Effect of Temperature on First-Order Decay Models and Uncertainty Analysis for the Prediction of Methane Emissions in a Landfill Located in the Urban Area of Oaxaca City, Mexico
Abstract
1. Introduction
2. Theory
2.1. Van’t Hoff–Arrhenius
- is the rate constant of the reaction at temperature T.
- is the rate constant of the reaction at Tref (20 °C or 25 °C).
- (theta) is the temperature coefficient, an empirical value that indicates the effect of temperature on the reaction rate. Typically, for biological processes such as anaerobic digestion, its value ranges from 1.03 to 1.10.
- T is temperature of the system (°C).
- is the temperature of reference (°C).
2.2. The Monte Carlo Simulation
- = Mean of the logarithm.
- = Standard deviation.
- = Expected value.
- Var = Variance.
3. Materials and Methods
3.1. Landfill of Zaachila, Oaxaca
- x: independent value;
- y: predicted value.
3.2. Weather Data
3.3. Mathematical Models for Predictiing Methane Emissions
3.4. Uncertainty of Models
- x = Average annual precipitation (mm).
4. Results
4.1. Mathematical Models
4.2. Uncertainty
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 2014, 105, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; He, P.; Zhang, H.; Hao, L.; Shao, L.; Lü, F. How does temperature regulate anaerobic digestion? Renew. Sustain. Energy Rev. 2021, 150, 111453. [Google Scholar] [CrossRef]
- Yesiller, N.; Hanson, J.L. Analysis of Temperatures at a Municipal Solid Waste Landfill. In Proceedings of the Ninth International Waste Management and Landfill Symposium, Sardinia, Italy, 6–10 October 2003. [Google Scholar]
- Hartz, K.E.; Klink, R.E.; Ham, R.K. Temperature Effects: Methane Generation from Landfill Samples. J. Environ. Eng. Div. 1982, 108, 629–638. [Google Scholar] [CrossRef]
- Karanjekar, R.V.; Bhatt, A.; Altouqui, S.; Jangikhatoonabad, N.; Durai, V.; Sattler, M.L.; Hossain, S.; Chen, V. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Manag. 2015, 46, 389–398. [Google Scholar] [CrossRef]
- Amini, H.R.; Reinhart, D.R.; Mackie, K.R. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag. 2012, 32, 305–316. [Google Scholar] [CrossRef]
- Ishigaki, T.; Van Chung, C.; Sang, N.N.; Ike, M.; Otsuka, K.; Yamada, M.; Inoue, Y. Estimation and field measurement of methane emission from waste landfills in Hanoi, Vietnam. J. Mater. Cycles Waste Manag. 2008, 10, 165–172. [Google Scholar] [CrossRef]
- Yan, W.Y.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef]
- Ishigaki, T.; Yamada, M.; Nagamori, M.; Ono, Y.; Inoue, Y. Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ. Geol. 2005, 48, 845–853. [Google Scholar] [CrossRef]
- Yeşiller, N.; Hanson, J.L.; Liu, W.-L. Heat Generation in Municipal Solid Waste Landfills. J. Geotech. Geoenviron. Eng. 2005, 131, 1330–1344. [Google Scholar] [CrossRef]
- Maldonado-Saeteros, S.; Baquerizo-Crespo, R.J.; Gómez-Salcedo, Y.; Pérez-Ones, O.; Pereda-Reyes, I. Influence of temperature on kinetics and hydraulic retention time in discontinuous and continuous anaerobic systems. Environ. Eng. Res. 2023, 28, 210442. [Google Scholar] [CrossRef]
- Wang, S.; Hovland, J.; Bakke, R. Modeling and simulation of lab-scale anaerobic co-digestion of MEA waste. Model. Identif. Control. 2014, 35, 31–41. [Google Scholar] [CrossRef]
- IPCC. Directrices del IPCC de 2006 Para Los Inventarios Nacionales de Gases de Efecto Invernadero 3.1. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol5.html (accessed on 28 July 2023).
