Simulation and Assimilation of CO2 Concentrations Based on the WRF-Chem Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Input Data for WRF-Chem
2.2.2. Observations for Meteorological Data Assimilation
2.2.3. XCO2 Fusion Data from Satellite Observation
2.2.4. Observations for Validation
2.3. Methods
2.3.1. WRF-Chem Model
2.3.2. WRF-DART Model
2.3.3. EAKF Method
2.3.4. Statistical Evaluation Indicators
3. Results
3.1. Experimental Design
3.2. Simulation and Assimilation of Meteorological Variables
3.3. CO2 Concentrations Validated with WDCGG
3.4. XCO2 Concentrations Validated with TCCON
3.5. Spatiotemporal Analysis of XCO2 Concentrations Before and After Assimilation
4. Discussion
4.1. Comparison of Assimilation with Other Datasets and Models
4.2. Sensitivity and Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, W.; Dan, L.; Deng, X.; Feng, J.; Wang, Y.; Peng, J.; Tian, J.; Qi, W.; Liu, Z.; Zheng, X.; et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci. Data 2022, 9, 83. [Google Scholar] [CrossRef]
- Delsarte, I.; Cohen, G.; Momtbrun, M.; Höhener, P.; Atteia, O. Soil carbon dioxide fluxes to atmosphere: The role of rainfall to control CO2 transport. Appl. Geochem. 2021, 127, 104854. [Google Scholar] [CrossRef]
- He, B.; Xue, Y.; Lu, X.; Zhao, L.; Jin, C.; Wang, P.; Li, P.; Liu, W.; Yin, W.; Yuan, T. Monitoring oil and gas field CH4 leaks by Sentinel-5P and Sentinel-2. Fuel 2025, 383, 133889. [Google Scholar] [CrossRef]
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environ. Sci. Ecotechnol. 2021, 8, 100130. [Google Scholar] [CrossRef]
- Ji, M.; Xu, Y.M.; Zhang, Y.; Mo, Y.P.; Zhu, S.Y.; Wang, W.; Zhou, M.Q.; Morino, I.; Ohyama, H.; Shiomi, K.; et al. Validation of Remotely Sensed XCO2 Products With TCCON Observations in East Asia. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 7159–7169. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Kenea, S.T.; Lindqvist, H.; Kim, J.; Li, S.; Byun, Y.H.; Goo, T.Y. Towards Robust Calculation of Interannual CO2 Growth Signal from TCCON (Total Carbon Column Observing Network). Remote Sens. 2021, 13, 3868. [Google Scholar] [CrossRef]
- Hu, K.; Liu, Z.R.; Shao, P.F.; Ma, K.Y.; Xu, Y.; Wang, S.Q.; Wang, Y.Y.; Wang, H.; Di, L.; Xia, M.; et al. A Review of Satellite-Based CO2 Data Reconstruction Studies: Methodologies, Challenges, and Advances. Remote Sens. 2024, 16, 3818. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Q.; Feng, X.Y.; Liu, Z.R.; Shao, P.F.; Xia, M.; Ye, X.L. An Interpolation and Prediction Algorithm for XCO2 Based on Multi-Source Time Series Data. Remote Sens. 2024, 16, 1907. [Google Scholar] [CrossRef]
- Yang, H.J.; Li, T.W.; Wu, J.A.; Zhang, L.F. Inter-comparison and evaluation of global satellite XCO2 products. Geo-Spat. Inf. Sci. 2025, 28, 131–144. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, T.; Zhang, P.; Chen, L.; Xu, N.; Ma, Y. Global Atmospheric CO2 Concentrations Simulated by GEOS-Chem: Comparison with GOSAT, Carbon Tracker and Ground-Based Measurements. Atmosphere 2018, 9, 175. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, J.; Yu, Z.; Luo, Y. Spatiotemporal Analysis of XCO2 and Its Relationship to Urban and Green Areas of China’s Major Southern Cities from Remote Sensing and WRF-Chem Modeling Data from 2010 to 2019. Geographies 2023, 3, 246–267. [Google Scholar] [CrossRef]
