Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling
Abstract
1. Introduction
2. Results and Discussion
2.1. Wettability Tailoring
2.2. Application in Separation of Plastics
2.2.1. Determination of Critical Factors
2.2.2. Analysis of Regression and Modeling
2.2.3. Interactions Among the Factors
2.2.4. Separation Efficiency
3. Materials and Methods
3.1. Plastic Samples and Equipment
3.2. Wettability Tailoring and Characterization
3.3. Flotation Separation Procedures of Plastic Mixtures
- (1)
- Determination of Critical Factors
- (2)
- CCD Optimization
- (3)
- Regression Modeling and Statistical Analysis
- (4)
- Separation Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarma, R.; Angeles-Boza, A.M.; Brinkley, D.W.; Roth, J.P. Studies of the di-iron (VI) Intermediate in ferrate-dependent oxygen evolution from water. J. Am. Chem. Soc. 2012, 134, 15371–15386. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chen, L.; Zboril, R. Review on High Valent Fe VI (Ferrate): A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustain. Chem. Eng. 2015, 4, 18–34. [Google Scholar] [CrossRef]
- Gong, H.; Chu, W.; Xu, K.; Xia, X.; Gong, H.; Tan, Y.; Pu, S. Efficient degradation, mineralization and toxicity reduction of sulfamethoxazole under photo-activation of peroxymonosulfate by ferrate (VI). Chem. Eng. J. 2020, 389, 124084–124096. [Google Scholar] [CrossRef]
- Huang, Z.S.; Wang, L.; Liu, Y.L.; Jiang, J.; Xue, M.; Xu, C.B.; Zhen, Y.F.; Wang, Y.C.; Ma, J. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant. Environ. Sci. Technol. 2018, 52, 13897–13907. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Feng, M.; Dionysiou, D.D.; Zhou, H.C.; Jinadatha, C.; Manoli, K.; Smith, M.F.; Luque, R.; Ma, X.; Huang, C.H. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environ. Sci. Technol. 2022, 56, 30–47. [Google Scholar] [CrossRef]
- Jiang, Y.; Goodwill, J.E.; Tobiason, J.E.; Reckhow, D.A. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors. Water. Res. 2016, 96, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Guo, Z.; Zhong, C.; Sun, A.; He, K.; Liu, X.; Song, H.; Li, J. A super magnetic porous biochar manufactured by potassium ferrate-accelerated hydrothermal carbonization for removal of tetracycline. J. Clean. Prod. 2024, 435, 140470. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, Y.; Qv, C.; Mao, X.H. Mechanism and Efficiency of Tetracycline Removal by Ferrate and Ferrous-Enhanced Ferrate System. Water Air Soil Pollut. 2023, 234, 326. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Lloyd, B. Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002, 36, 1397–1408. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716–5725. [Google Scholar] [CrossRef]
- Sofer, Z.; Luxa, J.; Jankovsky, O.; Sedmidubsky, D.; Bystroň, T.; Pumera, M. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate (VI) Compounds: Myth or Reality? Angew. Chem. Int. Ed. 2016, 55, 11965–11969. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Huang, X.; Li, J.; Li, T. Versatile Functionalization of Carbon Nanomaterials by Ferrate (VI). Nano-Micro Lett. 2020, 12, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Xu, X.C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4. Appl. Surf. Sci. 2015, 346, 520–527. [Google Scholar] [CrossRef]
- Mura, S.; Jiang, Y.; Vassalini, I.; Gianoncelli, A.; Alessandri, I.; Granozzi, G.; Calvillo, L.; Senes, N.; Enzo, S.; Innocenzi, P.; et al. Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation. ACS Appl. Nano Mater. 2018, 1, 6724–6732. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishimura, S.; Nishiyama, K.; Aso, Y.; Nishida, H.; Cho, S.; Sekino, T. Direct In Situ Polymer Modification of Titania Nanomaterial Surfaces via UV-irradiated Radical Polymerization. Asian J. Org. Chem. 2024, 13, e202400270. [Google Scholar] [CrossRef]
