IWMA-VINC-Based Maximum Power Point Tracking Strategy for Photovoltaic Systems
Abstract
1. Introduction
- (1)
- An IWMA-based global optimizer is constructed using a Tent–Logistic–Cosine chaotic initialization mechanism, which enhances population diversity and improves global exploration ability.
- (2)
- A dynamic parameter adjustment strategy is designed to balance exploration and exploitation during whale migration, thereby reducing the tendency to fall into local optima and enhancing convergence stability.
- (3)
- A VINC algorithm is integrated with IWMA to provide precise local tracking of the GMPP, effectively suppressing steady-state oscillations and improving tracking accuracy compared with standalone metaheuristic MPPT schemes and conventional INC-based methods.
- (4)
- In the 2024b MATLAB/Simulink environment, comprehensive simulation studies were carried out for both static and dynamic partial shading scenarios. The results show that the proposed improved whale migration algorithm–variable step-size incremental conductance hybrid strategy outperforms WMA, NSNPSO, and GWO-WOA in terms of tracking accuracy, convergence speed, and robustness.
2. PV System Model
2.1. Mathematical Representation of PV Cells
2.2. Modeling of PV Arrays
2.3. Output Characteristics of PV Arrays
3. IWMA-VINC Algorithm
3.1. A VINC Algorithm
3.2. Improved Strategy for Whale Migration Optimization Algorithm
- (1)
- Tent–Logistic-Cosine Chaotic Initialization Mapping
- (2)
- Dynamic Parameter Optimization
3.3. IWMA-VINC Strategy
- (1)
- Initialization: Set system parameters, IWMA control parameters, and VINC step-size limits. Measure the initial voltage and current of the PV array.
- (2)
- Environmental monitoring and decision making: Continuously monitor solar irradiance and array output power. When the measured variations exceed a predefined threshold, activate the decision protocol to determine whether the IWMA global search needs to be invoked.
- (3)
- GMPP search with IWMA: When the triggering condition is satisfied, construct the initial population via the Tent–Logistic–Cosine chaotic mapping, evaluate fitness values based on output power, and iteratively update whale positions using the improved migration rules until the termination criterion is met. Record the best operating point as the estimated GMPP.
- (4)
- Local refinement with VINC: Starting from the estimated GMPP, execute the VINC algorithm to further adjust the operating point. Update the duty cycle of the DC–DC converter according to the sign and magnitude of the conductance error until the tracking error falls below a specified threshold.
- (5)
- Continuous monitoring and re-triggering: Continue to monitor irradiance and output power. If subsequent significant deviations are detected, return to Step 2 and re-enter the IWMA stage; otherwise, maintain VINC-based local tracking.
4. Simulation Experiment Verification
4.1. Simulation Setup
4.2. Static Partial Shading Simulation
4.3. Dynamic Partial Shading Simulation
5. Conclusions
- (1)
- By introducing a Tent–Logistic–Cosine chaotic initialization mapping and a dynamic parameter adjustment scheme, the IWMA achieves higher population diversity and a more effective exploration–exploitation balance than the conventional WMA, enabling more reliable localization of the global MPP under complex partial shading patterns.
- (2)
- Integrating the IWMA with a VINC algorithm yields a two-layer MPPT framework in which the IWMA provides global search capability and VINC performs precise local refinement. The adaptive step-size mechanism in the VINC stage effectively suppresses steady-state power oscillations while maintaining fast tracking dynamics.
