Current Role of Artificial Intelligence in the Management of Gastric Cancer
Abstract
1. Introduction
2. Data Collection Procedure
3. Results
3.1. AI-Assisted Gastric Cancer Screening and Diagnosis with Endoscopy
| Author, Year | Dataset | Data Size | AI Model Used | Outcome |
|---|---|---|---|---|
| Ikenoyama et al., 2021 [20] | Stomach images for gastric cancer lesions | Training dataset: 13,584 images for 2369 histologically proven gastric cancer lesions Validation dataset: 69 consecutive patients, 77 gastric lesions | Single Shot Multibox Detector | Sensitivity/Positive Prognostic Value for identifying early gastric cancer. |
| Uema et al., 2024 [24] | Endoscopic ultrasonography images from patients with early gastric cancer | Training dataset: 3889 EUS images from 285 EGCs Validation dataset: 1726 EUS from 13mi5 EGCs (internal) −3346 EUS images from 139 EGCs (external) | PyTorch/ ResNet34 | Classification of lesions as mucosal cancer, submucosal cancer, or invasive lesions. |
| Kim et al., 2022 [30] | Endoscopic images and video clips of either mucosal or submucosal cancer | Training dataset: 1582 static images of mucosal and 1697 of submucosal cancer/189 and 165 video clips of submucosal cancer, respectively Validation dataset: 84 video clips of mucosal and 46 of submucosal cancer | VGG-16 image classifier and video classifier (IC and VC) | Prediction of invasion depth of gastric cancer lesions. |
3.2. Clinical Staging
3.3. Histopathology and Molecular Classification
| Author, Year | Dataset | Data Size | Method Used | Outcome |
|---|---|---|---|---|
| Dong et al., 2020 [34] | Unenhanced and contrast-enhanced CT images of patients with locally advanced gastric cancer | Training set: CT images from 225 patients with locally advanced gastric cancer Validation set: 505 from different | DenseNet-201 (Deep Convolutional Neural Network) | Discriminative ability of the deep learning algorithm when assessing lymph node stage and overall survival |
| Jin et al., 2021 [36] | CT scan images of patients with gastric adenocarcinoma before partial or total gastrectomy | Training set: 1172 patients Validation set: 527 patients | Unet with ResNet-108 | Prediction performance of lymph node metastasis |
| Huang et al., 2021 [10] | Histopathology pictures of patients with gastric cancer | Training set: 2333 H&E pathological pictures of 1037 cases Validation set: 179 digital pictures of 91 cases | GastroMIL and MIL-GC | Predictive performance in differentiating gastric cancer from normal tissue in H&E biopsies. |
| Jiang et al., 2021 [39] | CT images of patients with histopathologically confirmed gastric cancer | Training set: 1225 patients who underwent gastrectomy Validation set: 504 patients (cohort 1); 249 (cohort 2) | Peritoneal Metastasis Network (PemNet) | Ability to recognize peritoneal metastasis |
| Karakitsos et al., 1998 [42] | Gastric smears stained by the Papanicolaou technic | Training set: 2500 cells of 23 of patient with cancer, 19 with gastritis, and 58 with ulcus Validation set: 8524 cells of respective cases | Learning Vector Quantization (LVQ) | Discrimination between benign and malignant gastric lesions |
| Cho et al., 2024 [48] | Images of gastric adenocarcinoma and normal tissue samples acquired with confocal laser endomicroscopic system (CLES) | Validation set: 3686 (internal) and 100 CLES images (external) | Convolutional Neural Network | Discrimination between benign and malignant gastric lesions |
| Li et al., 2023 [56] | Hematoxylin–eosin-stained images of patients with gastric cancer | 353 patients with gastric cancer | ResNet-18 | Tumor detection and classification of Tertiary Lymphoid Structures |
