Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer
Abstract
1. Introduction
2. Materials and Methods
2.1. Cleaning and Etching of ITO Substrates
2.2. Fabrication of Hole Transport Layer
2.3. Fabrication of Active Layer
2.4. Fabrication of Electron Transport Layer and Cathode
2.5. Measurements
3. Results
3.1. Using PEDOT:PSS as the Hole Transport Layer
3.2. Using V2Ox as the Hole Transport Layer
3.3. Using V2Ox:Au-NPs as the Hole Transport Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Priya, P.; Stonier, A.A. Emerging innovations in solar photovoltaic (PV) technologies: The perovskite solar cells and more. Energy Rep. 2025, 14, 216–242. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chen, W.H. Dye-sensitized solar cells with modified TiO2 scattering layer produced by hydrothermal method. Materials 2025, 18, 278. [Google Scholar] [CrossRef]
- Ye, W.Y.; Yang, Y.; Zhang, Z.Z.; Zhu, Y.F.; Ye, L.; Miao, C.Y.; Lin, Y.Z.; Zhang, S.M. Nonfullerene all-small-molecule organic solar cells: Prospect and Limitation. Sol. RRL 2020, 4, 2000258. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, Y.; Na, Y.H.; Baek, N.S.; Jung, J.W.; Choi, Y.; Cho, N.; Kim, T.D. Efficient inverted solar cells using benzotriazole-based small molecule and polymers. Polymers 2021, 13, 393. [Google Scholar] [CrossRef]
- Liu, Y.N.; Zhang, J.Q.; Tian, C.Y.; Shen, Y.F.; Wang, T.; Zhang, H.; He, C.; Qiu, D.D.; Shi, Y.N.; Wei, Z.X. Efficient large area all-small-molecule organic solar cells fabricated by slot-die coating with nonhalogen solvent. Adv. Funct. Mater. 2023, 33, 2300778. [Google Scholar] [CrossRef]
- Gao, W.; Ma, R.J.; Dela Pena, T.A.; Yan, C.Q.; Li, H.X.; Li, M.J.; Wu, J.Y.; Cheng, P.; Zhong, C.; Wei, Z.H.; et al. Efficient all-small-molecule organic solar cells processed with non-halogen solvent. Nat. Commun. 2024, 15, 1946. [Google Scholar] [CrossRef]
- Ma, X.M.; Wang, C.X.; Deng, D.; Zhang, H.; Zhang, L.L.; Zhang, J.Q.; Yang, Y.P.; Wei, Z.X. Small molecule donors design rules for non-halogen solvent fabricated organic solar cells. Small 2024, 20, 2309042. [Google Scholar] [CrossRef]
- Balawi, A.H.; Kan, Z.P.; Gorenflot, J.; Guarracino, P.; Chaturvedi, N.; Privitera, A.; Liu, S.J.; Gao, Y.J.; Franco, L.; Beaujuge, P.; et al. Quantification of photophysical processes in all-polymer bulk heterojunction solar cells. Sol. RRL 2020, 4, 2000181. [Google Scholar] [CrossRef]
- Cho, H.E.; Cho, S.H.; Lee, S.M. Embedded plasmonic nanoprisms in polymer solar cells: Band-edge resonance for photocurrent enhancement. APL Mater. 2020, 8, 041116. [Google Scholar] [CrossRef]
- Ahmed, A.Y.A.; Mola, G.T. Nanocore shells for effective collection of photocurrent in polymer solar cell. Adv. Energy Sustain. Res. 2025, 2500215. [Google Scholar] [CrossRef]
- Wu, J.L.; Chen, F.C.; Hsiao, Y.S.; Chien, F.C.; Chen, P.L.; Kuo, C.H.; Huang, M.H.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction. solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Ghosekar, I.C.; Patil, G.C. Review on performance analysis of P3HT:PCBM-based bulk heterojunction organic solar cells. Semicond. Sci. Technol. 2021, 36, 045005. [Google Scholar] [CrossRef]
- Alam, S.; Petoukhoff, C.E.; Jurado, J.P.; Aldosari, H.; Jiang, X.Y.; Váry, T.; Al Nasser, H.; Dahman, A.; Althobaiti, W.; Lopez, S.P.G.; et al. Influence of thermal annealing on microstructure, energetic landscape and device performance of P3HT:PCBM-based organic solar cells. J. Phys. Energy 2024, 6, 025013. [Google Scholar] [CrossRef]
- Terán-Escobar, G.; Pampel, J.; Caicedo, J.M.; Lira-Cantú, M. Low-temperature, solution-processed, layered V2O5 hydrate as the hole-transport layer for stable organic solar cells. Energy Environ. Sci. 2013, 6, 3088–3098. [Google Scholar] [CrossRef]
- Bao, X.C.; Zhu, Q.Q.; Wang, T.; Guo, J.; Yang, C.P.; Yu, D.H.; Wang, N.; Chen, W.C.; Yang, R.Q. Simple O2 Plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells. ACS Appl. Mater. Interfaces 2015, 7, 7613–7618. [Google Scholar] [CrossRef]
- Zafar, M.; Yun, J.Y.; Kim, D.H. Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer. Korean J. Chem. Eng. 2017, 34, 1504–1508. [Google Scholar] [CrossRef]
- Ling, H.B.; Zhang, R.; Ye, X.Q.; Wen, Z.Y.; Xia, J.B.; Lu, X. In-situ synthesis of organic-inorganic hybrid thin film of PEDOT/V2O5 as hole transport layer for polymer solar cells. Sol. Energy 2019, 190, 63–68. [Google Scholar] [CrossRef]
