Multi-Dimensional Benefit Assessment of Virtual Power Plants Based on Vickrey-Clarke-Groves from Grid’s Side
Abstract
1. Introduction
2. Framework of Proposed Benefit Assessment Method of VPPs
2.1. Benefit Connotations of VPPs
2.2. Framework for Multi-Dimensional Benefit Quantification of VPPs Based on VCG
3. Quantitative Assessment of VPP Benefits Based on an Improved Modeling Framework
3.1. Optimization Dispatch Model
3.1.1. Objective Function
3.1.2. Constraints on Frequency Regulation Capacity
3.1.3. Constraints on Unit Operation
3.1.4. Constraints on Power Balance
3.1.5. Constraints on the Ramping-Related Constraints
3.1.6. Constraints on Renewable Energy Output
3.1.7. Constraints on Other Operating Conditions
3.2. Actual Operation Simulation Based on Scheduling Outcomes
3.3. Multidimensional Benefits Assessment Method
3.3.1. Environmental Benefit Assessment Model
3.3.2. Security Benefit Assessment Model
3.3.3. Economic Benefit Assessment Model
4. Case Studies
4.1. Illustration of Case Studies
4.2. Benefits Analysis for VPP in the Electricity Market Under Different Scenarios
- (1)
- Significant multi-dimensional benefit
- (2)
- Security benefit is significant
- (3)
- System ancillary benefit unlocks greater benefit
- (4)
- Implications for market design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| VPP | Virtual power plant |
| VCG | Vickrey-Clarke-Groves |
| AGC | Automatic generation control |
| DR | Flexible demand response |
| DERs | Distributed energy resources |
| BTM | Behind the meter |
| CVM | Contingent valuation method |
| RR | Regulation reserves |
| RM | Regulation mileage |
| ESSs | Energy storage systems |
References
- Yang, Z.; Yong, P.; Xiang, M. Revisit power system dispatch: Concepts, models, and solutions. iEnergy 2023, 2, 43–62. [Google Scholar] [CrossRef]
- Brooks, A.E.; Lesieutre, B.C. A review of frequency regulation markets in three US ISO/RTOs. Electr. J. 2019, 32, 106668. [Google Scholar] [CrossRef]
- Prat, E.; Dukovska, I.; Nellikkath, R.; Thoma, M.; Herre, L.; Chatzivasileiadis, S. Network-Aware Flexibility Requests for Distribution-Level Flexibility Markets. IEEE Trans. Power Syst. 2024, 39, 2641–2652. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, Q.; Wennersten, R.; Pang, X.Y.; Liu, W.X. Uncertainty-Based System Flexibility Evaluation and Multi-Objective Collaborative Optimization of Integrated Energy System. Processes 2025, 13, 2047. [Google Scholar] [CrossRef]
- Cao, W.S.; Yu, J.H.; Xu, M.M. Optimization Scheduling of Virtual Power Plants Considering Source-Load Coordinated Operation and Wind-Solar Uncertainty. Processes 2024, 12, 11. [Google Scholar] [CrossRef]
- Xie, T.; Wang, Q.; Zhang, G.; Zhang, K.S.; Li, H. Low-Carbon Economic Dispatch of Virtual Power Plant Considering Hydrogen Energy Storage and Tiered Carbon Trading in Multiple Scenarios. Processes 2024, 12, 90. [Google Scholar] [CrossRef]
- Pandey, A.K.; Jadoun, V.K.; Jayalakshmi, N.S.; Singh, M. Decentralization of renewable energy sources based optimum scheduling and management through a virtual power plant. Environ. Res. Commun. 2024, 6, 115021. [Google Scholar] [CrossRef]
- Bao, P.; Zhang, W.; Zhang, Y.X. Secondary Frequency Control Considering Optimized Power Support From Virtual Power Plant Containing Aluminum Smelter Loads Through VSC-HVDC Link. J. Mod. Power Syst. Clean Energy 2023, 11, 355–367. [Google Scholar] [CrossRef]
- Pandey, A.K.; Jadoun, V.K.; Sabhahit, J.N.; Sharma, S. Interconnected Operation and Economic Feasibility-Based Sustainable Planning of Virtual Power Plant in Multi-Area Context. Smart Cities 2025, 8, 37. [Google Scholar] [CrossRef]
- Lin, W.; Yang, Z.F. Non-convexity Pricing and Allocating Costs in Stochastic Electricity Markets. CSEE J. Power Energy Syst. 2024, 10, 1466–1477. [Google Scholar] [CrossRef]
- National Energy Administration; Central China Regulatory Bureau. Operating Rules for the Electricity Frequency Regulation Ancillary Service Market in Hubei, Jiangxi, and Chongqing. EB/OL. 31 March 2025. Available online: https://hzj.nea.gov.cn/xxgk/zcfg/202504/t20250402_279003.html (accessed on 1 August 2025).
