Decoding Chronicity: Oxidative Stress and Inflammation as Systems Hubs †
Acknowledgments
Conflicts of Interest
References
- Kuzan, A.; Chwiłkowska, A.; Maksymowicz, K.; Abramczyk, U.; Gamian, A. Relationships between Osteopontin, Osteoprotegerin, and Other Extracellular Matrix Proteins in Calcifying Arteries. Biomedicines 2024, 12, 847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, J.; Kong, W. Extracellular matrix in vascular homeostasis and disease. Nat. Rev. Cardiol. 2025, 22, 333–353. [Google Scholar] [CrossRef]
- Wu, W.-B.; Lee, I.-T.; Lin, Y.-J.; Wang, S.-Y.; Hsiao, L.-D.; Yang, C.-M. Silica Nanoparticles Shed Light on COX-2/PGE2 via EGFR/Pyk2 Signaling in Human Tracheal Smooth Muscle Cells. Biomedicines 2024, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef]
- Yang, C.-M.; Lee, I.-T.; Hsiao, L.-D.; Yu, Z.-Y.; Yang, C.-C. Rhamnetin Prevents Bradykinin-Induced MMP-9 in Rat Brain Astrocytes by Suppressing Protein Kinase-Dependent AP-1 Activation. Biomedicines 2023, 11, 3198. [Google Scholar] [CrossRef]
- Feng, S.-W.; Lin, W.-C.; Lee, I.-T.; Luo, S.-D.; Wang, C.-S. RNA-Seq Reveals the Upregulation and Resolution of Inflammation and ECM Remodeling in Lidocaine-Treated THP-1 Cells. Biomedicines 2024, 12, 509. [Google Scholar] [CrossRef]
- De Bartolo, A.; Romeo, N.; Angelone, T.; Rocca, C. Specialized Pro-Resolving Mediators as Emerging Players in Cardioprotection: From Inflammation Resolution to Therapeutic Potential. Acta Physiol. 2025, 241, e70062. [Google Scholar] [CrossRef]
- Soliman, A.M.; Soliman, M.; Shah, S.S.H.; Baig, H.A.; Gouda, N.S.; Alenezi, B.T.; Alenezy, A.; Hegazy, A.M.S.; Jan, M.; Eltom, E.H. Molecular dynamics of inflammation resolution: Therapeutic implications. Front. Cell Dev. Biol. 2025, 13, 1600149. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Nshimiyimana, R. Low-dose pro-resolving mediators temporally reset the resolution response to microbial inflammation. Mol. Med. 2024, 30, 153. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Peng, C.-W.; Jiang, Y.-H.; Jhang, J.-F. Urinary Viral Spectrum in Patients with Interstitial Cystitis/Bladder Pain Syndrome and the Clinical Efficacy of Valacyclovir Treatment. Biomedicines 2024, 12, 522. [Google Scholar] [CrossRef]
- Yu, W.-R.; Jhang, J.-F.; Jiang, Y.-H.; Kuo, H.-C. The Pathomechanism and Current Treatments for Chronic Interstitial Cystitis and Bladder Pain Syndrome. Biomedicines 2024, 12, 2051. [Google Scholar] [CrossRef]
- Soták, M.; Clark, M.; Suur, B.E.; Börgeson, E. Inflammation and resolution in obesity. Nat. Rev. Endocrinol. 2025, 21, 45–61. [Google Scholar] [CrossRef]
- Militaru, M.; Lighezan, D.F.; Tudoran, C.; Militaru, A.G. Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Type 2 Diabetes Mellitus. Biomedicines 2024, 12, 672. [Google Scholar] [CrossRef]
- Twardawa, M.; Formanowicz, P.; Formanowicz, D. The Interplay Between Carotid Intima-Media Thickness and Selected Serum Biomarkers in Various Stages of Chronic Kidney Disease. Biomedicines 2025, 13, 335. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100,667 Patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; Jankowski, J. Increased Risk of Cardiovascular Complications in Chronic Kidney Disease: Introduction to a Compendium. Circ. Res. 2023, 132, 899–901. [Google Scholar] [CrossRef]
- Vondenhoff, S.; Schunk, S.J.; Noels, H. Increased cardiovascular risk in patients with chronic kidney disease. Herz 2024, 49, 95–104. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Formanowicz, D.; Formanowicz, P. The Role of Macrophage Dynamics in Atherosclerosis Analyzed Using a Petri Net-Based Model. Appl. Sci. 2024, 14, 3219. [Google Scholar] [CrossRef]
- Formanowicz, D.; Sackmann, A.; Kozak, A.; Błażewicz, J.; Formanowicz, P. Some aspects of the anemia of chronic disorders modeled and analyzed by Petri net based approach. Bioprocess Biosyst. Eng. 2011, 34, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Mayorca-Guiliani, A.E.; Leeming, D.J.; Henriksen, K.; Mortensen, J.H.; Nielsen, S.H.; Anstee, Q.M.; Sanyal, A.J.; Karsdal, M.A.; Schuppan, D. ECM formation and degradation during fibrosis, repair, and regeneration. npj Metab. Health Dis. 2025, 3, 25. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Miao, C. Metabolic reprogram and T cell differentiation in inflammation: Current evidence and future perspectives. Cell Death Discov. 2025, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.L.S.; Proost, P.; Struyf, S. Chemokines in the resolution of inflammation: Key players and targets for therapeutic modulation. Front. Immunol. 2025, 16, 1717666. [Google Scholar] [CrossRef]
- Gori, P.; Singh, S.; Patel, P. Oxidative stress and free radicals in disease pathogenesis: A review. Discov. Med. 2025, 2, 104. [Google Scholar] [CrossRef]
- Fernando, K.; Connolly, D.; Darcy, E.; Evans, M.; Hinchliffe, W.; Holmes, P.; Strain, W.D. Advancing Cardiovascular, Kidney, and Metabolic Medicine: A Narrative Review of Insights and Innovations for the Future. Diabetes Ther. 2025, 16, 1155–1176. [Google Scholar] [CrossRef]
- Blagov, A.V.; Summerhill, V.I.; Sukhorukov, V.N.; Zhigmitova, E.B.; Postnov, A.Y.; Orekhov, A.N. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front. Pharmacol. 2024, 15, 1378335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formanowicz, D. Decoding Chronicity: Oxidative Stress and Inflammation as Systems Hubs. Biomedicines 2025, 13, 2976. https://doi.org/10.3390/biomedicines13122976
Formanowicz D. Decoding Chronicity: Oxidative Stress and Inflammation as Systems Hubs. Biomedicines. 2025; 13(12):2976. https://doi.org/10.3390/biomedicines13122976
Chicago/Turabian StyleFormanowicz, Dorota. 2025. "Decoding Chronicity: Oxidative Stress and Inflammation as Systems Hubs" Biomedicines 13, no. 12: 2976. https://doi.org/10.3390/biomedicines13122976
APA StyleFormanowicz, D. (2025). Decoding Chronicity: Oxidative Stress and Inflammation as Systems Hubs. Biomedicines, 13(12), 2976. https://doi.org/10.3390/biomedicines13122976