- Dong, X.; Yue, M.; Jiang, Y.; Hu, X.; Ma, Q.; Pu, J.; Zhou, G. Analysis of CO2 spatio-temporal variations in China using a weather-biosphere online coupled model. Atmos. Chem. Phys. 2021, 21, 7217–7233. [Google Scholar] [CrossRef]
- Liang, A.; Gu, J.; Xiang, C. Multi-Source Satellite and WRF-Chem Analyses of Atmospheric Pollution from Fires in Peninsular Southeast Asia. Remote Sens. 2023, 15, 5463. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.M. Effect of meteorological data assimilation using 3DVAR on high-resolution simulations of atmospheric CO2 concentrations in East Asia. Atmos. Pollut. Res. 2023, 14, 101759. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, C.J.; Gong, J.D. Physical initialization applied in WRF-Var for assimilation of Doppler radar data. Geophys. Res. Lett. 2006, 33, L22807. [Google Scholar] [CrossRef]
- Yang, S.; Li, D.Q.; Chen, L.Q.; Liu, Z.Q.; Huang, X.Y.; Pan, X. The Regularized WSM6 Microphysical Scheme and Its Validation in WRF 4D-Var. Adv. Atmos. Sci. 2023, 40, 483–500. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xiao, Q.N.; Barker, D.M.; Zhang, X.; Michalakes, J.; Huang, W.; Henderson, T.; Bray, J.; Chen, Y.S.; Ma, Z.Z.; et al. Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. Mon. Weather Rev. 2009, 137, 299–314. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Yu, G.; Zhang, X.L.; Feng, Z.B. A hybrid data assimilation method for reconstructing airflow path parameters of a multi-zone model. J. Build. Eng. 2024, 95, 110240. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, Z.Y.; Weng, Y.H.; Zhang, F.Q. Assimilation of All-sky Geostationary Satellite Infrared Radiances for Convection-Permitting Initialization and Prediction of Hurricane Joaquin (2015). Adv. Atmos. Sci. 2022, 39, 1859–1872. [Google Scholar] [CrossRef]
- Hu, Y.W.; Li, Y.; Ma, X.Y.; Liang, Y.F.; You, W.; Pan, X.B.; Zang, Z.L. The optimization of SO2 emissions by the 4DVAR and EnKF methods and its application in WRF-Chem. Sci. Total Environ. 2023, 888, 163796. [Google Scholar]
- Wang, R.; Shen, Z. A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation. J. Mar. Sci. Eng. 2024, 12, 108. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Zhang, J.; Yang, D.; Yin, X.; Gao, Y.; Wang, G.; Lv, X. Data assimilation in a regional high-resolution ocean model by using Ensemble Adjustment Kalman Filter and its application during 2020 cold spell event over Asia-Pacific region. Appl. Ocean Res. 2022, 129, 103375. [Google Scholar] [CrossRef]
- Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.F.; Simmons, A. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 2000, 126, 1143–1170. [Google Scholar] [CrossRef]
- Dobricic, S.; Pinardi, N. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model. 2008, 22, 89–105. [Google Scholar] [CrossRef]
- Gauthier, P.; Tanguay, M.; Laroche, S.; Pellerin, S.; Morneau, J. Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Weather Rev. 2007, 135, 2339–2354. [Google Scholar] [CrossRef]
