The Relationship Between Systemic Inflammatory Index and Other Inflammatory Markers with Clinical Severity of the Disease in Patients with Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Demographic and Clinical Characteristics of Patients
2.3. Serum Inflammatory Markers
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBB | Blood–brain barrier |
BMI | Body mass index |
CNS | Central nervous system |
EDTA | Ethylenediaminetetraacetic acid |
HC | Healthy control |
HDL | High-density lipoprotein |
IGF-1 | Insulin-like growth factor-1 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
MHR | Monocyte-to-HDL ratio |
MHYS | Modified Hoehn–Yahr Scale |
MLR | Monocyte-to- lymphocyte ratio |
MSA | Multiple System Atrophy |
NHR | Neutrophil-to-HDL ratio |
NLR | Neutrophil-to-lymphocyte ratio |
PD | Parkinson’s disease |
PLR | Platelet-to-lymphocyte ratio |
SI | Systemic inflammation |
SII | Systemic immune-inflammation index |
SIRI | Systemic inflammation response index |
sMMT | Standardized Mini-Mental Test |
SN | Substantia nigra |
TNF-α | Tumor necrosis factor-alpha |
UPDRS | Unified Parkinson’s Disease Rating Scale |
WBC | White blood cell count |
References
- Ramesh, S.; Arachchige, A.S.P.M. Depletion of Dopamine in Parkinson’s Disease and Relevant Therapeutic Options: A Review of the Literature. AIMS Neurosci. 2023, 10, 200–231. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s Disease and Its Potential as Therapeutic Target. Transl. Neurodegener. 2015, 4, 19. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Grozdanov, V.; Bousset, L.; Hoffmeister, M.; Bliederhaeuser, C.; Meier, C.; Madiona, K.; Pieri, L.; Kiechle, M.; McLean, P.J.; Kassubek, J.; et al. Increased Immune Activation by Pathologic α-Synuclein in Parkinson Disease. Ann. Neurol. 2019, 86, 593–606. [Google Scholar] [CrossRef]
- Scott Massey, A.; Boag, M.K.; Magnier, A.; Bispo, D.P.C.F.; Khoo, T.K.; Pountney, D.L. Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 12928. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, X.; Lv, W.; Lai, H.Y.; Shen, T. Interplay between the Glymphatic System and Neurotoxic Proteins in Parkinson’s Disease and Related Disorders: Current Knowledge and Future Directions. Neural Regen. Res. 2024, 19, 1973–1980. [Google Scholar] [CrossRef]
- Bunul, S.D.; Alagoz, A.N.; Piri Cinar, B.; Bunul, F.; Erdogan, S.; Efendi, H. A Preliminary Study on the Meaning of Inflammatory Indexes in MS: A Neda-Based Approach. J. Pers. Med. 2023, 13, 1537. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-Lymphocyte Ratio, Past, Present and Future Perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Satici, M.O.; Eroglu, S.E. Unraveling the Clinical Significance and Prognostic Value of the Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, Systemic Immune-Inflammation Index, Systemic Inflammation Response Index, and Delta Neutrophil Index: An Extensive Literature Review. Turk. J. Emerg. Med. 2024, 24, 8–19. [Google Scholar] [CrossRef]
- Nazir, S.; Jankowski, V.; Bender, G.; Zewinger, S.; Rye, K.A.; van der Vorst, E.P.C. Interaction between High-Density Lipoproteins and Inflammation: Function Matters More than Concentration! Adv. Drug Deliv. Rev. 2020, 159, 94–119. [Google Scholar] [CrossRef]
- Kwak, I.H.; Kim, Y.E.; Kim, Y.J.; Noh, H.M.; Lee, J.; Yu, J.K.; Ma, H.I. Monocyte to High-Density Lipoprotein Cholesterol Ratio Reflects the Peripheral Inflammatory State in Parkinsonian Disorders. Park. Relat. Disord. 2024, 129, 107155. [Google Scholar] [CrossRef]
- Cantero Fortiz, Y.; Boada, M. The Role of Inflammation in Neurological Disorders: A Brief Overview of Multiple Sclerosis, Alzheimer’s, and Parkinson’s Disease. Front. Neurol. 2024, 15, 1439125. [Google Scholar] [CrossRef]