| Badve et al., 2024 [51] | Whole slide images (WSIs) | 97 biopsies with gastric cancer stained for PD-L1 | Mindpeak Gastric PD-L1 | Pairwise concordance between histopathologists and AI software for CPS score |
| Muti et al., 2021 [57] | Digitized histological slides from FFPE gastric cancer with matched microsatellite instability | 2823 patients with known microsatellite instability and 2685 with known EBV status (10 centers in 7 countries) | ResNet-18 | Deep learning detection of EBV in gastric cancer biopsies |
| Kather et al.,2019 [58] | FFPE samples of gastric adenocarcinoma | Training set: 360 patients; 93,408 tiles External validation set: 378 patients; 896,530 tiles | ResNet-18 | Ability to detect MSI status in H&Ε gastric cancer biopsies |
| Wang et al., 2022 [59] | H&Ε samples of gastric adenocarcinoma | 332 microscopic images of gastric cancer biopsies | EfficientNet-b1 | Infer molecular subtypes of gastric cancer |
| Sharma et al., 2016 [63] | WSIs with HER2 and H&E stain, acquired from surgical sections of distinct patients of gastric adenocarcinoma | Training set: 11 WSI Validation set: 795 tiles | Random forests machine learning | Suitability of cell nuclei attributed graph (cell nuclei ARG) to molecularly classify gastric tumors |
| Liao et al., 2025 [62] | H&E tiles of the Internal-Stomach Adenocarcinoma dataset (STAD) | Training set: 531 H&E WSIs from 63 HER-2 positive patients and 457 HER-2 negative patients Validation set: 115 H&E WSIs from 17 HER-positive and 94 HER-2 negative patients | Pixel-Level Tumor Detector | Prediction of HER2 status in H&E gastric cancer biopsies |
3.4. Prediction of the Clinical Outcome and Prognosis and Treatment Suggestions
3.5. Surgical Procedures
| Author, Year | Dataset | Data Size | Method Used | Outcome |
|---|---|---|---|---|
| Huang et al., 2021 [10] | H&E gastric cancer | 2333 images of 1037 patients with gastric cancer | GastroMIL | Accuracy for diagnosis of gastric cancer and prognostic outcome |
| Que et al., 2019 [68] | Patients with gastric cancer from tertiary hospital–clinical and laboratory values | Training set: 1104 patients Testing set: 504 patients | Artificial neural network (ANN) | Prognostic ability of ANN for gastric cancer |
| Kuwayama et al., 2023 [54] | Patients who underwent surgery for gastric cancer/35 clinicopathological preoperative variables | 1687 patients | Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), Deep Neural Network (DNN) | Prognostic evaluation for survival |
| Park et al., 2023 [73] | Patients who underwent surgery for gastric cancer | 322 patients | Watson for Oncology | Degree of agreement for treatment recommendations between WFO and 7-member multidisciplinary team |
| Yamazaki et al., 2020 [79] | Laparoscopic gastrectomy videos | 10,716 images from 52 laparoscopic gastrectomy videos | Neural Network Platform, YOLOv3 | Ability to detect and classify surgical instruments |
| Kitaguchi et al., 2019 [80] | Static images of laparoscopic gastrectomies | 1242 captured images from 41 patients who underwent radical gastrectomy | Deep learning instance segmentation model (Mask R-CNN) | Intersection over union: how closely the AI predicted pancreas contour matches the true regions notated by surgeons |
| Takeuchi et al., 2023 [82] | Clinical data and surgical videos of patients who underwent robotic distal gastrectomy (RDG) | 56 patients who underwent RDG with D1 or D2 lymphadenectomy | Multi-stage temporal convolutional network (TeCNO) | Performance of AI model to predict operation complexity in comparison with |