- Koffi, E.N.; Rayner, P.J.; Scholze, M.; Chevallier, F.; Kaminski, T. Quantifying the constraint of biospheric process parameters by CO2 concentration and flux measurement networks through a carbon cycle data assimilation system. Atmos. Chem. Phys. 2013, 13, 10555–10572. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmos. Chem. Phys. 2014, 14, 13281–13293. [Google Scholar] [CrossRef]
- Huang, Z.K.; Peng, Z.; Liu, H.N.; Zhang, M.G.; Ma, X.G.; Yang, S.C.; Lee, S.D.; Kim, S.Y. Development of CMAQ for East Asia CO2 data assimilation under an EnKF framework: A first result. Chin. Sci. Bull. 2014, 59, 3200–3208. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, M.; Kou, X.; Tian, X.; Ma, X. A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos. Chem. Phys. 2015, 15, 1087–1104. [Google Scholar] [CrossRef]
- Deng, A.J.; Lauvaux, T.; Davis, K.J.; Gaudet, B.J.; Miles, N.; Richardson, S.J.; Wu, K.; Sarmiento, D.P.; Hardesty, R.M.; Bonin, T.A.; et al. Toward reduced transport errors in a high resolution urban CO2 inversion system. Elem. Sci. Anthr. 2017, 5, 20. [Google Scholar]
- He, W.; van der Velde, I.R.; Andrews, A.E.; Sweeney, C.; Miller, J.; Tans, P.; van der Laan-Luijkx, I.T.; Nehrkorn, T.; Mountain, M.; Ju, W.M.; et al. CTDAS-Lagrange v1.0: A high-resolution data assimilation system for regional carbon dioxide observations. Geosci. Model Dev. 2018, 11, 3515–3536. [Google Scholar]
- Hu, X.M.; Gourdji, S.M.; Davis, K.J.; Wang, Q.Y.; Zhang, Y.; Xue, M.; Feng, S.; Moore, B.; Crowell, S. Implementation of Improved Parameterization of Terrestrial Flux in WRF-VPRM Improves the Simulation of Nighttime CO2 Peaks and a Daytime CO2 Band Ahead of a Cold Front. J. Geophys. Res. Atmos. 2021, 126, e2020JD034362. [Google Scholar] [CrossRef]
- Ho, D.; Galkowski, M.; Reum, F.; Botía, S.; Marshall, J.; Totsche, K.U.; Gerbig, C. Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG. Geosci. Model Dev. 2024, 17, 7401–7422. [Google Scholar] [CrossRef]
- Peng, Z.; Kou, X.X.; Wang, S.Y.; Zhang, Y.; Zhang, M.G.; Hu, F.; Miao, S.G.; Dou, J.X. Quantifying Observational Constraints in Top-Down Estimation of Terrestrial Biosphere Carbon Fluxes by CO2 Concentration and Eddy Covariance Flux Measurement Based on EnSRF and CMAQ. J. Geophys. Res. Atmos. 2025, 130, e2024JD041540. [Google Scholar]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.F.; Li, J.J.; Wu, H.J.; Wu, Q.Z.; Chen, H.S.; Zhu, L.L.; Wang, W.; et al. A 6-year-long (2013-2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth Syst. Sci. Data 2021, 13, 529–570. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.M.; Cho, C.H. Influence of CO2 observations on the optimized CO2 flux in an ensemble Kalman filter. Atmos. Chem. Phys. 2014, 14, 13515–13530. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.M. Design and evaluation of CO2 observation network to optimize surface CO2 fluxes in Asia using observation system simulation experiments. Atmos. Chem. Phys. 2020, 20, 5175–5195. [Google Scholar]
- Lei, L.L.; Ge, Y.J.; Tan, Z.M.; Zhang, Y.; Chu, K.K.; Qiu, X.; Qian, Q.F. Evaluation of a Regional Ensemble Data Assimilation System for Typhoon Prediction. Adv. Atmos. Sci. 2022, 39, 1816–1832. [Google Scholar]
- George, B.; Kutty, G. Multivariate ensemble sensitivity analysis applied for an extreme rainfall over Indian subcontinent. Atmos. Res. 2022, 277, 106324. [Google Scholar]