- Li, F.; Weng, G.; Zhou, H.; Zhang, W.; Deng, B.; Luo, Y.; Tao, X.; Deng, M.; Guo, H.; Zhu, S.; et al. The Neutrophil-to-Lymphocyte Ratio, Lymphocyte-to-Monocyte Ratio, and Neutrophil-to-High-Density-Lipoprotein Ratio Are Correlated with the Severity of Parkinson’s Disease. Front. Neurol. 2024, 15, 1322228. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mohammadi, M.; Almasi Dooghaee, M.; Mirmosayyeb, O. Neutrophil to Lymphocyte Ratio in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2024, 19, e0305322. [Google Scholar] [CrossRef]
- Lyra, E.; Silva, N.M.; Gonçalves, R.A.; Pascoal, T.A.; Lima Filho, R.A.S.; Resende, E.P.F.; Vieira, E.L.M.; Teixeira, A.L.; de Souza, L.C.; Peny, J.A.; et al. Pro-Inflammatory Interleukin-6 Signaling Links Cognitive Impairments and Peripheral Metabolic Alterations in Alzheimer’s Disease. Transl. Psychiatry 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Min, J.; Tan, Q.; Si, K.; Yang, H.; Xu, C. Circulating Insulin-like Growth Factor-1 and Brain Health: Evidence from 369,711 Participants in the UK Biobank. Alzheimer’s Res. Ther. 2023, 15, 140. [Google Scholar] [CrossRef]
- Feng, X.; Liu, Y.; Yang, J.; Zhou, Z.; Yang, S.; Zhou, Y.; Guo, Q. Evaluation of Estimated Glucose Disposal Rate with Neutrophil-to-Lymphocyte Ratio Integrated for Prognosticating Adverse Cardiovascular and Cerebrovascular Events and Risk Stratification Among Acute Coronary Syndrome with Type 2 Diabetes Mellitus Following Percutaneous Coronary Intervention. J. Inflamm. Res. 2024, 17, 9193–9214. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ye, Y.; Wang, L.; Xu, Y.; Ren, S.; Wang, L.; Wu, G. Neutrophil-to-Lymphocyte Ratio as a Potential Predictive Marker for Epileptic Seizures: Unveiling the “V”-Shaped Link. Mediat. Inflamm. 2025, 2025, 2247724. [Google Scholar] [CrossRef]
- Sayed, A.; Bahbah, E.I.; Kamel, S.; Barreto, G.E.; Ashraf, G.M.; Elfil, M. The Neutrophil-to-Lymphocyte Ratio in Alzheimer’s Disease: Current Understanding and Potential Applications. J. Neuroimmunol. 2020, 349, 577398. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Ma, Y.; Shang, H. Association of Neutrophil-to-Lymphocyte Ratio with Incidence and Disease Progression in Parkinson’s Disease. Neuroepidemiology 2025, in press. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, Q.; Wu, S.; Wan, Y.; Lei, Y. Compared with the Monocyte to High-Density Lipoprotein Ratio (MHR) and the Neutrophil to Lymphocyte Ratio (NLR), the Neutrophil to High-Density Lipoprotein Ratio (NHR) Is More Valuable for Assessing the Inflammatory Process in Parkinson’s Disease. Lipids Health Dis. 2021, 20, 35. [Google Scholar] [CrossRef]
- Akıl, E.; Bulut, A.; Kaplan, İ.; Özdemir, H.H.; Arslan, D.; Aluçlu, M.U. The Increase of Carcinoembryonic Antigen (CEA), High-Sensitivity C-Reactive Protein, and Neutrophil/Lymphocyte Ratio in Parkinson’s Disease. Neurol. Sci. 2015, 36, 423–428. [Google Scholar] [CrossRef]
- Ataç Uçar, C.; Gökçe Çokal, B.; Ünal Artık, H.A.; İnan, L.E.; Yoldaş, T.K. Comparison of Neutrophil-Lymphocyte Ratio (NLR) in Parkinson’s Disease Subtypes. Neurol. Sci. 2017, 38, 287–293. [Google Scholar] [CrossRef]
- Ding, M.; Wang, H.; Li, J.; Zhu, X. Correlation between Parkinson’s Disease Subtypes and Plasma Uric Acid/Neutrophil-to-Lymphocyte Ratio. Neurol. Sci. 2025; in press. [Google Scholar] [CrossRef]