- Gilfanov, S.A.; Timoshina, Y.A. Influence of Gas-Discharge Modification on Physical and Chemical Properties of the Surface of Polymer Materials. High Energy Chem. 2024, 58, S323–S326. [Google Scholar] [CrossRef]
- Lin, X.; Fukazawa, K.; Ishihara, K. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Appl. Mater. Inter. 2015, 7, 17489–17498. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Yue, D. Optimization of Surface Treatment Using Sodium Hypochlorite Facilitates Coseparation of ABS and PC from WEEE Plastics by Flotation. Environ. Sci. Technol. 2019, 53, 2086–2094. [Google Scholar] [CrossRef]
- Sommerhuber, P.F.; Wang, T.; Krause, A. Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. J. Clean. Prod. 2016, 121, 176–185. [Google Scholar] [CrossRef]
- Villard, A.; Lelah, A.; Brissaud, D. Drawing a chip environmental profile: Environmental indicators for the semiconductor industry. J. Clean. Prod. 2015, 86, 98–109. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.; Xu, M.; Wang, H.; Zuo, T. To realize better Extended Producer Responsibility: Redesign of WEEE fund mode in China. J. Clean. Prod. 2017, 164, 347–356. [Google Scholar] [CrossRef]
- Suresh, S.S.; Mohanty, S.; Nayak, S.K. Preparation and characterization of recycled blends using Poly (vinyl chloride) and Poly (methyl methacrylate) recovered from waste electrical and electronic equipments. J. Clean. Prod. 2017, 149, 863–873. [Google Scholar] [CrossRef]
- Rohr, T.; Ogletree, D.F.; Svec, F.; Fréchet, J.M.J. Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting. Adv. Funct. Mater. 2003, 13, 264–270. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Lee, B.K. Sustainable and Selective Separation of PVC and ABS from a WEEE Plastic Mixture using Microwave and/or Mild-heat Treatment with Froth Flotation. Environ. Sci. Technol. 2016, 50, 10580–10587. [Google Scholar] [CrossRef]
- Mallampati, S.R.; Heo, J.H.; Park, M.H. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite. J. Hazard. Mater. 2016, 306, 13–23. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Huang, L. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation. Waste Manag. 2017, 65, 3–10. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Lee, B.K. Selective separation of ABS/PC containing BFRs from ABSs mixture of WEEE by developing hydrophilicity with ZnO coating under microwave treatment. J. Hazard. Mater. 2017, 329, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.K.; Wang, H.; Novel, A. Clean, and Low Reagent Consumption Ultraviolet (UV) Irradiation-Plastic Flotation Process for Separating Multi-plastics. J. Polym. Environ. 2024, 32, 4348–4370. [Google Scholar] [CrossRef]
- Jabbari, S.; Movahed, S.O.; Jourabchi, S. Application of a dual depressant system and microwave irradiation for flotation-based Separation of Polyethylene Terephthalate, Polyvinyl Chloride, and Polystyrene Plastics. Polym. Polym. Compos. 2024, 32, 09673911241248418. [Google Scholar] [CrossRef]
- Alvarez-Paino, M.; Amer, M.H.; Nasir, A.; Crucitti, V.C.; Thorpe, J.; Burroughs, L.; Needham, D.; Denning, C.; Alexander, M.R.; Alexander, C.; et al. Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS Appl. Mater. Inter. 2019, 11, 34560–34574. [Google Scholar] [CrossRef]
- Ismail, I.S.; Singh, G.; Smith, P.; Kim, S.; Yang, J.-H.; Joseph, S.; Yusup, S.; Singh, M.; Bansal, V.; Talapaneni, S.N.; et al. Oxygen functionalized porous activated biocarbons with high surface area derived from grape marc for enhanced capture of CO2 at elevated-pressure. Carbon 2020, 160, 113–124. [Google Scholar] [CrossRef]