- Yang, E.G.; Kim, H.M. A comparison of variational, ensemble-based, and hybrid data assimilation methods over East Asia for two one-month periods. Atmos. Res. 2021, 249, 105257. [Google Scholar]
- Sun, R.; Sanikommu, S.; Subramanian, A.C.; Mazloff, M.R.; Cornuelle, B.D.; Gopalakrishnan, G.; Miller, A.J.; Hoteit, I. Enhanced regional ocean ensemble data assimilation through atmospheric coupling in the SKRIPS model. Ocean Model. 2024, 191, 102424. [Google Scholar] [CrossRef]
- Seo, M.G.; Kim, H.M. Evaluation of high-resolution regional CO2 data assimilation-forecast system in East Asia using observing system simulation experiment and effect of observation network on simulated CO2 concentrations. Q. J. R. Meteorol. Soc. 2025, 151, e4987. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Li, M.Q.; Wei, C.; Mizzi, A.P.; Huang, Y.J.; Gu, Q.R. Assimilation of OCO-2 retrievals with WRF-Chem/DART: A case study for the Midwestern United States. Atmos. Environ. 2021, 246, 118106. [Google Scholar] [CrossRef]
- Jin, J.P.; Zhang, Q.W.; Wei, C.; Gu, Q.R.; Huang, Y.J. Wildfire CO2 Emissions in the Conterminous United States from 2015 to 2018 as Estimated by the WRF-Chem Assimilation System from OCO-2 XCO2 Retrievals. Atmosphere 2024, 15, 186. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.; Chen, J.M.; Chen, Z.; Dan, B.; Yi, X.; Wang, L.; Wu, G. A global carbon assimilation system using a modified ensemble Kalman filter. Geosci. Model Dev. 2015, 8, 805–816. [Google Scholar] [CrossRef]
- Jin, J.P.; Huang, Y.J.; Wei, C.; Wang, X.P.; Xu, X.J.; Gu, Q.R.; Wang, M.Q. Analysis of CO2 Concentration and Fluxes of Lisbon Portugal Using Regional CO2 Assimilation Method Based on WRF-Chem. Atmosphere 2025, 16, 847. [Google Scholar] [CrossRef]
- Agustí-Panareda, A.; Diamantakis, M.; Massart, S.; Chevallier, F.; Muñoz-Sabater, J.; Barré, J.; Curcoll, R.; Engelen, R.; Langerock, B.; Law, R.M.; et al. Modelling CO2 weather—Why horizontal resolution matters. Atmos. Chem. Phys. 2019, 19, 7347–7376. [Google Scholar] [CrossRef]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycle 2008, 22. [Google Scholar]
- Jin, C.; Xue, Y.; Jiang, X.; Zhao, L.; Yuan, T.; Sun, Y.; Wu, S.; Wang, X. A long-term global XCO2 dataset: Ensemble of satellite products. Atmos. Res. 2022, 279, 106385. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting carbon observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, D05305. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Liu, W.; Ling, X.; Xue, Y.; Wu, S.; Gao, J.; Zhao, L.; He, B. Study on the Concentration of Top Air Pollutants in Xuzhou City in Winter 2020 Based on the WRF-Chem and ADMS-Urban Models. Atmosphere 2024, 15, 129. [Google Scholar] [CrossRef]
- Lin, Y.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Tech. Note; University Corporation for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Anderson, J.; Hoar, T.; Raeder, K.; Liu, H.; Collins, N.; Torn, R.; Avellano, A. The data assimilation research testbed a community facility. Bull. Amer. Meteorol. Soc. 2009, 90, 1283–1296. [Google Scholar]
- Williams, J.L.I.; Maxwell, R.M.; Delle Monache, L. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model. J. Adv. Model. Earth Syst. 2013, 5, 785–800. [Google Scholar] [CrossRef]