- (3)
- Extensive MATLAB/Simulink simulations with multiple random trials show that the proposed IWMA-VINC strategy consistently outperforms WMA, NSNPSO-INC, and GWO-WOA under both static and dynamic PSC. IWMA-VINC achieves the highest tracking accuracies of 99.74% (static) and 99.44% (dynamic), delivers higher average output power, and shortens convergence time compared with the three algorithms, while exhibiting the smallest variance in all performance indices across trials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belghiti, H.; Kandoussi, K.; Chellakhi, A.; Mchaouar, Y.; El Otmani, R.; Sadek, E.M. Performance optimization of photovoltaic system under real climatic conditions using a novel MPPT approach. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 2474–2492. [Google Scholar] [CrossRef]
- Sooriamoorthy, D.; Manoharan, A.; Sivanesan, S.K.; Lun, S.K.; Cheong, A.C.H.; Perumal, S.K.S. Optimizing Solar Maximum Power Point Tracking with Adaptive PSO: A Comparative Analysis of Inertia Weight and Acceleration Coefficient Strategies. Results Eng. 2025, 27, 106429. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Ang, S.P.; Dani, M.N.; Rahman, M.I.; Petra, R.; Sulthan, S.M. Optimizing step-size of perturb & observe and incremental conductance MPPT techniques using PSO for grid-tied PV system. IEEE Access 2023, 11, 13079–13090. [Google Scholar]
- Abdelraouf, B.; Serhoud, H.; Nacer, H. Comparative study of sliding mode and incremental conductance for maximum power point tracker for photovoltaic array. Prz. Elektrotech. 2023, 99, 113–117. [Google Scholar] [CrossRef]
- Dennai, M.Y.; Tedjini, H. Integrating hybrid artificial ecosystem with P&O MPPT for enhanced fuel cell performance in microgrid systems. Electr. Eng. 2025, 107, 8059–8084. [Google Scholar] [CrossRef]
- Hassan, A.; Bass, O.; Masoum, M.A.S. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Rep. 2023, 9, 1535–1548. [Google Scholar] [CrossRef]
- Percin, H.B.; Caliskan, A. Whale optimization algorithm based MPPT control of a fuel cell system. Int. J. Hydrogen Energy 2023, 48, 23230–23241. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Wen, X.; Hu, Z.; Yang, H.; He, Z. A maximum-power-point tracking method based on constant conduction time control with constant voltage output for magnetic field energy harvesters in the saturated region. IEEE Trans. Power Electron. 2024, 39, 10716–10720. [Google Scholar] [CrossRef]
- Sangrody, R.; Taheri, S.; Cretu, A.M.; Pouresmaeil, E. An improved PSO-based MPPT technique using stability and steady state analyses under partial shading conditions. IEEE Trans. Sustain. Energy 2023, 15, 136–145. [Google Scholar] [CrossRef]
- Abidi, H.; Sidhom, L.; Chihi, I. Systematic literature review and benchmarking for photovoltaic MPPT techniques. Energies 2023, 16, 3509. [Google Scholar] [CrossRef]
- Ncir, N.; El Akchioui, N.; El Fathi, A. Enhancing photovoltaic system modeling and control under partial and complex shading conditions using a robust hybrid DE-FFNN MPPT strategy. Renew. Energy Focus 2023, 47, 100504. [Google Scholar] [CrossRef]
- Santosh, B.S.S.; Mohammed, T.A.M.; Rao, K. Optimal initial duty for improved MPPT under change in irradiances and partial shading conditions. Eng. Res. Express 2024, 6, 045307. [Google Scholar] [CrossRef]
- Satif, A.; Mekhfioui, M.; Elgouri, R. Advanced techniques for maximizing photovoltaic power: A Systematic literature review. Sci. Afr. 2025, 30, e02989. [Google Scholar] [CrossRef]
- Çakmak, F.; Aydoğmuş, Z.; Tür, M.R. Analysis of open circuit voltage MPPT method with analytical analysis with perturb and observe (P&O) MPPT method in PV systems. Electr. Power Compon. Syst. 2024, 52, 1528–1542. [Google Scholar]
- Hasan, M.G.; Uddin, M.A.; Ferdous, A.I.; Sadeque, M.G. Enhanced Maximum Power Point Tracking Using Hybrid GA and PSO Algorithms for Solar PV Systems. Results Eng. 2025, 28, 107708. [Google Scholar] [CrossRef]
- Zaki, M.; Shahin, A.; Eskender, S.; Elsayes, M.A. Hybrid global search with enhanced INC MPPT under partial shading condition. Sci. Rep. 2023, 13, 22197. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Mahmoud, M.M.; Alnami, H.; Mbadjoun Wapet, D.E.; Ardjoun, S.A.E.M.; Mosaad, M.I.; Abdelfattah, H. A new adaptive MPPT technique using an improved INC algorithm supported by fuzzy self-tuning controller for a grid-linked photovoltaic system. PLoS ONE 2023, 18, e0293613. [Google Scholar] [CrossRef]