- Reddy, M.S.; Kurose, K.; Okuda, T.; Nishijima, W.; Okada, M. Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation. J. Hazard. Mater. 2007, 147, 1051–1055. [Google Scholar] [CrossRef]
- Okuda, T.; Kurose, K.; Nishijima, W.; Okada, M. Separation of Polyvinyl Chloride from Plastic Mixture by Froth Flotation after Surface Modification with Ozone. Ozone Sci. Eng. 2007, 29, 373–377. [Google Scholar] [CrossRef]
- Jha, R.K.; Neyhouse, B.J.; Young, M.S.; Fagnani, D.E.; McNeil, A.J. Revisiting poly (vinyl chloride) reactivity in the context of chemical recycling. Chem. Sci. 2024, 15, 5802–5813. [Google Scholar] [CrossRef]
- Leung, K.C.; Xuan, S.; Lo, C.M. Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: Exploration of dynamic wettability. ACS Appl. Mater Interfaces 2009, 1, 2005–2012. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.J.; Brault, N.D.; Jiang, S. Suppressing Surface Reconstruction of Superhydrophobic PDMS Using a Superhydrophilic Zwitterionic Polymer. Biomacromolecules 2012, 13, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Du, Y.; Wang, C.; Wang, H. Surface alcoholysis induced by alkali-activation ethanol: A novel scheme for binary flotation of polyethylene terephthalate from other plastics. J. Clean. Prod. 2021, 314, 128096. [Google Scholar] [CrossRef]
- Behboodi-Sadabad, F.; Trouillet, V.; Welle, A.; Messersmith, P.B.; Levkin, P.A. Surface Functionalization and Patterning by Multifunctional Resorcinarenes. ACS Appl. Mater. Inter. 2018, 10, 39268–39278. [Google Scholar] [CrossRef]
- Duch, J.; Mazur, M.; Golda-Cepa, M.; Podobiński, J.; Piskorz, W.; Kotarba, A. Insight into the modification of electrodonor properties of multiwalled carbon nanotubes via oxygen plasma: Surface functionalization versus amorphization. Carbon 2018, 137, 425–432. [Google Scholar] [CrossRef]
- Dejaegher, B.; Dumarey, M.; Capron, X.; Bloomfield, M.S.; Heyden, Y.V. Comparison of Plackett-Burman and supersaturated designs in robustness testing. Anal. Chim. Acta 2007, 595, 59–71. [Google Scholar] [CrossRef]
- Dastyar, W.; Zhao, M.; Yuan, W.; Li, H.; Ting, Z.J.; Ghaedi, H.; Yuan, H.; Li, X.; Wang, W. Effective Pretreatment of Heavy Metal-Contaminated Biomass Using a Low-Cost Ionic Liquid (Triethylammonium Hydrogen Sulfate): Optimization by Response Surface Methodology–Box Behnken Design. ACS Sustain. Chem. Eng. 2019, 7, 11571–11581. [Google Scholar] [CrossRef]
- Deng, Y.; Jung, C.; Liang, Y.; Goodey, N.; Waite, T.D. Ferrate (VI) Decomposition in Water in the Absence and Presence of Natural Organic Matter (NOM). Chem. Eng. J. 2018, 334, 2335–2342. [Google Scholar] [CrossRef]
- Sharma, V.K. Potassium ferrate (VI): An environmentally friendly oxidant. Adv. Environ. Res. 2002, 6, 143–156. [Google Scholar] [CrossRef]
- Wang, J.C.; Wang, H. Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures. Sep. Purif. Technol. 2017, 187, 415–425. [Google Scholar] [CrossRef]
- Chattoraj, S.; Mondal, N.K.; Das, B.; Roy, P.; Sadhukhan, B. Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass. Appl. Water Sci. 2014, 4, 79–88. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Kalaamani, P.; Subburaam, C.V. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. 2006, 136, 800–808. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I.; Kumar, R. Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean Soil Air Water 2010, 38, 437–445. [Google Scholar] [CrossRef]
- Lupo, E.; Moroni, M.; La, M.F.; Fulco, S.; Pinzi, V. Investigation on an innovative technology for wet separation of plastic wastes. Waste Manag. 2016, 51, 3–12. [Google Scholar] [CrossRef]
- Wang, J.; Hui, W.; Wang, C.; Zhang, L.; Tao, W.; Long, Z. A novel process for separation of hazardous poly (vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag. 2017, 69, 59–65. [Google Scholar] [CrossRef] [PubMed]