- Ma, C.; Wang, T.; Mizzi, A.P.; Anderson, J.L.; Zhuang, B.; Xie, M.; Wu, R. Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China. J. Geophys. Res. Atmos. 2019, 124, 7393–7412. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Anderson, J.L. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Rood, R.B.; Gaspari, G.; Cohn, S.E. Construction of Correlation Functions in Two and Three Dimensions. Q. J. R. Meteorol. Soc. 1998, 125, 723–757. [Google Scholar]
- Scholze, M.; Buchwitz, M.; Dorigo, W.; Guanter, L.; Shaun, Q.G. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences 2017, 14, 3401–3429. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonog. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Chen, J.W.; Dong, H.D.; Wang, X.; Feng, F.L.; Wang, M.; He, X.N. Bias and Debias in Recommender System: A Survey and Future Directions. ACM Trans. Inf. Syst. 2023, 41, 1–19. [Google Scholar] [CrossRef]
- Fujita, T.; Stensrud, D.J.; Dowell, D.C. Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Weather Rev. 2007, 135, 1846–1868. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yue, T.X.; Wilson, J.P.; Zhao, N.; Zhao, Y.P.; Du, Z.P.; Liu, Y. A comparison of satellite observations with the XCO2 surface obtained by fusing TCCON measurements and GEOS-Chem model outputs. Sci. Total Environ. 2017, 601, 1575–1590. [Google Scholar] [CrossRef]
- Ballav, S.; Naja, M.; Patra, P.K.; Machida, T.; Mukai, H. Assessment of spatio-temporal distribution of CO2 over greater Asia using the WRF-CO2 model. J. Earth Syst. Sci. 2020, 129, 80. [Google Scholar] [CrossRef]
- Cogan, A.J.; Boesch, H.; Parker, R.J.; Feng, L.; Palmer, P.I.; Blavier, J.; Deutscher, N.M.; Macatangay, R.; Notholt, J.; Roehl, C.; et al. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing Satellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Karbasi, S.; Abdi, A.H.; Malakooti, H.; Orza, J. Atmospheric CO2 column concentration over Iran: Emissions, GOSAT satellite observations, and WRF-GHG model simulations. Atmos. Res. 2025, 314, 107818. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.F.; Yang, Y.K.; Yang, X.C.; Wang, C.Y. Impact of emissions from a single urban source on air quality estimated from mobile observation and WRF-STILT model simulations. Air Qual. Atmos. Health 2021, 14, 1313–1323. [Google Scholar] [CrossRef]













| Station Type | Station Name | Latitude (°N) | Longitude (°E) | Location |
|---|---|---|---|---|
| TCCON | Hefei | 31.91 | 117.17 | Hefei |
| Xianghe | 39.80 | 116.96 | Xianghe | |
| WDCGG | LLN | 23.47 | 120.87 | Lulin |
| WLG | 36.29 | 100.90 | Mt. Waliguan | |
| HKO | 22.31 | 114.17 | King’s Park | |
| DSI | 20.70 | 116.73 | Dongsha Island |
| Scheme | Chosen Option | Input Settings |
|---|---|---|
| Microphysical process | Lin scheme [53] | mp_physics = 2 |
| Long-wave Radiation | RRTM scheme [54] | ra_lw_physics = 1 |
| Short-wave Radiation | Dudhia scheme [55] | ra_sw_physics = 1 |
| Surface Layer | MM5 scheme [56] | sf_sfclay_physics = 1 |
| Land Surface Model | Noah scheme [57] | sf_surface_physics = 2 |
| Boundary Layer | YSU scheme [58] | bl_pbl_physics = 1 |
| Cumulus parameterization | Grell3 scheme [59] | cu_physics = 5 |
| Chemical Mechanisms | Greenhouse gas CO2 only tracers | chem_opt = 16 |