- Li, J.F.; Qin, J.C.; Liu, X.P.; Ren, M.L.; Tong, J.F.; Zheng, N.; Chen, W.C.; Xia, Y.J. Enhanced organic photovoltaic performance through promoting crystallinity of photoactive layer and conductivity of hole-transporting layer by V2O5 doped PEDOT:PSS hole-transporting layers. Sol. Energy 2020, 211, 1102–1109. [Google Scholar] [CrossRef]
- Alkarsifi, R.; Ackermann, J.; Margeat, O. Hole transport layers in organic solar cells: A review. J. Met. Mater. Min. 2022, 32, 1–22. [Google Scholar] [CrossRef]
- Anrango-Camacho, C.; Pavón-Ipiales, K.; Frontana-Uribe, B.A.; Palma-Cando, A. Recent advances in hole-transporting layers for organic solar cells. Nanomaterials 2022, 12, 443. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Abdur, R.; Sheikh, M.A.K.; Singh, S.; Lee, J.G. Conductive MoO3–PEDOT:PSS composite layer in MoO3/Au/MoO3–PEDOT:PSS multilayer electrode in ITO-Free organic solar cells. Processes 2023, 11, 594. [Google Scholar] [CrossRef]
- Tong, Y.; Xu, B.W.; Ye, F.F. Recent advance in solution-processed hole transporting materials for organic solar cells. Adv. Funct. Mater. 2024, 34, 2310865. [Google Scholar] [CrossRef]
- Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.Z.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy 2014, 106, 23–27. [Google Scholar] [CrossRef]
- Said, D.A.; Ali, A.M.; Khayyat, M.M.; Boustimi, M.; Loulou, M.; Seoudi, R. A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60. Heliyon 2019, 5, e02675. [Google Scholar] [CrossRef] [PubMed]
- Phengdaam, A.; Phetsang, S.; Jonai, S.; Shinbo, K.; Kato, K.; Baba, A. Gold nanostructures/quantum dots for the enhanced efficiency of organic solar cells. Nanoscale Adv. 2024, 6, 3494–3512. [Google Scholar] [CrossRef] [PubMed]
- Hancox, I.; Rochford, L.A.; Clare, D.; Walker, M.; Mudd, J.J.; Sullivan, P.; Schumann, S.; McConville, C.F.; Jones, T.S. Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells. J. Phys. Chem. C 2013, 117, 49–57. [Google Scholar] [CrossRef]
- Tashtoush, N.M.; Sheiab, A.; Jafar, M.; Momani, S. Determining optical constants of sol-gel vanadium pentoxide thin films using transmittance and reflectance spectra. Int. J. Phys. Stud. Res. 2019, 2, 59–64. [Google Scholar] [CrossRef]
- Li, G.; Shrotriya, V.; Huang, J.S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868. [Google Scholar] [CrossRef]










| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| 2500 rpm | 8.98 | 0.57 | 0.56 | 2.87 |
| 3000 rpm | 9.24 | 0.60 | 0.65 | 3.60 |
| 3500 rpm | 9.26 | 0.62 | 0.70 | 4.00 |
| 4000 rpm | 8.60 | 0.60 | 0.65 | 3.37 |
| 4500 rpm | 8.13 | 0.58 | 0.64 | 3.03 |
| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| 100 °C | 9.01 | 0.60 | 0.63 | 3.40 |
| 120 °C | 9.36 | 0.59 | 0.65 | 3.59 |
| 140 °C | 9.26 | 0.62 | 0.70 | 4.00 |
| 160 °C | 8.78 | 0.59 | 0.67 | 3.45 |
| 180 °C | 8.65 | 0.60 | 0.63 | 3.26 |
| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| 50 nm (aqueous solution) | 9.65 | 0.61 | 0.72 | 4.23 |
| 80 nm (aqueous solution) | 10.18 | 0.61 | 0.69 | 4.28 |
| 20 nm (PEG coated) | 8.63 | 0.59 | 0.63 | 3.30 |
| 50 nm (PEG coated) | 9.17 | 0.59 | 0.64 | 3.50 |
| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| 1:0 (without Au-NPs) | 9.26 | 0.61 | 0.69 | 4.00 |
| 1:0.33 | 9.57 | 0.62 | 0.69 | 4.10 |
| 1:0.5 | 9.53 | 0.62 | 0.70 | 4.11 |
| 1:1 | 10.18 | 0.61 | 0.69 | 4.28 |
| 1:2 | 10.92 | 0.61 | 0.70 | 4.65 |
| 1:3 | 10.20 | 0.62 | 0.68 | 4.30 |
| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| 100 °C | 10.11 | 0.61 | 0.70 | 4.15 |
| 120 °C | 10.28 | 0.61 | 0.70 | 4.42 |
| 140 °C | 10.92 | 0.61 | 0.70 | 4.65 |
| 160 °C | 10.51 | 0.61 | 0.70 | 4.49 |
| 180 °C | 10.22 | 0.61 | 0.69 | 4.26 |
| JSC (mA/cm2) | VOC (V) | FF | PCE (%) | |
|---|---|---|---|---|
| V2Ox | 9.26 | 0.61 | 0.69 | 4.00 |
| V2Ox:Au | 10.92 | 0.61 | 0.7 | 4.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-S.; Shiu, S.-M. Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer. Processes 2025, 13, 4070. https://doi.org/10.3390/pr13124070
Lin Y-S, Shiu S-M. Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer. Processes. 2025; 13(12):4070. https://doi.org/10.3390/pr13124070
Chicago/Turabian StyleLin, Yu-Shyan, and Shiun-Ming Shiu. 2025. "Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer" Processes 13, no. 12: 4070. https://doi.org/10.3390/pr13124070
APA StyleLin, Y.-S., & Shiu, S.-M. (2025). Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer. Processes, 13(12), 4070. https://doi.org/10.3390/pr13124070