| Plastics | Peaks | Position (eV) | Assignment | Content (%) | |
|---|---|---|---|---|---|
| Before | After | ||||
| PC | C (1) | 284.6 | sp2-C (C=C) | 54.25 | 54.16 |
| C (2) | 285.2 | sp3-C (C-C/C-H) | 19.45 | 11.99 | |
| C (3) | 286.3 | C-O | 16.09 | 22.78 | |
| C (4) | 288.5 | O-C=O | 1.91 | 2.86 | |
| C (5) | 290.9 | π-π* | 8.30 | 8.21 | |
| PVC | C (1) | 285.2 | sp3-C (C-C/C-H) | 70.01 | 68.66 |
| C (2) | 286.3 | C-O | 0.0 | 2.27 | |
| C (3) | 286.7 | C-Cl | 29.99 | 27.76 | |
| C (4) | 288.5 | O-C=O | 0.0 | 1.31 | |
| Run | Concentration (A, mM) | Contact Time (B, min) | Temperature (C, °C) | Stirring Rate (D, rpm) | Floatability of PC (%) |
|---|---|---|---|---|---|
| 1 | 15.0 | 15.0 | 80.0 | 100.0 | 65.6 ± 4.5 |
| 2 | 30.0 | 25.0 | 80.0 | 100.0 | 3.4 ± 0.3 |
| 3 | 15.0 | 25.0 | 45.0 | 300.0 | 75.7 ± 0.1 |
| 4 | 30.0 | 15.0 | 80.0 | 300.0 | 0.0 ± 0.0 |
| 5 | 30.0 | 15.0 | 45.0 | 100.0 | 0.0 ± 0.0 |
| 6 | 30.0 | 25.0 | 45.0 | 300.0 | 0.0 ± 0.0 |
| 7 | 30.0 | 25.0 | 45.0 | 100.0 | 0.0 ± 0.0 |
| 8 | 15.0 | 25.0 | 80.0 | 300.0 | 3.6 ± 0.3 |
| 9 | 15.0 | 15.0 | 45.0 | 300.0 | 16.7 ± 1.0 |
| 10 | 15.0 | 25.0 | 80.0 | 100.0 | 5.7 ± 0.7 |
| 11 | 30.0 | 15.0 | 80.0 | 300.0 | 16.5 ± 0.7 |
| 12 | 15.0 | 15.0 | 45.0 | 100.0 | 87.4 ± 1.7 |
| Run | Concentration (A, mM) | Contact Time (B, min) | Temperature (C, °C) | Δ-Floatability (%) |
|---|---|---|---|---|
| 1 | 20.0 | 30.11 | 62.5 | 99.6 ± 0.6 |
| 2 | 20.0 | 4.89 | 62.5 | 58.8 ± 2.3 |
| 3 | 20.0 | 17.5 | 62.5 | 96.2 ± 0.3 |
| 4 | 10.0 | 25.0 | 80.0 | 85.8 ± 1.1 |
| 5 | 30.0 | 25.0 | 80.0 | 35.2 ± 2.8 |
| 6 | 30.0 | 25.0 | 80.0 | 100.0 ± 0.0 |
| 7 | 10.0 | 25.0 | 45.0 | 7.6 ± 2.8 |
| 8 | 30.0 | 10.0 | 45.0 | 23.8 ± 4.5 |
| 9 | 36.81 | 17.5 | 62.5 | 100.0 ± 0.0 |
| 10 | 20.0 | 17.5 | 33.07 | 6.8 ± 3.7 |
| 11 | 20.0 | 17.5 | 91.93 | 100.0 ± 0.0 |
| 12 | 10.0 | 10.0 | 80.0 | 66.6 ± 2.3 |
| 13 | 20.0 | 17.5 | 62.5 | 96.0 ± 2.8 |
| 14 | 20.0 | 17.5 | 62.5 | 96.2 ± 1.1 |
| 15 | 10.0 | 10.0 | 45.0 | 0.6 ± 0.8 |
| 16 | 30.0 | 10.0 | 80.0 | 100.0 ± 0.0 |
| 17 | 20.0 | 17.5 | 62.5 | 96.4 ± 0.8 |
| 18 | 20.0 | 17.5 | 62.5 | 96.0 ± 2.8 |
| 19 | 20.0 | 17.5 | 62.4 | 95.8 ± 2.5 |
| 20 | 3.18 | 17.5 | 62.5 | 11.0 ± 3.1 |
| Source | Sum of Squares | df | Mean Square | F-Value | p-Value (Prob > F) |
|---|---|---|---|---|---|
| Model Y | 27,102.41 | 8 | 3387.80 | 27.80 | <0.0001 |
| A-concentration | 4502.64 | 1 | 4502.64 | 36.94 | <0.0001 |
| B-Contact time | 826.01 | 1 | 826.01 | 6.78 | 0.0245 |
| C-temperature | 14,301.59 | 1 | 14,301.59 | 117.35 | <0.0001 |
| AB | 27.38 | 1 | 27.38 | 0.22 | 0.6448 |
| AC | 1.28 | 1 | 1.28 | 0.011 | 0.9202 |
| A2 | 3731.00 | 1 | 3731.0 | 30.61 | 0.0002 |
| B2 | 865.92 | 1 | 856.92 | 7.03 | 0.0225 |
| C2 | 4082.83 | 1 | 4082.83 | 33.50 | 0.0001 |
| Residual | 1340.62 | 11 | 121.87 | ||
| Lack of Fit | 1340.40 | 6 | 223.40 | 5077.29 | <0.0001 |
| Pure Error | 0.22 | 5 | 0.044 | ||
| Cor Total | 28,443.03 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, X.; Jiang, Y.; Wu, Q.; Chen, X.; Wang, Y. Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling. Separations 2026, 13, 5. https://doi.org/10.3390/separations13010005
Sun X, Jiang Y, Wu Q, Chen X, Wang Y. Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling. Separations. 2026; 13(1):5. https://doi.org/10.3390/separations13010005
Chicago/Turabian StyleSun, Xueting, Yu Jiang, Qiruo Wu, Xu Chen, and Yuanqi Wang. 2026. "Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling" Separations 13, no. 1: 5. https://doi.org/10.3390/separations13010005
APA StyleSun, X., Jiang, Y., Wu, Q., Chen, X., & Wang, Y. (2026). Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling. Separations, 13(1), 5. https://doi.org/10.3390/separations13010005