- He, P.; Li, Y.; Huang, Z.; Gao, Y.; Duan, Q.; Qiu, Y.; Feng, S.; Huang, R.; Gong, L.; Ma, G.; et al. Peripheral Inflammation’s Variable Impact on Cognitive and Symptomatic Outcomes in Parkinson’s Disease: A Longitudinal and Cross-Sectional Analysis. NPJ Park. Dis. 2025, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Stanca, I.D.; Criciotoiu, O.; Neamtu, S.D.; Vasile, R.C.; Berceanu Bora, N.M.; Minca, T.N.; Pirici, I.; Rosu, G.C.; Bondari, S. The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease. Healthcare 2022, 10, 2578. [Google Scholar] [CrossRef]
- Fernandez, A.M.; Torres Alemán, I. The Many Faces of Insulin-Like Peptide Signalling in the Brain. Nat. Rev. Neurosci. 2012, 13, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Insulin-Like Growth Factors in the Brain and Their Potential Clinical Implications. Neurology 2012, 79, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, F.; Mirzajani, E.; Naji, M.; Azari, M. Expression of Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor Binding Proteins in the Serum and Cerebrospinal Fluid of Patients with Parkinson’s Disease. J. Clin. Neurosci. 2010, 17, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Numao, A.; Suzuki, K.; Miyamoto, M.; Miyamoto, T.; Hirata, K. Clinical Correlates of Serum Insulin-Like Growth Factor-1 in Patients with Parkinson’s Disease, Multiple System Atrophy and Progressive Supranuclear Palsy. Park. Relat. Disord. 2014, 20, 212–216. [Google Scholar] [CrossRef]
- Godau, J.; Knauel, K.; Weber, K.; Brockmann, K.; Maetzler, W.; Binder, G.; Berg, D. Serum Insulin-Like Growth Factor 1 as Possible Marker for Risk and Early Diagnosis of Parkinson Disease. Arch. Neurol. 2011, 68, 925–931. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Z.; Huang, Y.; Yang, G.; Wang, Y.; Yi, Y.; Zhou, Q.; Jian, X.; Zhao, G.; Li, B.; et al. Early Detection of Parkinson’s Disease through Multiplex Blood and Urine Biomarkers Prior to Clinical Diagnosis. NPJ Park. Dis. 2025, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhang, P.; Zuo, W.; Shu, H.; Wang, P. Association between Serum IGF-1 Levels and Non-Motor Symptoms in Parkinson’s Disease. Neurol. Sci. 2025, 46, 1201–1206. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, Q.; Xu, J.; Sun, Q.; Qiao, Y.; Chen, W.; Wu, Y.; Wang, Y.; Xiao, Q.; Liu, J.; et al. Plasma Insulin-Like Growth Factor 1 Is Associated with Cognitive Impairment in Parkinson’s Disease. Dement. Geriatr. Cogn. Disord. 2015, 39, 251–256. [Google Scholar] [CrossRef]
- Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of Pro-Inflammatory Cytokines Released from Microglia in Neurodegenerative Diseases. Brain Res. Bull. 2012, 87, 10–20. [Google Scholar] [CrossRef]
- Scalzo, P.; Kümmer, A.; Cardoso, F.; Teixeira, A.L. Serum Levels of Interleukin-6 Are Elevated in Patients with Parkinson’s Disease and Correlate with Physical Performance. Neurosci. Lett. 2010, 468, 56–58. [Google Scholar] [CrossRef]
- Lindqvist, D.; Kaufman, E.; Brundin, L.; Hall, S.; Surova, Y.; Hansson, O. Non-Motor Symptoms in Patients with Parkinson’s Disease–Correlations with Inflammatory Cytokines in Serum. PLoS ONE 2012, 7, e47387. [Google Scholar] [CrossRef]
- Fu, J.; Chen, S.; Liu, J.; Yang, J.; Ou, R.; Zhang, L.; Chen, X.; Shang, H. Serum Inflammatory Cytokines Levels and the Correlation Analyses in Parkinson’s Disease. Front. Cell Dev. Biol. 2023, 11, 1104393. [Google Scholar] [CrossRef]
- Dursun, E.; Gezen-Ak, D.; Hanağası, H.; Bilgiç, B.; Lohmann, E.; Ertan, S.; Atasoy, İ.L.; Alaylıoğlu, M.; Araz, Ö.S.; Önal, B.; et al. The Interleukin 1 Alpha, Interleukin 1 Beta, Interleukin 6 and Alpha-2-Macroglobulin Serum Levels in Patients with Early or Late Onset Alzheimer’s Disease, Mild Cognitive Impairment or Parkinson’s Disease. J. Neuroimmunol. 2015, 283, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 4148. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, P.; Kothari, V.; Thomas, D.G.; Westerterp, M.; Molusky, M.M.; Altin, E.; Abramowicz, S.; Wang, N.; He, Y.; Heinecke, J.W.; et al. Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e253–e272. [Google Scholar] [CrossRef]
