An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Methods
2.2.1. Conditions of Chromatography and Mass Spectrometry
2.2.2. AAC Preparation
2.2.3. Sample Extraction and Purification
3. Results and Discussions
3.1. Principle of AAC for AGs Extraction
3.2. Optimization of Chromatographic and Mass Spectrometry Conditions
3.2.1. Chromatographic Column Optimization
3.2.2. Selection of Mobile Phase
3.3. AAC Condition Optimization
3.3.1. Binding Buffer pH Optimization
3.3.2. Optimize Eluent Composition
3.3.3. Capacity of AAC
3.3.4. Regeneration and Reusability of AAC
3.3.5. Selectivity
3.4. Method Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yue, F.L.; Li, F.L.; Kong, Q.Q.; Guo, Y.M.; Sun, X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci. Total Environ. 2021, 762, 143129. [Google Scholar] [CrossRef]
- Luan, Y.; Wang, N.; Li, C.; Guo, X.; Lu, A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics 2020, 9, 787. [Google Scholar] [CrossRef] [PubMed]
- Farouk, F.; Azzazy, H.M.E.; Niessen, W.M.A. Challenges in the determination of aminoglycoside antibiotics, a review. Anal. Chim. Acta 2015, 890, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wei, D.; Zeng, K.; Huang, z.; Du, D. Research progress on rapid analysis methods of aminoglycoside antibiotics in food. Jiangsu Agric. Sci 2019, 47, 7. [Google Scholar]
- Xu, F.; Jiang, W.X.; Zhou, J.; Wen, K.; Wang, Z.H.; Jiang, H.Y.; Ding, S.Y. Production of Monoclonal Antibody and Development of a New Immunoassay for Apramycin in Food. J. Agric. Food Chem. 2014, 62, 3108–3113. [Google Scholar] [CrossRef]
- Blanchaert, B.; Huang, S.; Wach, K.; Adams, E.; Van Schepdael, A. Assay Development for Aminoglycosides by HPLC with Direct UV Detection. J. Chromatogr. Sci. 2017, 55, 197–204. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Liu, Y.; Xie, S.; Zhang, F. Microwave-assisted derivatization-ionic liquid dispersion liquid-liquid microextraction-high performance liquid chromatography for determination of aminoglycoside antibiotic residues in milk. Mod. Food Technol 2014, 30, 8. [Google Scholar]
- Moreno-González, D.; Lara, F.J.; Jurgovská, N.; Gámiz-Gracia, L.; García-Campaña, A.M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta 2015, 891, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; Lightfield, A.R. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts. Anal. Bioanal. Chem. 2018, 410, 1095–1109. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Chai, T.; Mu, P.; Xu, N.; Song, Y.; Wang, X.; Jia, Q.; Qiu, J. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2016, 1463, 49–59. [Google Scholar] [CrossRef]
- Lou, X.; Tang, Y.; Fang, C.; Kong, C.; Yu, H.; Shi, Y.; Huang, D.; Guo, Y.; Xiao, D. Simultaneous determination of ten aminoglycoside antibiotics in aquatic feeds by high-performance liquid chromatography quadrupole-orbitrap mass spectrometry with pass-through cleanup. Chirality 2020, 32, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Huang, Y.; Cao, J.; Wang, G.; Huang, W.; Chen, B.; Chen, X.; Wang, S. Determination of Ampramycin Sulfate in Premix by High Performance Liquid Chromatography with Pre-column Derivatization. J. Pharm. Anal. 2015, 35, 4. [Google Scholar]
- Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Nuñez, A.; Dutko, T.; Ng, C.; Bluhm, L. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1313, 103–112. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.-M.; Hashim, U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.I.; Alshaer, W. Therapeutic aptamers in discovery, preclinical and clinical stages. Adv. Drug Deliv. Rev. 2018, 134, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Song, K.-M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 2011, 415, 175–181. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, X.; Zhu, D.; Lin, X.; Xie, Z. Preparation and evaluation of highly hydrophilic aptamer-based hybrid affinity monolith for on-column specific discrimination of ochratoxin A. Talanta 2019, 200, 193–202. [Google Scholar] [CrossRef]