| Chien et al., 2008 [84] | Pre-and postoperative clinical data from patients with postgastrectomy complications | 521 patients | Artificial Neural Network (ANN), Decision Tree (DT), Logistic Regression (LR) | Prediction of postoperative complications |
4. Discussion: Strengths and Upcoming Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Li, Y.; Feng, A.; Zheng, S.; Chen, C.; Lyu, J. Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control 2022, 29, 10732748221099227. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Keshavjee, S.H.; Yoon, S.S.; Kwon, S. Survival Outcomes and Patterns of Care for Stage II or III Resected Gastric Cancer by Race and Ethnicity. JAMA Netw. Open 2023, 6, e2349026. [Google Scholar] [CrossRef]
- Hibino, M.; Hamashima, C.; Iwata, M.; Terasawa, T. Radiographic and endoscopic screening to reduce gastric cancer mortality: A systematic review and meta-analysis. Lancet Reg. Health—West. Pac. 2023, 35, 100741. [Google Scholar] [CrossRef]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef]
- Januszewicz, W.; Turkot, M.H.; Regula, J. How to Improve the Efficacy of Gastric Cancer Screening? Curr. Treat. Options Gastroenterol. 2023, 21, 241–255. [Google Scholar] [CrossRef]
- Ogata, T.; Narita, Y.; Oze, I.; Kumanishi, R.; Nakazawa, T.; Matsubara, Y.; Kodama, H.; Nakata, A.; Honda, K.; Masuishi, T.; et al. Chronological improvement of survival in patients with advanced gastric cancer over 15 years. Ther. Adv. Med. Oncol. 2024, 16, 17588359241229428. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, R.; Wang, S.M.; Li, M.; Fan, Z.; Li, X.; Zhou, J.; Sun, K.; Wei, W. Prediction Models for Gastric Cancer Risk in the General Population: A Systematic Review. Cancer Prev. Res. 2022, 15, 309–318. [Google Scholar] [CrossRef]
- Huang, B.; Tian, S.; Zhan, N.; Ma, J.; Huang, Z.; Zhang, C.; Zhang, H.; Ming, F.; Liao, F.; Ji, M.; et al. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: A retrospective multicentre study. EBioMedicine 2021, 73, 103631. [Google Scholar] [CrossRef]
- Cheung, K.S. Big data approach in the field of gastric and colorectal cancer research. J. Gastroenterol. Hepatol. 2024, 39, 1027–1032. [Google Scholar] [CrossRef]
- Akyüz, K.; Cano Abadía, M.; Goisauf, M.; Mayrhofer, M.T. Unlocking the potential of big data and AI in medicine: Insights from biobanking. Front. Med. 2024, 11, 1336588. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yang, Q.; Ge, A.; Zhao, C.; Ma, Y.; Wang, S. Explainable machine learning models for early gastric cancer diagnosis. Sci. Rep. 2024, 14, 17457. [Google Scholar] [CrossRef]
- Klang, E.; Sourosh, A.; Nadkarni, G.N.; Sharif, K.; Lahat, A. Deep Learning and Gastric Cancer: Systematic Review of AI-Assisted Endoscopy. Diagnostics 2023, 13, 3613. [Google Scholar] [CrossRef]
- Cao, R.; Tang, L.; Fang, M.; Zhong, L.; Wang, S.; Gong, L.; Li, J.; Dong, D.; Tian, J. Artificial intelligence in gastric cancer: Applications and challenges. Gastroenterol. Rep. 2022, 10, goac064. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Piazuelo, M.B. Natural history of Helicobacter pylori infection. Dig. Liver Dis. 2008, 40, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, K.; Liu, B.; Pan, C.; Liang, K.; Yan, L.; Ma, J.; He, F.; Zhang, S.; Pan, S.; et al. Advances in Deep Learning-Based Medical Image Analysis. Health Data Sci. 2021, 2021, 8786793. [Google Scholar] [CrossRef]
- Ikenoyama, Y.; Hirasawa, T.; Ishioka, M.; Namikawa, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Takeuchi, Y.; et al. Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Dig. Endosc. 2021, 33, 141–150. [Google Scholar] [CrossRef]