- Sanjari Moghaddam, H.; Ghazi Sherbaf, F.; Mojtahed Zadeh, M.; Ashraf-Ganjouei, A.; Aarabi, M.H. Association Between Peripheral Inflammation and DATSCAN Data of the Striatal Nuclei in Different Motor Subtypes of Parkinson Disease. Front. Neurol. 2018, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Chen, Z.; Zhang, J.; Wu, L. Neutrophil to High-Density Lipoprotein Ratio (NHR) as a Potential Predictor of Disease Severity and Survival Time in Creutzfeldt-Jakob Disease. BMC Neurol. 2023, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhong, Z.; Huang, J.; Bian, H.; Huang, W. Monocyte-to-High-Density Lipoprotein Ratio Has a High Predictive Value for the Diagnosis of Multiple System Atrophy and the Differentiation from Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 1035437. [Google Scholar] [CrossRef]
- Çırakoğlu, Ö.F.; Yılmaz, A.S. Systemic Immune-Inflammation Index Is Associated with Increased Carotid Intima-Media Thickness in Hypertensive Patients. Clin. Exp. Hypertens. 2021, 43, 565–571. [Google Scholar] [CrossRef]
- Wei, L.; Xie, H.; Yan, P. Prognostic Value of the Systemic Inflammation Response Index in Human Malignancy: A Meta-Analysis. Medicine 2020, 99, e23486. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Gao, Y.; Nie, K.; Liang, Y.; Zhang, Y.; Wang, L. Serum Folate, Vitamin B12 Levels, and Systemic Immune-Inflammation Index Correlate with Motor Performance in Parkinson’s Disease: A Cross-Sectional Study. Front. Neurol. 2021, 12, 665075. [Google Scholar] [CrossRef]
- Liu, F.; Ran, Q.; Zhang, H.; Chen, J. The Systemic Immune-Inflammation Index and the Risk of Parkinson’s Disease in the U.S.: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 403. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Song, S.; Hu, J.; Wang, L.; Shen, D.; Zhu, Q.; Yang, W.; Luo, Q.; Hong, J.; Li, N. Systemic Inflammation Response Index as a Predictor of Stroke Risk in Elderly Patients with Hypertension: A Cohort Study. J. Inflamm. Res. 2023, 16, 4821–4832. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cai, X.; Hu, J.; Song, S.; Zhu, Q.; Zhang, Y.; Ma, R.; Shen, D.; Yang, W.; Zhou, P.; et al. Association of Systemic Inflammatory Response Index with Bone Mineral Density, Osteoporosis, and Future Fracture Risk in Elderly Hypertensive Patients. Postgrad. Med. 2024, 136, 406–416. [Google Scholar] [CrossRef]
- Lin, R.; Cai, G.; Chen, Y.; Zheng, J.; Wang, S.; Xiao, H.; Ye, Q.; Xue, Y.; Jiang, R. Association of glymphatic system function with peripheral inflammation and motor symptoms in Parkinson’s disease. NPJ Park. Dis. 2025, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, A.; Mackie, P.M.; Phan, L.T.; Tansey, M.G.; Khoshbouei, H. The Complex Role of Inflammation and Gliotransmitters in Parkinson’s Disease. Neurobiol. Dis. 2023, 176, 105940. [Google Scholar] [CrossRef] [PubMed]
- Lucero, J.; Gurnani, A.; Weinberg, J.; Shih, L.C. Neutrophil-to-Lymphocyte Ratio and Longitudinal Cognitive Performance in Parkinson’s Disease. Ann. Clin. Transl. Neurol. 2024, 11, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.D.S.; Toscano, E.C.B.; Abreu, L.K.S.; Fernandes, H.B.; Amorim, R.F.; Ferreira, R.N.; Machado, C.A.; Carvalho, B.C.; Silva, M.C.M.d.; Oliveira, A.C.P.d.; et al. Nigrostriatal Inflammation Is Associated with Nonmotor Symptoms in an Experimental Model of Prodromal Parkinson’s Disease. Neuroscience 2024, 549, 65–75. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | Patient | p |