- Liu, H.; Luan, Y.; Lu, A.; Li, B.; Yang, M.; Wang, J. An oligosorbent-based aptamer affinity column for selective extraction of aflatoxin B2 prior to HPLC with fluorometric detection. Microchim. Acta 2018, 185, 71. [Google Scholar] [CrossRef]
- Yang, X.; Kong, W.; Hu, Y.; Yang, M.; Huang, L.; Zhao, M.; Ouyang, Z. Aptamer-affinity column clean-up coupled with ultra high performance liquid chromatography and fluorescence detection for the rapid determination of ochratoxin A in ginger powder. J. Sep. Sci. 2014, 37, 853–860. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Zhao, D.; Li, Z.; Cai, N. Immunoaffinity column purification-UPLC-MS/MS determination of three aminoglycoside antibiotics in fish and shrimp meat. Food Sci 2018, 39, 326–331. [Google Scholar]
- Gong, Q.; Ding, L.; Zhu, S.; Jiao, Y.; Cheng, J.; Fu, S.; Wang, L. Determination of 10 aminoglycoside antibiotic residues in dairy products by high performance liquid chromatography-tandem mass spectrometry. Chromatography 2012, 30, 1143–1147. [Google Scholar]
- Qiu, P.; Guo, X.; Wang, N.; Kong, X.; He, H. Simultaneous determination of 10 antibiotics in pharmaceutical wastewater by ultra-performance liquid chromatography-tandem mass spectrometry. Chromatography 2015, 33, 722–729. [Google Scholar]
- Moreno-González, D.; Hamed, A.M.; García-Campaña, A.M.; Gámiz-Gracia, L. Evaluation of hydrophilic interaction liquid chromatography–tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta 2017, 171, 74–80. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, Y.; Zhang, J.; Jin, Y.; Zhao, W.; Zhang, Y.; Huang, J.; Wang, P.; Wu, C. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly. J. Chromatogr. A 2018, 1542, 28–36. [Google Scholar] [CrossRef]
- Liu, Q. Analysis and Determination of Aminoglycoside Drugs in Feed and Environmental Water; South China Agricultural University: Guangzhou, China, 2017. [Google Scholar]
- Shen, A.; Wei, J.; Yan, J.; Jin, G.; Ding, J.; Yang, B.; Guo, Z.; Zhang, F.; Liang, X. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk. J. Sep. Sci. 2017, 40, 1099–1106. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Liu, L. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta 2020, 208, 120385. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, S.; Zhang, F.; Zhang, F.; Yang, B.; Liang, X. A polyvinyl alcohol-functionalized sorbent for extraction and determination of aminoglycoside antibiotics in honey. J. Chromatogr. A 2015, 1403, 32–36. [Google Scholar] [CrossRef]
- Li, D.; Li, T.; Wang, L.; Ji, S. A polyvinyl alcohol-coated core-shell magnetic nanoparticle for the extraction of aminoglycoside antibiotics residues from honey samples. J. Chromatogr. A 2018, 1581, 1–7. [Google Scholar] [CrossRef]
- Mokh, S.; El Hawari, K.; Nassar, R.; Budzinski, H.; Al Iskandarani, M. Optimization of a solid-phase extraction method for the determination of 12 aminoglycosides in water samples using LC–ESI–MS/MS. Chromatographia 2015, 78, 631–640. [Google Scholar] [CrossRef]
Antibiotics | Species | Sample | MRLs (μg/kg) | |||
---|---|---|---|---|---|---|
China | European | USA | Japan | |||
Gentamicin | Pig/Cattle | Muscle/ Fat | 100 | 50 | 100/400 | 100 |
Liver | 2000 | 200 | 300 | 2000 | ||
Kidney | 5000 | 750 | 400 | 5000 | ||
Milk | 200 | 100 | - | 200 | ||
Chicken | Tissue | 100 | - | 100 | - | |
Kanamycin | Cattle | Muscle/ Fat | 100 | 100 | - | 40 |
Liver | 600 | 600 | - | 40 | ||
Kidney | 2500 | 2500 | - | 40 | ||
Milk | 150 | 150 | - | 400 | ||
Pig/ Chicken | Muscle | 100 | 100 | - | 100 | |