- Kuroki, K.; Oka, S.; Tanaka, S.; Yorita, N.; Hata, K.; Kotachi, T.; Boda, T.; Arihiro, K.; Chayama, K. Clinical significance of endoscopic ultrasonography in diagnosing invasion depth of early gastric cancer prior to endoscopic submucosal dissection. Gastric Cancer 2021, 24, 145–155. [Google Scholar] [CrossRef]
- Shi, D.; Xi, X.X. Factors Affecting the Accuracy of Endoscopic Ultrasonography in the Diagnosis of Early Gastric Cancer Invasion Depth: A Meta-analysis. Gastroenterol. Res. Pract. 2019, 2019, 8241381. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Kuroda, J.; Yoshida, M.; Ohta, K.; Kitajima, M. Medical image analysis: Computer-aided diagnosis of gastric cancer invasion on endoscopic images. Surg. Endosc. 2012, 26, 1485–1489. [Google Scholar] [CrossRef]
- Uema, R.; Hayashi, Y.; Kizu, T.; Igura, T.; Ogiyama, H.; Yamada, T.; Takeda, R.; Nagai, K.; Inoue, T.; Yamamoto, M.; et al. A novel artificial intelligence-based endoscopic ultrasonography diagnostic system for diagnosing the invasion depth of early gastric cancer. J. Gastroenterol. 2024, 59, 543–555. [Google Scholar] [CrossRef]
- Islam, M.M.; Poly, T.N.; Walther, B.A.; Lin, M.-C.; Li, Y.-C. Artificial Intelligence in Gastric Cancer: Identifying Gastric Cancer Using Endoscopic Images with Convolutional Neural Network. Cancers 2021, 13, 5253. [Google Scholar] [CrossRef]
- Hussain, J.; Båth, M.; Ivarsson, J. Generative adversarial networks in medical image reconstruction: A systematic literature review. Comput. Biol. Med. 2025, 191, 110094. [Google Scholar] [CrossRef]
- Teramoto, A.; Shibata, T.; Yamada, H.; Hirooka, Y.; Saito, K.; Fujita, H. Automated Detection of Gastric Cancer by Retrospective Endoscopic Image Dataset Using U-Net R-CNN. Appl. Sci. 2021, 11, 11275. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, J.; Park, J.; Chang, Y.H.; Shin, C.M.; Oh, M.J.; Kim, S.H.; Kang, S.; Park, S.H.; Kim, S.G.; et al. An artificial intelligence system for comprehensive pathologic outcome prediction in early gastric cancer through endoscopic image analysis (with video). Gastric Cancer 2024, 27, 1088–1099. [Google Scholar] [CrossRef]
- Nagao, S.; Tsuji, Y.; Sakaguchi, Y.; Takahashi, Y.; Minatsuki, C.; Niimi, K.; Yamashita, H.; Yamamichi, N.; Seto, Y.; Tada, T. Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: Efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging. Gastrointest. Endosc. 2020, 92, 866–873.e861. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Oh, S.-I.; Han, S.-Y.; Keum, J.-S.; Kim, K.-N.; Chun, J.-Y.; Youn, Y.-H.; Park, H. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers 2022, 14, 6000. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, K.N.; Cunningham, D. Deep learning as a staging tool in gastric cancer. Ann. Oncol. 2020, 31, 827–828. [Google Scholar] [CrossRef]
- Giandola, T.; Maino, C.; Marrapodi, G.; Ratti, M.; Ragusi, M.; Bigiogera, V.; Talei Franzesi, C.; Corso, R.; Ippolito, D. Imaging in Gastric Cancer: Current Practice and Future Perspectives. Diagnostics 2023, 13, 1276. [Google Scholar] [CrossRef]
- Liu, F.; Xie, Q.; Wang, Q.; Li, X. Application of deep learning-based CT texture analysis in TNM staging of gastric cancer. J. Radiat. Res. Appl. Sci. 2023, 16, 100635. [Google Scholar] [CrossRef]
- Dong, D.; Fang, M.J.; Tang, L.; Shan, X.H.; Gao, J.B.; Giganti, F.; Wang, R.P.; Chen, X.; Wang, X.X.; Palumbo, D.; et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study. Ann. Oncol. 2020, 31, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, A.; Mulhern, P.; Siegel, E. The National Biomedical Imaging Archive: A repository of advanced imaging information. J. Nucl. Med. 2012, 53 (Suppl. 1), 1009. [Google Scholar]