- Alajmi, B.N.; Ahmed, N.A.; Abdelsalam, I.; Marei, M.I. A Robust MPPT Algorithm for PV Systems Using Advanced Hill Climbing and Simulated Annealing Techniques. Electronics 2025, 14, 3644. [Google Scholar] [CrossRef]
- Xu, S.Z.; Zhong, Y.M. NSNPSO-INC: A simplified particle swarm optimization algorithm for photovoltaic MPPT combining natural selection and conductivity incremental approach. IEEE Access 2024, 12, 2169–3536. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Ni, Z.; Li, F. Maximum power point tracking control of photovoltaic systems using a hybrid improved whale particle swarm optimization algorithm. Energy Sources Part A Recovery Util. Environ. Eff. 2025, 47, 1789–1803. [Google Scholar] [CrossRef]
- Zemmit, A.; Loukriz, A.; Belhouchet, K.; Alharthi, Y.Z.; Alshareef, M.; Paramasivam, P.; Ghoneim, S.S. GWO and WOA variable step MPPT algorithms-based PV system output power optimization. Sci. Rep. 2025, 15, 7810. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, H.; Wu, S.; Pan, J.; Chen, T.; Zhang, H. Research on MPPT control strategy based on LSTM and IHOA algorithm. Electr. Power Syst. Res. 2026, 250, 112097. [Google Scholar] [CrossRef]
- Yan, C.; Lei, G.; Cai, L.; He, C.; Dai, N.; Jiang, Z.; Li, S. MPPT control technology based on the GWO-VINC algorithm. Front. Energy Res. 2023, 11, 1205851. [Google Scholar] [CrossRef]
- Yüksek, G.; Mete, A.N. A P&O based variable step size MPPT algorithm for photovoltaic applications. Gazi Univ. J. Sci. 2023, 36, 608–622. [Google Scholar]
- Xiao, Y.; Zhao, Y.; Shen, Z.; Jiao, H. SMGSA algorithm-based MPPT control strategy. J. Power Electron. 2024, 24, 789–798. [Google Scholar] [CrossRef]







| Operating Condition Number | luminance/W·m2 | ||
|---|---|---|---|
| G1 | G2 | G3 | |
| case 1 | 1000 | 1000 | 1000 |
| case 2 | 1000 | 1000 | 700 |
| case 3 | 1000 | 700 | 400 |
| Parameter Name | Parameter Value |
|---|---|
| Open-circuit voltage Uoc/V | 36.3 |
| Short-circuit current Isc/A | 7.84 |
| Maximum power point voltage Um/V | 29 |
| Maximum power point current Im/A | 7.35 |
| Component Names | Component Parameters |
|---|---|
| Input Capacitor C1/ | 1000 |
| Inductor L1/mH | 2 |
| Output Capacitor C2/ | 20 |
| Resistor R/ | 35 |
| Parameter Category | Parameter Name | Value |
|---|---|---|
| IWMA Global Search | Population Size (Npop) | 40 |
| Maximum Iteration Number (Tmax) | 200 | |
| Leader Whale Ratio (NL/Npop) | 0.25 | |
| Sensitivity Coefficient (k) | 0.75 | |
| Aggregation Amplification Coefficient (γ) | 1.5 | |
| Over-steepness Coefficient (λ) | 0.7 | |
| VINC | Step Size Gain Coefficient (m) | 0.01 |
| Minimum Step Size (ΔVmin) | 0.001 | |
| Environmental Trigger | 30 W/m2 |
| Name | Output Power/W | Tracking Time/s | Tracking Accuracy/% |
|---|---|---|---|
| IWMA-VINC | 1091.27 ± 0.56 | 0.27 ± 0.02 | 99.74 ± 0.05 |
| WMA | 1075.97 ± 12.06 | 0.42 ± 0.06 | 96.37 ± 1.08 |
| NSNPSO-INC | 1099.31 ± 2.68 | 0.33 ± 0.03 | 98.46 ± 0.24 |
| GWO-WOA | 1103.88 ± 4.35 | 0.34 ± 0.03 | 98.87 ± 0.39 |
| Names | Output Power/W | Tracking Time/s | Tracking Accuracy/% |
|---|---|---|---|
| IWMA-VINC | 784.68 ± 0.63 | 0.29 ± 0.03 | 99.44 ± 0.08 |
| WMA | 751.54 ± 13.65 | 0.48 ± 0.07 | 95.24 ± 1.73 |
| NSNPSO-INC | 772.69 ± 3.55 | 0.37 ± 0.06 | 97.92 ± 0.45 |
| GWO-WOA | 776.63 ± 3.71 | 0.36 ± 0.07 | 98.42 ± 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Han, P.; Qin, W.; Li, J. IWMA-VINC-Based Maximum Power Point Tracking Strategy for Photovoltaic Systems. Processes 2025, 13, 3976. https://doi.org/10.3390/pr13123976
Xiong Y, Han P, Qin W, Li J. IWMA-VINC-Based Maximum Power Point Tracking Strategy for Photovoltaic Systems. Processes. 2025; 13(12):3976. https://doi.org/10.3390/pr13123976
Chicago/Turabian StyleXiong, Yichen, Peichen Han, Wenchao Qin, and Junhao Li. 2025. "IWMA-VINC-Based Maximum Power Point Tracking Strategy for Photovoltaic Systems" Processes 13, no. 12: 3976. https://doi.org/10.3390/pr13123976
APA StyleXiong, Y., Han, P., Qin, W., & Li, J. (2025). IWMA-VINC-Based Maximum Power Point Tracking Strategy for Photovoltaic Systems. Processes, 13(12), 3976. https://doi.org/10.3390/pr13123976