Fat | 100 | 100 | - | 100 | ||
Liver | 600 | 600 | - | 100 | ||
Kidney | 2500 | 2500 | - | 100 | ||
Chicken | Egg | - | - | - | 500 | |
Neomycin | Pig/Cattle/ Chicken | Muscle/ Fat/Liver | 500 | 500 | 1200/-/3600 | 500 |
Kidney | 10,000 | 5000 | 7200 | 10,000 | ||
Milk | 500 | 1500 | 150 | 500 | ||
Egg | 500 | 500 | - | 500 | ||
Streptomycin/ Dihydrostreptomycin | Chicken/ Sheep/Pig | Muscle/ Fat/Liver | 600 | 500 | 500 | 600 |
Kidney | 1000 | 1000 | 2000 | 1000 | ||
Cattle | Milk | 200 | 200 | - | 200 |
No. | Time | Flow Rate | A/% | B/% | Curve |
---|---|---|---|---|---|
1 | 0.0 | 0.3 | 5.0 | 95.0 | |
2 | 3.0 | 0.3 | 80.0 | 20.0 | 6 |
3 | 5.5 | 0.3 | 80.0 | 20.0 | 6 |
4 | 6.0 | 0.3 | 5.0 | 95.0 | 1 |
5 | 7.0 | 0.3 | 5.0 | 95.0 | 1 |
Antibiotics | RT (min) | Parent Ion (M/Z) | Product Ion (M/Z) | Cone (V) | CE (eV) |
---|---|---|---|---|---|
TOB | 4.19 | 468.29 | 324.25 | 28 | 24 |
468.29 | 163.06 1 | 28 | 16 | ||
KANB | 4.23 | 484.2 | 324.00 | 42 | 30 |
484.2 | 163.02 1 | 42 | 24 | ||
KANA | 4.10 | 485.2 | 324.23 | 20 | 27 |
485.2 | 163.15 1 | 20 | 17 | ||
AMI | 4.06 | 568.3 | 264.15 | 62 | 24 |
568.3 | 163.05 1 | 62 | 32 |
Drugs | Linear Range/ (ng/mL) | Linear Equation | R2 | LOD (ng/mL) |
---|---|---|---|---|
TOB | 100.0–1000.0 | y = 43.2x − 2472.4 | 0.9995 | 11.3 |
KANA | 100.0–1000.0 | y = 654.0x − 40,021.4 | 0.9998 | 10.6 |
KANB | 100.0–1000.0 | y = 384.7x − 26,061.2 | 0.9998 | 6.8 |
AMI | 100.0–1000.0 | y = 203.4x − 15,182.0 | 0.9991 | 4.0 |
Drugs | Spiked Level (ng/mL) | Recoveries (%) | RSD (%) |
---|---|---|---|
TOB | 100.0 | 84.0 | 5.8 |
200.0 | 87.9 | 3.8 | |
500.0 | 83.3 | 1.3 | |
KANA | 100.0 | 94.3 | 1.9 |
200.0 | 94.0 | 4.1 | |
500.0 | 92.3 | 3.6 | |
KANB | 100.0 | 97.6 | 1.2 |
200.0 | 98.8 | 3.7 | |
500.0 | 96.3 | 2.9 | |
AMI | 100.0 | 93.0 | 2.6 |
200.0 | 95.1 | 2.3 | |
500.0 | 90.1 | 0.6 |
Sample Treatment Method | Adsorption Time | Detection Method | Recoveries | Matrix | Remarks | Ref |
---|---|---|---|---|---|---|
Molecularly imprinted SPE | >50 min | HPLC-MS/MS | 70.8–108.3% | Water | 1. Complicated synthesis process for molecular imprinted polymers; 2. Waste of template molecule | [28] |
Polyvinyl alcohol (PVA)-functionalized SPE | 25 min | HPLC-MS/MS | 84.0–112.0% | Honey | High-temperature synthesis condition | [29] |
Magnetic matrix (Fe3O4@PVA) dispersed SPE | 20 min | HPLC-MS/MS | 82.9–100.7% | Honey | 1. High-temperature synthesis condition; 2. Nonspecific adsorption caused by magnetic nanoparticles | [30] |
SPE | -- | LC-MS/MS | 65.0–115.0% | Water | Commercial SPE column needed | [31] |
AAC | <5 min | UPLC-MS/MS | 83.3–98.8% | Milk | 1. Aptamer provides high affinity and specificity; 2. Easy operation; 3. AAC can be used for the purification and adsorption of other targets only through changing its related aptamer | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Jiang, X.; Xu, X.; Wang, N.; Wang, X.; Yang, R.; Liu, X.; Liu, Z.; Luan, Y. An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk. Separations 2022, 9, 267. https://doi.org/10.3390/separations9100267
Zhao L, Jiang X, Xu X, Wang N, Wang X, Yang R, Liu X, Liu Z, Luan Y. An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk. Separations. 2022; 9(10):267. https://doi.org/10.3390/separations9100267
Chicago/Turabian StyleZhao, Liping, Xiaoqian Jiang, Xiaoling Xu, Nan Wang, Xinjie Wang, Ruiqi Yang, Xiangyang Liu, Zheng Liu, and Yunxia Luan. 2022. "An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk" Separations 9, no. 10: 267. https://doi.org/10.3390/separations9100267
APA StyleZhao, L., Jiang, X., Xu, X., Wang, N., Wang, X., Yang, R., Liu, X., Liu, Z., & Luan, Y. (2022). An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk. Separations, 9(10), 267. https://doi.org/10.3390/separations9100267