- Jin, C.; Jiang, Y.; Yu, H.; Wang, W.; Li, B.; Chen, C.; Yuan, Q.; Hu, Y.; Xu, Y.; Zhou, Z.; et al. Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer. Br. J. Surg. 2021, 108, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Miccichè, F.; Rizzo, G.; Casà, C.; Leone, M.; Quero, G.; Boldrini, L.; Bulajic, M.; Corsi, D.C.; Tondolo, V. Role of radiomics in predicting lymph node metastasis in gastric cancer: A systematic review. Front. Med. 2023, 10, 1189740. [Google Scholar] [CrossRef]
- Wu, A.; Wu, C.; Zeng, Q.; Cao, Y.; Shu, X.; Luo, L.; Feng, Z.; Tu, Y.; Jie, Z.; Zhu, Y.; et al. Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer. Sci. Rep. 2023, 13, 8442. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, X.; Wang, W.; Chen, C.; Yuan, Q.; Zhang, X.; Li, N.; Chen, H.; Yu, J.; Xie, Y.; et al. Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer Using Deep Learning. JAMA Netw. Open 2021, 4, e2032269. [Google Scholar] [CrossRef]
- Park, Y.S.; Kook, M.C.; Kim, B.H.; Lee, H.S.; Kang, D.W.; Gu, M.J.; Shin, O.R.; Choi, Y.; Lee, W.; Kim, H.; et al. A Standardized Pathology Report for Gastric Cancer: 2nd Edition. J. Gastric Cancer 2023, 23, 107–145. [Google Scholar] [CrossRef] [PubMed]
- Brodkin, J.; Kaprio, T.; Hagström, J.; Leppä, A.; Kokkola, A.; Haglund, C.; Böckelman, C. Prognostic effect of immunohistochemically determined molecular subtypes in gastric cancer. BMC Cancer 2024, 24, 1482. [Google Scholar] [CrossRef]
- Karakitsos, P.; Ioakim-Liossi, A.; Pouliakis, A.; Botsoli-Stergiou, E.; Tzivras, M.; Archimandritis, A.; Kyrkou, K. A comparative study of three variations of the learning vector quantizer in the discrimination of benign from malignant gastric cells. Cytopathology 1998, 9, 114–125. [Google Scholar] [CrossRef]
- Yoshida, H.; Yamashita, Y.; Shimazu, T.; Cosatto, E.; Kiyuna, T.; Taniguchi, H.; Sekine, S.; Ochiai, A. Automated histological classification of whole slide images of colorectal biopsy specimens. Oncotarget 2017, 8, 90719. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, S. Artificial Intelligence in the Pathology of Gastric Cancer. J. Gastric Cancer 2023, 23, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Ba, W.; Wang, S.; Shang, M.; Zhang, Z.; Wu, H.; Yu, C.; Xing, R.; Wang, W.; Wang, L.; Liu, C.; et al. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Mod. Pathol. 2022, 35, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Kanavati, F.; Tsuneki, M. A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images. Sci. Rep. 2021, 11, 20486. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Gao, Y.; Zhang, H.; Guan, Z.; Dong, Z.; Zheng, Y.; Jiang, J.; Yang, H.; Wang, L.; et al. Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning. Nat. Commun. 2021, 12, 1637. [Google Scholar] [CrossRef]
- Cho, H.; Moon, D.; Heo, S.M.; Chu, J.; Bae, H.; Choi, S.; Lee, Y.; Kim, D.; Jo, Y.; Kim, K.; et al. Artificial intelligence-based real-time histopathology of gastric cancer using confocal laser endomicroscopy. Npj Precis. Oncol. 2024, 8, 131. [Google Scholar] [CrossRef]
- Yeong, J.; Lum, H.Y.J.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; Tay, R.Y.K.; Choo, J.R.; Jeyasekharan, A.D.; Miow, Q.H.; Loo, L.H.; et al. Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric Cancer 2022, 25, 741–750. [Google Scholar] [CrossRef]
- Klempner, S.J.; Cowden, E.S.; Cytryn, S.L.; Fassan, M.; Kawakami, H.; Shimada, H.; Tang, L.H.; Wagner, D.-C.; Yatabe, Y.; Savchenko, A.; et al. PD-L1 Immunohistochemistry in Gastric Cancer: Comparison of Combined Positive Score and Tumor Area Positivity Across 28-8, 22C3, and SP263 Assays. JCO Precis. Oncol. 2024, 8, e2400230. [Google Scholar] [CrossRef]
