11:0) | ND | ND | ND | 0.02 ± 0.00 a | 0.43 ± 0.02 b | ND | ND |
Dodecanoic acid (C12:0) | ND | ND | 0.05 ± 0.00 c | 0.02 ± 0.00 a | 0.06 ± 0.00 d | ND | 0.04 ± 0.00 b |
Myristic acid (C14:0) | 0.06 ± 0.00 b | 0.10 ± 0.00 c | 0.12 ± 0.00 d | 0.10 ± 0.00 c | 0.18 ± 0.01 f | 0.05 ± 0.00 a | 0.14 ± 0.01 e |
Pentadecanoic acid (C15:0) | 0.03 ± 0.00 a | ND | 0.07 ± 0.00 c | 0.06 ± 0.00 b | 0.06 ± 0.00 b | ND | 0.08 ± 0.01 d |
Hexadecanoic acid (C16:0) | 1.31 ± 0.07 b | 1.28 ± 0.03 b | 1.65 ± 0.03 c | 1.32 ± 0.02 b | 1.79 ± 0.14 c | 0.82 ± 0.03 a | 2.02 ± 0.15 d |
9-Hexadecenoic acid (C16:1n7c) | 0.27 ± 0.01 d | 0.09 ± 0.00 b | 0.09 ± 0.01 b | 0.08 ± 0.02 b | ND | 0.04 ± 0.01 a | 0.18 ± 0.01 c |
Margaric acid (C17:0) | ND | ND | 0.07 ± 0.00 b | 0.06 ± 0.01 a | ND | ND | 0.06 ± 0.01 a |
Stearic acid (C18:0) | 0.26 ± 0.00 b | 0.49 ± 0.02 e | 0.44 ± 0.01 d | 0.30 ± 0.01 c | 0.51 ± 0.04 e | 0.19 ± 0.01 a | 0.57 ± 0.06 f |
Oleic acid (C18:1n9c) | 0.35 ± 0.02 a | 0.56 ± 0.02 b | 1.35 ± 0.06 e | 0.78 ± 0.02 c | 0.88 ± 0.04 d | 0.53 ± 0.01 b | 0.87 ± 0.03 d |
Linoleic acid (C18:2n6c) | 4.25 ± 0.17 b | 4.94 ± 0.17 c | 7.20 ± 0.13 d | 4.26 ± 0.12 b | 5.29 ± 0.48 c | 3.23 ± 0.11 a | 6.85 ± 0.39 d |
Eicosanoic acid (C20:0) | 0.06 ± 0.00 a | 0.09 ± 0.01 b | 0.13 ± 0.00 c | 0.10 ± 0.01 b | 0.09 ± 0.00 b | 0.05 ± 0.00 a | 0.12 ± 0.01 c |
Linolenic acid (C18:3n3) | 7.22 ± 0.29 b | 8.14 ± 0.30 c | 9.04 ± 0.20 d | 7.01 ± 0.23 b | 9.01 ± 0.62 d | 4.34 ± 0.14 a | 12.73 ± 0.53 e |
Docosanoic acid (C22:0) | 0.09 ± 0.00 a | 0.12 ± 0.01 c | 0.14 ± 0.01 d | 0.14 ± 0.00 d | 0.11 ± 0.00 b | 0.09 ± 0.00 a | 0.16 ± 0.01 e |
Tricosanoic acid (C23:0) | 0.05 ± 0.00 b | ND | 0.07 ± 0.00 d | 0.06 ± 0.00 c | 0.06 ± 0.01 c | 0.03 ± 0.00 a | 0.08 ± 0.00 e |
Tetracosanoic acid (C24:0) | 0.16 ± 0.00 d | 0.12 ± 0.01 b | 0.14 ± 0.00 c | 0.17 ± 0.01 e | 0.14 ± 0.01 bc | 0.09 ± 0.01 a | 0.21 ± 0.01 f |
The amount of PUFA | 11.47 ± 0.46 b | 13.08 ± 0.46 c | 16.25 ± 0.33 e | 11.36 ± 0.35 b | 14.30 ± 1.08 d | 7.63 ± 0.24 a | 19.58 ± 0.93 f |
The amount of MUFA | 0.61 ± 0.02 ab | 0.65 ± 0.02 b | 1.44 ± 0.06 e | 0.86 ± 0.01 c | 0.88 ± 0.04 c | 0.58 ± 0.01 a | 1.04 ± 0.04 d |
The amount of SFA | 2.01 ± 0.06 b | 2.21 ± 0.06 bc | 2.88 ± 0.05 d | 2.34 ± 0.04 c | 3.42 ± 0.20 e | 1.31 ± 0.06 a | 3.46 ± 0.25 e |
USFA/SFA | 6.01 ± 0.07 cd | 6.22 ± 0.08 de | 6.15 ± 0.05 cde | 5.23 ± 0.11 b | 4.45 ± 0.20 a | 6.25 ± 0.11 e | 5.96 ± 0.15 c |
‘TK-H’ | ‘TK-Y’ | ‘TK-A’ | ‘A17’ | ‘A44’ | ‘PZ’ | ‘YS’ | |
---|---|---|---|---|---|---|---|
Myristic acid (C14:0) | 0.03 ± 0.00 a | 0.03 ± 0.01 ab | 0.04 ± 0.01 bc | 0.04 ± 0.00 c | 0.03 ± 0.00 a | 0.04 ± 0.00 c | 0.07 ± 0.00 d |
Hexadecanoic acid (C16:0) | 0.61 ± 0.02 a | 0.62 ± 0.04 a | 1.02 ± 0.07 c | 1.14 ± 0.04 d | 0.78 ± 0.03 b | 1.05 ± 0.08 cd | 1.72 ± 0.09 e |