- Setiawan, A.; Jufri, F.H.; Dzulfiqar, F.; Samual, M.G.; Arifin, Z.; Angkasa, F.F.; Aryani, D.R.; Garniwa, I.; Sudiarto, B. Opportunity Assessment of Virtual Power Plant Implementation for Sustainable Renewable Energy Development in Indonesia Power System Network. Sustainability 2024, 16, 1721. [Google Scholar] [CrossRef]
- Masoomi, M.; Panahi, M.; Samadi, R. Scenarios evaluation on the greenhouse gases emission reduction potential in Iran’s thermal power plants based on the LEAP model. Environ. Monit. Assess. 2020, 192, 14. [Google Scholar] [CrossRef]
- Zhou, K.L.; Yang, S.L.; Shao, Z. Energy Internet: The business perspective. Appl. Energy 2016, 178, 212–222. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, M.; Ao, J.D.; Wang, Z.Z.; Dong, H.Q.; Zeng, M. Profit Allocation Strategy of Virtual Power Plant Based on Multi-Objective Optimization in Electricity Market. Sustainability 2022, 14, 6229. [Google Scholar] [CrossRef]
- Roozbehani, M.M.; Heydarian-Forushani, E.; Hasanzadeh, S.; Ben Elghali, S. Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities. Sustainability 2022, 14, 12486. [Google Scholar] [CrossRef]
- Sillman, J.; Lakanen, L.; Annala, S.; Grönman, K.; Luoranen, M.; Soukka, R. Evaluation of greenhouse gas emission reduction potential of a demand–response solution: A carbon handprint case study of a virtual power plant. Clean Energy 2023, 7, 755–766. [Google Scholar] [CrossRef]
- Lossner, M.; Böttger, D.; Bruckner, T. Economic assessment of virtual power plants in the German energy market- A scenario-based and model-supported analysis. Energy Econ. 2017, 62, 125–138. [Google Scholar] [CrossRef]
- MacDougall, P.; Ran, B.; Klever, M.; Deconinck, G. Value assessment of aggregated energy flexibility when traded on multiple markets. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Misconel, S.; Zöphel, C.; Möst, D. Assessing the value of demand response in a decarbonized energy system—A large-scale model application. Appl. Energy 2021, 299, 117326. [Google Scholar] [CrossRef]
- Xinfa, T.; Jingjing, W.; Yonghua, W.; Youwei, W. The Optimization of Supply-Demand Balance Dispatching and Economic Benefit Improvement in a Multi-Energy Virtual Power Plant within the Jiangxi Power Market. Energies 2024, 17, 4691. [Google Scholar] [CrossRef]
- Ullah, Z.; Arshad, A.; Nekahi, A. Virtual Power Plants: Challenges, Opportunities, and Profitability Assessment in Current Energy Markets. Electricity 2024, 5, 370–384. [Google Scholar] [CrossRef]
- Shim, D. Quantifying Social Benefits of Virtual Power Plants (VPPs) in South Korea: Contingent Valuation Method. Energies 2025, 18, 3006. [Google Scholar] [CrossRef]
- Qu, L.; Wang, Y.; Dong, Y.; Wang, H.; Wang, D.; Yi, Z.; Liu, Y.; Kuang, H. A Multi factor Modified VPP Benefit Allocation Strategy Based on Shapley Value Method. In Proceedings of the 2024 6th International Conference on Energy, Power and Grid (ICEPG), Guangzhou, China, 27–29 September 2024; pp. 1852–1859. [Google Scholar]