- Badve, S.S.; Kumar, G.L.; Lang, T.; Mulder, D.; Calvopiña, D.; Frey, P.; Karasarides, M. AI based PD-L1 CPS quantifier software to identify more patients for checkpoint therapy in gastric cancer at pathologist-level interobserver concordance. J. Clin. Oncol. 2024, 42, 2633. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q.; Chen, B.; Zhao, Y.; Shen, B.; Wang, H.; Xu, J.; Zhu, M.; Zhao, X.; Xu, C.; et al. Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis. 2018, 9, 928. [Google Scholar] [CrossRef]
- Lordick, F.; Mauer, M.E.; Stocker, G.; Cella, C.A.; Ben-Aharon, I.; Piessen, G.; Wyrwicz, L.; Al-Haidari, G.; Fleitas-Kanonnikoff, T.; Boige, V.; et al. Adjuvant immunotherapy in patients with resected gastric and oesophagogastric junction cancer following preoperative chemotherapy with high risk for recurrence (ypN+ and/or R1): European Organisation of Research and Treatment of Cancer (EORTC) 1707 VESTIGE study. Ann. Oncol. 2025, 36, 197–207. [Google Scholar] [CrossRef]
- Kuwayama, N.; Hoshino, I.; Mori, Y.; Yokota, H.; Iwatate, Y.; Uno, T. Applying artificial intelligence using routine clinical data for preoperative diagnosis and prognosis evaluation of gastric cancer. Oncol. Lett. 2023, 26, 499. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, Z.; Wu, N.; Zhou, G.; Wang, X. Classification of gastric cancers based on immunogenomic profiling. Transl. Oncol. 2021, 14, 100888. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Y.; Li, B.; Han, Z.; Shen, J.; Xia, Y.; Li, R. Development and Validation of a Machine Learning Model for Detection and Classification of Tertiary Lymphoid Structures in Gastrointestinal Cancers. JAMA Netw. Open 2023, 6, e2252553. [Google Scholar] [CrossRef] [PubMed]
- Muti, H.S.; Heij, L.R.; Keller, G.; Kohlruss, M.; Langer, R.; Dislich, B.; Cheong, J.H.; Kim, Y.W.; Kim, H.; Kook, M.C.; et al. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: A retrospective multicentre cohort study. Lancet Digit. Health 2021, 3, e654–e664. [Google Scholar] [CrossRef]
- Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Kwok, T.; Bain, C.A.; Xue, X.; Gasser, R.B.; Webb, G.I.; Boussioutas, A.; Shen, X.; Daly, R.J.; et al. DEMoS: A deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images. Bioinformatics 2022, 38, 4206–4213. [Google Scholar] [CrossRef]
- Abrahao-Machado, L.F.; Scapulatempo-Neto, C. HER2 testing in gastric cancer: An update. World J. Gastroenterol. 2016, 22, 4619–4625. [Google Scholar] [CrossRef]
- Gravalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, X.; Hu, S.; Chen, B.; Zhuo, X.; Xu, H.; Wu, X.; Zeng, X.; Zeng, H.; Zhang, D.; et al. Artificial Intelligence for Predicting HER2 Status of Gastric Cancer Based on Whole-Slide Histopathology Images: A Retrospective Multicenter Study. Adv. Sci. 2025, 12, e2408451. [Google Scholar] [CrossRef]
- Sharma, H.; Zerbe, N.; Heim, D.; Wienert, S.; Lohmann, S.; Hellwich, O.; Hufnagl, P. Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology. In Proceedings of the Medical Imaging 2016: Digital Pathology, San Diego, CA, USA, 2–3 March 2016; pp. 238–256. [Google Scholar]
- Sabbagh, S.; Jabbal, I.S.; Herrán, M.; Mohanna, M.; Iska, S.; Itani, M.; Dominguez, B.; Sarna, K.; Nahleh, Z.; Nagarajan, A. Evaluating survival outcomes and treatment recommendations in resectable gastric cancer. Sci. Rep. 2025, 15, 2816. [Google Scholar] [CrossRef]
- Zeng, J.; Li, K.; Cao, F.; Zheng, Y. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Front. Oncol. 2023, 13, 1131859. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.C.; Lee, T.H.; Kuo, K.C.; Su, F.Y.; Lee, T.M.; Marostica, E.; Ugai, T.; Zhao, M.; Lau, M.C.; Väyrynen, J.P.; et al. Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nat. Commun. 2023, 14, 2102. [Google Scholar] [CrossRef] [PubMed]