- Krause, M.J.; Chickering, G.W.; Townsend, T.G. Translating landfill methane generation parameters among first-order decay models. J. Air Waste Manag. Assoc. 2016, 66, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Rafey, A.; Siddiqui, F.Z. Modelling and simulation of landfill methane model. Clean. Energy Syst. 2023, 5, 100076. [Google Scholar] [CrossRef]
- Szemesova, J.; Gera, M. Uncertainty analysis for estimation of landfill emissions and data sensitivity for the input variation. In Greenhouse Gas Inventories: Dealing with Uncertainty; Jonas, M., Nahorski, Z., Nilsson, S., Whiter, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 37–54. [Google Scholar] [CrossRef]
- Rasouli, M.A.; Karimpour-Fard, M.; Machado, S.L. An assessment of the uncertainties of methane generation in landfills. J. Air Waste Manag. Assoc. 2025, 75, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Kissell, R.L. Chapter 8—Nonlinear Regression Models. In Algorithmic Trading Methods, 2nd ed.; Kissell, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 197–219. [Google Scholar] [CrossRef]
- Andersson, A. Mechanisms for log normal concentration distributions in the environment. Sci. Rep. 2021, 11, 16418. [Google Scholar] [CrossRef]
- López, J.O.; Londoño, N.A. Probabilidad y Estadística. Fondo Editorial EIA. 2019. Available online: https://elibro-net.bibliotecaipn.idm.oclc.org/es/ereader/ipn/125705?page=58 (accessed on 25 September 2025).
- Merab, P.B.N.; Sadoth, S.T.; Isidro, B.J.S. First-Order Decay Models for the Estimation of Methane Emissions in a Landfill in the Metropolitan Area of Oaxaca City, Mexico. Waste 2025, 3, 14. [Google Scholar] [CrossRef]
- Thornton, M.M.; Shrestha, R.; Wei, Y.; Thornton, P.E.; Kao, S.-C. Earth Science Data Systems. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1 NASA Earthdata; Earth Science Data Systems, NASA; 16 June 2025. Available online: https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-daymet-daily-v4r1-2129-4.1 (accessed on 23 September 2025).
- Arellano-González, J.; Juárez-Torres, M. Temperature and quarterly economic activity: Panel data evidence from Mexico. Environ. Dev. Econ. 2025, 27, 1–21. [Google Scholar] [CrossRef]
- INEGI. Climatología. Available online: https://www.inegi.org.mx/temas/climatologia/ (accessed on 20 October 2025).
- EPA. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills Science Inventory US EPA. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=198363 (accessed on 27 July 2023).
- Kissell, R.L. Chapter 5—Probability and Statistics. In Algorithmic Trading Methods, 2nd ed.; Kissell, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 129–150. [Google Scholar] [CrossRef]
- Park, J.-K.; Chong, Y.-G.; Tameda, K.; Lee, N.-H. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: A review. Waste Manag. Res. J. A Sustain. Circ. Econ. 2018, 36, 200–220. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Kleine, L.L. Bioestadística. Ph.D. Thesis, Editorial Universidad Nacional de Colombia, Bogotá, Colombia, 2012. Available online: https://elibro-net.bibliotecaipn.idm.oclc.org/es/ereader/ipn/129822?page=34 (accessed on 6 October 2025).
- Ali, T.; Bari, Q.H.; Rafizul, I.M. Field validation of predictive model for greenhouse gas emissions from unsanitary landfill. Clean. Eng. Technol. 2025, 29, 101086. [Google Scholar] [CrossRef]
- Saeedi, M.; Mohammadi, M.; Esmaeili, N.; Niri, F.F.; Gol, H. Optimizing LandGEM model parameters using a machine learning method to improve the accuracy of landfill methane gas generation estimates in the United States. J. Environ. Manag. 2025, 373, 124029. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Kreith, F. (Eds.) Handbook of Solid Waste Management, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2002; Available online: https://www.accessengineeringlibrary.com/content/book/9780071356237 (accessed on 23 September 2025).