---|---|---|---|
Age (years) | 63.59 | 68.67 | >0.05 |
Sex (f: female, m: male) | f = 24 m = 25 | f = 22 m = 29 | >0.05 |
BMI (kg/m2) | 26.19 | 27.80 | >0.05 |
Disease duration (year, mean ± SD) | - | 7.53 ± 7.234 | - |
Levodopa treatment (%) | - | 64.7 | - |
sMMT (mean ± SD) | 26.27 ± 5.404 | 26.10 ± 3.270 | >0.05 |
MHYS (mean ± SD) | - | 2.59 ± 1.22 | - |
Total UPDRS (mean ± SD) | - | 79.8 ± 40.474 | - |
Total Motor UPDRS (mean ± SD) | - | 41.04 ± 23.48 | - |
Total Non-motor UPDRS (mean ± SD) | - | 15.61± 8.71 | - |
Inflammatory Markers | Control | Patient | p |
---|---|---|---|
Neutrophil (×109/L) | 4.24 ± 1.62 | 4.83 ± 1.80 | 0.081 |
Lymphocyte (×109/L) | 2.15 ± 0.59 | 1.94 ± 0.60 | 0.077 |
Leukocyte (×109/L) | 8.19 ± 6.95 | 7.57 ± 2.02 | 0.455 |
IL-6 (pg/mL) | 9.36 ± 7.03 | 5.45 ± 4.23 | 0.758 |
IGF-1 (pg/mL) | 107.46 ± 49.89 | 142.54 ± 66.37 | 0.005 |
HDL-C (mmol/L) | 50.57 ± 12.83 | 46.66 ± 10.28 | 0.096 |
MHR (×109/mmol) | 0.16 ± 0.11 | 0.16 ± 0.05 | 0.160 |
NLR (×109/mmol) | 2.06 ± 0.81 | 2.79 ± 1.60 | 0.022 |
NHR (×109/mmol) | 0.08 ± 0.04 | 0.10 ± 0.04 | 0.030 |
PLR (×109/mmol) | 128.33 ± 42.42 | 128.09 ± 53.02 | 0.463 |
SII (×109/L) | 541.08 ± 259.08 | 659.64 ± 453.96 | 0.466 |
SIRI (×109/L) | 1.22 ± 0.56 | 1.61 ± 1.17 | 0.167 |
Parameters | Correlation Coefficient (rho) | p Value | CI (%95) |
---|---|---|---|
IL-6 & psychosis | 0.396 | <0.06 | 0.38–0.40 |
IL-6 & depression | 0.191 | <0.001 | 0.18–0.20 |
IL-6 & anxiety | 0.272 | <0.001 | 0.26–0.28 |
IL-6 & apathy | 0.126 | <0.001 | 0.11–0.13 |
IL-6 & nonmotor DDS | 0.324 | <0.001 | 0.29–0.31 |
IL-6 & constipation | 0.359 | <0.001 | 0.35–0.36 |
IL-6 & LHON | 0.49 | <0.001 | 0.48–0.49 |
IGF-1 & LHON | 0.193 | 0.045 | 0.52–0.16 |
NLR & LHON | 0.291 | 0.038 | 0.15–0.52 |
PLR & fatigue | −0.280 | 0.047 | 0.51–0.12 |
LMR & constipation | −0.277 | 0.049 | 0.51–0.13 |
LMR & LHON | −0.317 | 0.023 | 0.54–0.14 |
LMR & nM-EDLTS | −0.304 | 0.030 | 0.50–0.12 |
SIRI & LHON | 0.296 | 0.035 | 0.19–0.53 |
Parameters | Correlation Coefficient (rho) | p Value | CI (%95) |
---|---|---|---|
NLR & TSWD | 0.313 | 0.025 | 0.13–0.54 |
PLR & TSWD | 0.361 | 0.009 | 0.09–0.58 |
SII & Eating Tasks | −0.291 | 0.039 | 0.46–0.14 |
SIRI & TSWD | 0.286 | 0.042 | 0.09–0.52 |
SIRI & POSD | 0.322 | 0.021 | 0.14–0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagoz, A.N.; Dagdas, A.; Bunul, S.D.; Erci, G.C. The Relationship Between Systemic Inflammatory Index and Other Inflammatory Markers with Clinical Severity of the Disease in Patients with Parkinson’s Disease. Biomedicines 2025, 13, 2029. https://doi.org/10.3390/biomedicines13082029
Alagoz AN, Dagdas A, Bunul SD, Erci GC. The Relationship Between Systemic Inflammatory Index and Other Inflammatory Markers with Clinical Severity of the Disease in Patients with Parkinson’s Disease. Biomedicines. 2025; 13(8):2029. https://doi.org/10.3390/biomedicines13082029
Chicago/Turabian StyleAlagoz, Aybala Neslihan, Aydan Dagdas, Sena Destan Bunul, and Guldeniz Cetin Erci. 2025. "The Relationship Between Systemic Inflammatory Index and Other Inflammatory Markers with Clinical Severity of the Disease in Patients with Parkinson’s Disease" Biomedicines 13, no. 8: 2029. https://doi.org/10.3390/biomedicines13082029
APA StyleAlagoz, A. N., Dagdas, A., Bunul, S. D., & Erci, G. C. (2025). The Relationship Between Systemic Inflammatory Index and Other Inflammatory Markers with Clinical Severity of the Disease in Patients with Parkinson’s Disease. Biomedicines, 13(8), 2029. https://doi.org/10.3390/biomedicines13082029