| Chengdu | Zhengzhou | Hangzhou | Shenzhen | ||||||
|---|---|---|---|---|---|---|---|---|---|
| CTRL | MET_DA | CTRL | MET_DA | CTRL | MET_DA | CTRL | MET_DA | ||
| Wind Speed [m/s] | Bias | −0.12 (±0.08) | −0.08 (±0.05) | 1.51 (±0.12) | 1.43 (±0.11) | −0.74 (±0.12) | −0.68 (±0.09) | −0.70 (±0.08) | −0.71 (±0.07) |
| RMSE | 0.89 (±0.11) | 0.90 (±0.15) | 2.07 (±0.16) | 1.97 (±0.14) | 1.17 (±0.09) | 0.98 (±0.08) | 1.15 (±0.08) | 1.13 (±0.08) | |
| R | 0.62 (±0.08) | 0.68 (±0.06) | 0.58 (±0.07) | 0.63 (±0.09) | 0.56 (±0.04) | 0.65 (±0.05) | 0.57 (±0.05) | 0.58 (±0.03) | |
| Temperature [℃] | Bias | 2.31 (±0.22) | 2.17 (±0.16) | 0.62 (±0.11) | 0.10 (±0.09) | 0.77 (±0.08) | 0.29 (±0.06) | 3.78 (±0.34) | 1.26 (±0.26) |
| RMSE | 3.22 (±0.28) | 3.26 (±0.26) | 2.84 (±0.19) | 2.17 (±0.20) | 2.69 (±0.31) | 2.64 (±0.29) | 4.54 (±0.37) | 2.64 (±0.46) | |
| R | 0.94 ** (±0.02) | 0.92 ** (±0.03) | 0.94 ** (±0.02) | 0.93 ** (±0.02) | 0.94 ** (±0.01) | 0.94 ** (±0.01) | 0.81 ** (±0.05) | 0.86 ** (±0.04) | |
| Relative Humidity [%] | Bias | −9.80 (±1.23) | −6.16 (±0.96) | −8.62 (±1.08) | −5.32 (±0.86) | −2.80 (±0.35) | −1.16 (±0.42) | −9.73 (±1.95) | −6.61 (±1.02) |
| RMSE | 14.74 (±2.23) | 8.54 (±1.44) | 12.73 (±2.03) | 9.42 (±1.68) | 13.56 (±2.56) | 12.83 (±1.85) | 18.40 (±2.74) | 12.23 (±2.33) | |
| R | 0.81 ** (±0.05) | 0.94 ** (±0.04) | 0.78 * (±0.05) | 0.85 ** (±0.03) | 0.75 * (±0.06) | 0.78 * (±0.06) | 0.70 * (±0.08) | 0.86 ** (±0.06) | |
| Pressure [hPa] | Bias | 0.38 (±0.02) | 0.21 (±0.03) | 0.68 (±0.05) | 0.42 (±0.04) | −0.42 (±0.06) | −0.39 (±0.05) | −1.48 (±0.07) | −1.05 (±0.06) |
| RMSE | 1.98 (±0.11) | 1.04 (±0.09) | 1.55 (±0.12) | 1.28 (±0.10) | 1.11 (±0.08) | 1.06 (±0.08) | 1.86 (±0.14) | 1.58 (±0.11) | |
| R | 0.97 *** (±0.01) | 0.99 *** (±0.00) | 0.98 *** (±0.00) | 0.99 *** (±0.00) | 0.99 *** (±0.00) | 0.99 *** (±0.00) | 0.97 *** (±0.01) | 0.97 *** (±0.00) | |
| Data Source | Bias (ppm) | RMSE (ppm) | R | |
|---|---|---|---|---|
| CTRL | WDCGG | −0.599 (±0.089) | 3.050 (±0.125) | 0.964 *** (±0.016) |
| TCCON | 1.155 (±0.076) | 3.116 (±0.116) | 0.706 * (±0.020) | |
| CO2_DA | WDCGG | −0.645 (±0.088) | 2.598 (±0.096) | 0.970 *** (±0.004) |
| TCCON | −0.351 (±0.065) | 2.042 (±0.085) | 0.830 ** (±0.010) | |
| FULL_DA | WDCGG | −0.319 (±0.044) | 2.309 (±0.064) | 0.972 *** (±0.003) |
| TCCON | −0.259 (±0.046) | 1.693 (±0.062) | 0.875 ** (±0.009) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Ling, X.; Li, C.; He, B.; Xu, H. Simulation and Assimilation of CO2 Concentrations Based on the WRF-Chem Model. Processes 2025, 13, 4010. https://doi.org/10.3390/pr13124010
Liu W, Ling X, Li C, He B, Xu H. Simulation and Assimilation of CO2 Concentrations Based on the WRF-Chem Model. Processes. 2025; 13(12):4010. https://doi.org/10.3390/pr13124010
Chicago/Turabian StyleLiu, Wenhao, Xiaolu Ling, Chenggang Li, Botao He, and Haonan Xu. 2025. "Simulation and Assimilation of CO2 Concentrations Based on the WRF-Chem Model" Processes 13, no. 12: 4010. https://doi.org/10.3390/pr13124010
APA StyleLiu, W., Ling, X., Li, C., He, B., & Xu, H. (2025). Simulation and Assimilation of CO2 Concentrations Based on the WRF-Chem Model. Processes, 13(12), 4010. https://doi.org/10.3390/pr13124010