| Model | Equation | Index of Symbols | |
|---|---|---|---|
| Simple model | (9) | G = Generation of methane (m3/year); W = Mass of waste (Tons); L0 = Potential of generation of methane (m3/Ton); t = Time after waste placement (years); ti = Lag time (between placement and start of generation; k = First-order rate constant (year−1). | |
| Modified simple model | (10) | G = Generation of methane (m3/year); W = Mass of waste (Tons); L0 = Potential of generation of methane (m3/Ton); t = Time after waste placement (years); ti = Lag time (between placement and start of generation; k = First-order rate constant (year−1); s = Constant of the phase of first order. | |
| LandGEM model | (11) | QCH4 = Annual methane generation in the year of the calculation (m3/year); n = (year of the calculation) − (initial year of waste acceptance); i = 1-year time increment; j = 0.1-year time increment; k = Methane generation rate (year−1); L0 = Potential methane generation capacity (m3/Mg); Mi = Mass of waste accepted in the ith year (Mg); tij = Age of the jth section of waste mass accepted in the ith year (decimal of year). | |
| Simple Model | ||
|---|---|---|
| Triangular Distribution | Log-Normal Distribution | |
| Mean | 3,499,745.10 | 3,486,946.03 |
| Median | 3,501,519.71 | 3,487,154.73 |
| Standard deviation | 43,386.93 | 212,095.95 |
| P2.5 | 3,414,736.06 | 3,071,201.18 |
| P97.5 | 3,578,947.72 | 3,902,842.57 |
| Simple Modified Model | ||
|---|---|---|
| Triangular Distribution | Log-Normal Distribution | |
| Mean | 3,758,307.27 | 3,746,620.19 |
| Median | 3,760,372.00 | 3,742,050.94 |
| Standard deviation | 55,368.94 | 271,158.81 |
| P2.5 | 3,650,340.97 | 3,307,577.75 |
| P97.5 | 3,859,899.50 | 4,198,709.54 |
| LandGEM Model | ||
|---|---|---|
| Triangular Distribution | Log-Normal Distribution | |
| Mean | 4,615,725.38 | 4,609,967.45 |
| Median | 4,618,065.87 | 4,610,323.11 |
| Standard deviation | 57,219.07 | 279,671.58 |
| P2.5 | 4,503,609.10 | 4,061,515.06 |
| P97.5 | 4,720,183.71 | 5,158,158.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmonte, N.M.P.; Torres, S.S.; Jiménez, S.I.B. Effect of Temperature on First-Order Decay Models and Uncertainty Analysis for the Prediction of Methane Emissions in a Landfill Located in the Urban Area of Oaxaca City, Mexico. Processes 2025, 13, 3983. https://doi.org/10.3390/pr13123983
Belmonte NMP, Torres SS, Jiménez SIB. Effect of Temperature on First-Order Decay Models and Uncertainty Analysis for the Prediction of Methane Emissions in a Landfill Located in the Urban Area of Oaxaca City, Mexico. Processes. 2025; 13(12):3983. https://doi.org/10.3390/pr13123983
Chicago/Turabian StyleBelmonte, Nancy Merab Pérez, Sadoth Sandoval Torres, and Salvador Isidro Belmonte Jiménez. 2025. "Effect of Temperature on First-Order Decay Models and Uncertainty Analysis for the Prediction of Methane Emissions in a Landfill Located in the Urban Area of Oaxaca City, Mexico" Processes 13, no. 12: 3983. https://doi.org/10.3390/pr13123983
APA StyleBelmonte, N. M. P., Torres, S. S., & Jiménez, S. I. B. (2025). Effect of Temperature on First-Order Decay Models and Uncertainty Analysis for the Prediction of Methane Emissions in a Landfill Located in the Urban Area of Oaxaca City, Mexico. Processes, 13(12), 3983. https://doi.org/10.3390/pr13123983