- Pimentel Pincelli, I.; Hinkley, J.; Brent, A. Life cycle assessment of a virtual power plant: Evaluating the environmental performance of a system utilising solar photovoltaic generation and batteries. Renew. Energ. 2024, 2, 27533735241285428. [Google Scholar] [CrossRef]
- Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Clarke, E.H. Multipart pricing of public goods. Public Choice 1971, 11, 17–33. [Google Scholar] [CrossRef]
- Groves, T. Incentives in teams. Econom. J. Econom. Soc. 1973, 41, 617–631. [Google Scholar] [CrossRef]





| Aggregated Resources | Controllable Industrial Loads | Commercial Building Loads | Energy Storage Systems (ESSs) | Wind and Solar Generation |
|---|---|---|---|---|
| Minimum output (MW) | −51.26 | −0.70 | −0.50 | 0.00 |
| Maximum output (MW) | −22.76 | −0.50 | 0.50 | 6.00 |
| Adjustable capacity (MW) | 28.50 | 0.20 | 1.00 | 0.00 |
| Quantity | 4 | 1 | 1 | 1 |
| Parameter Category | Adjustable Capacity (MW) | Upward Ramp Rate (MW/min) | Downward Ramp Rate (MW/min) | Output Range (MW) |
|---|---|---|---|---|
| VPP Characteristics | 29.70 | 2.39 | 1.71 | [−52.46, −16.76] |
| Benefits Component | S1 | S2 | S3 |
|---|---|---|---|
| Carbon Emissions Benefits ($) | 8064.3 | 8113.2 | 8176.2 |
| System Generation Benefits ($) | 4959.2 | 7481.2 | 13,184.6 |
| Solar and Wind Curtailment Benefits ($) | 9600.0 | 7400.0 | 5300 |
| System Ancillary Benefits ($) | 10,200.1 | 7860.5 | 2420.0 |
| Load Shedding Benefits ($) | 12,704.2 | 11,725.4 | 9344.1 |
| Total System Benefit ($) | 45,527.8 | 42,580.2 | 38,424.9 |
| Benefits Dimension | S1 | S2 | S3 |
|---|---|---|---|
| V1 ($) | 24,759.3 | 22,741.7 | 20,904.6 |
| V2 ($) | 8064.3 | 8113.2 | 8176.2 |
| V3 ($) | 12,704.2 | 11,725.4 | 9344.1 |
| V4 ($) | 45,527.8 | 42,580.2 | 38,424.9 |
| Benefits Dimension | S4 | S5 | S6 |
|---|---|---|---|
| V1 ($) | 291,529 | 242,284 | 182,735 |
| V2 ($) | 3197 | 3082 | 2835 |
| V3 ($) | 125,087 | 125,070 | 125,018 |
| V4 ($) | 419,813 | 370,436 | 310,703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xiang, M.; Yin, X.; Zhou, C.; Wang, H. Multi-Dimensional Benefit Assessment of Virtual Power Plants Based on Vickrey-Clarke-Groves from Grid’s Side. Processes 2025, 13, 4018. https://doi.org/10.3390/pr13124018
Li W, Xiang M, Yin X, Zhou C, Wang H. Multi-Dimensional Benefit Assessment of Virtual Power Plants Based on Vickrey-Clarke-Groves from Grid’s Side. Processes. 2025; 13(12):4018. https://doi.org/10.3390/pr13124018
Chicago/Turabian StyleLi, Weihao, Mingxu Xiang, Xujia Yin, Ce Zhou, and Haolin Wang. 2025. "Multi-Dimensional Benefit Assessment of Virtual Power Plants Based on Vickrey-Clarke-Groves from Grid’s Side" Processes 13, no. 12: 4018. https://doi.org/10.3390/pr13124018
APA StyleLi, W., Xiang, M., Yin, X., Zhou, C., & Wang, H. (2025). Multi-Dimensional Benefit Assessment of Virtual Power Plants Based on Vickrey-Clarke-Groves from Grid’s Side. Processes, 13(12), 4018. https://doi.org/10.3390/pr13124018