Stearic acid (C18:0) | 0.20 ± 0.02 ab | 0.24 ± 0.03 c | 0.26 ± 0.00 d | 0.19 ± 0.01 a | 0.24 ± 0.00 c | 0.22 ± 0.01 bc | 0.35 ± 0.02 e |
Oleic acid (C18:1n9c) | 0.16 ± 0.01 a | 0.71 ± 0.04 b | 1.04 ± 0.03 d | 0.95 ± 0.03 cd | 0.71 ± 0.08 b | 0.87 ± 0.09 c | 2.15 ± 0.07 e |
Linoleic acid (C18:2n6c) | 3.49 ± 0.11 a | 3.27 ± 0.20 a | 7.51 ± 0.38 d | 6.24 ± 0.23 c | 4.45 ± 0.15 b | 6.59 ± 0.49 c | 7.60 ± 0.44 d |
Eicosanoic acid (C20:0) | ND | ND | 0.06 ± 0.01 b | 0.05 ± 0.01 ab | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.08 ± 0.00 c |
Linolenic acid (C18:3n3) | 0.84 ± 0.04 a | 1.07 ± 0.10 a | 2.74 ± 0.24 d | 2.32 ± 0.09 c | 1.40 ± 0.03 b | 2.98 ± 0.19 e | 2.57 ± 0.13 d |
Docosanoic acid (C22:0) | 0.14 ± 0.01 d | 0.13 ± 0.01 cd | 0.09 ± 0.02 a | 0.12 ± 0.01 bc | 0.10 ± 0.01 ab | 0.09 ± 0.01 a | 0.28 ± 0.02 e |
Tetracosanoic acid (C24:0) | 0.12 ± 0.01 bc | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.13 ± 0.01 c | 0.10 ± 0.00 b | 0.08 ± 0.00 a | 0.36 ± 0.01 d |
The amount of PUFA | 4.33 ± 0.15 a | 4.34 ± 0.29 a | 10.25 ± 0.49 d | 8.56 ± 0.31 c | 5.85 ± 0.18 b | 9.57 ± 0.68 d | 10.17 ± 0.57 d |
The amount of MUFA | 0.16 ± 0.01 a | 0.71 ± 0.04 b | 1.04 ± 0.03 d | 0.95 ± 0.03 cd | 0.71 ± 0.08 b | 0.87 ± 0.06 c | 2.15 ± 0.07 e |
The amount of SFA | 1.09 ± 0.05 a | 1.09 ± 0.07 a | 1.54 ± 0.12 cd | 1.70 ± 0.07 d | 1.29 ± 0.03 b | 1.53 ± 0.10 c | 2.92 ± 0.14 e |
USFA/SFA | 4.10 ± 0.05 a | 4.63 ± 0.09 b | 7.33 ± 0.34 f | 5.59 ± 0.11 d | 5.07 ± 0.06 c | 6.82 ± 0.06 e | 4.22 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Chen, T.; Ye, S.; Gao, S.; Dong, Y. Comparative Analysis with GC–MS of Fatty Acids and Volatile Compounds of Taraxacum kok-saghyz Rodin and Taraxacum officinale as Edible Resource Plants. Separations 2022, 9, 314. https://doi.org/10.3390/separations9100314
Zhang N, Chen T, Ye S, Gao S, Dong Y. Comparative Analysis with GC–MS of Fatty Acids and Volatile Compounds of Taraxacum kok-saghyz Rodin and Taraxacum officinale as Edible Resource Plants. Separations. 2022; 9(10):314. https://doi.org/10.3390/separations9100314
Chicago/Turabian StyleZhang, Na, Tianyan Chen, Shuang Ye, Shunkai Gao, and Yiyang Dong. 2022. "Comparative Analysis with GC–MS of Fatty Acids and Volatile Compounds of Taraxacum kok-saghyz Rodin and Taraxacum officinale as Edible Resource Plants" Separations 9, no. 10: 314. https://doi.org/10.3390/separations9100314
APA StyleZhang, N., Chen, T., Ye, S., Gao, S., & Dong, Y. (2022). Comparative Analysis with GC–MS of Fatty Acids and Volatile Compounds of Taraxacum kok-saghyz Rodin and Taraxacum officinale as Edible Resource Plants. Separations, 9(10), 314. https://doi.org/10.3390/separations9100314