- Hagi, T.; Nakamura, T.; Yuasa, H.; Uchida, K.; Asanuma, K.; Sudo, A.; Wakabayahsi, T.; Morita, K. Prediction of prognosis using artificial intelligence-based histopathological image analysis in patients with soft tissue sarcomas. Cancer Med. 2024, 13, e7252. [Google Scholar] [CrossRef]
- Que, S.J.; Chen, Q.Y.; Qing, Z.; Liu, Z.Y.; Wang, J.B.; Lin, J.X.; Lu, J.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer. World J. Gastroenterol. 2019, 25, 6451–6464. [Google Scholar] [CrossRef]
- Afrash, M.R.; Shanbehzadeh, M.; Kazemi-Arpanahi, H. Design and Development of an Intelligent System for Predicting 5-Year Survival in Gastric Cancer. Clin. Med. Insights Oncol. 2022, 16, 11795549221116833. [Google Scholar] [CrossRef]
- Oh, S.E.; Seo, S.W.; Choi, M.G.; Sohn, T.S.; Bae, J.M.; Kim, S. Prediction of Overall Survival and Novel Classification of Patients with Gastric Cancer Using the Survival Recurrent Network. Ann. Surg. Oncol. 2018, 25, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, X.; Gao, X.; Shan, F.; Ying, X.; Zhang, Y.; Ji, J. Development and validation of an artificial neural network prognostic model after gastrectomy for gastric carcinoma: An international multicenter cohort study. Cancer Med. 2020, 9, 6205–6215. [Google Scholar] [CrossRef]
- Chung, H.; Ko, Y.; Lee, I.S.; Hur, H.; Huh, J.; Han, S.U.; Kim, K.W.; Lee, J. Prognostic artificial intelligence model to predict 5 year survival at 1 year after gastric cancer surgery based on nutrition and body morphometry. J. Cachexia Sarcopenia Muscle 2023, 14, 847–859. [Google Scholar] [CrossRef]
- Park, Y.-E.; Chae, H. The fidelity of artificial intelligence to multidisciplinary tumor board recommendations for patients with gastric cancer: A retrospective study. J. Gastrointest. Cancer 2024, 55, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Yonazu, S.; Ozawa, T.; Nakanishi, T.; Ochiai, K.; Shibata, J.; Osawa, H.; Hirasawa, T.; Kato, Y.; Tajiri, H.; Tada, T. Cost-effectiveness analysis of the artificial intelligence diagnosis support system for early gastric cancers. DEN Open 2024, 4, e289. [Google Scholar] [CrossRef]
- Pinho Costa, M.; Santos-Sousa, H.; Oliveira, C.R.; Amorim-Cruz, F.; Bouça, R.; Barbosa, E.; Carneiro, S.; Sousa-Pinto, B. The Metabolic Effects and Effectiveness of the Different Reconstruction Methods used in Gastric Cancer Surgery: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 23477. [Google Scholar] [CrossRef]
- Markar, S.R.; Visser, M.R.; van der Veen, A.; Luyer, M.D.P.; Nieuwenhuijzen, G.; Stoot, J.; Tegels, J.J.W.; Wijnhoven, B.P.L.; Lagarde, S.M.; de Steur, W.O.; et al. Evolution in Laparoscopic Gastrectomy From a Randomized Controlled Trial Through National Clinical Practice. Ann. Surg. 2024, 279, 394–401. [Google Scholar] [CrossRef]
- Ahmet, A.; Gamze, K.; Rustem, M.; Sezen, K.A. Is Video-Based Education an Effective Method in Surgical Education? A Systematic Review. J. Surg. Educ. 2018, 75, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Augestad, K.M.; Butt, K.; Ignjatovic, D.; Keller, D.S.; Kiran, R. Video-based coaching in surgical education: A systematic review and meta-analysis. Surg. Endosc. 2020, 34, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kanaji, S.; Matsuda, T.; Oshikiri, T.; Nakamura, T.; Suzuki, S.; Hiasa, Y.; Otake, Y.; Sato, Y.; Kakeji, Y. Automated Surgical Instrument Detection from Laparoscopic Gastrectomy Video Images Using an Open Source Convolutional Neural Network Platform. J. Am. Coll. Surg. 2020, 230, 725–732.e1. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Takeshita, N.; Matsuzaki, H.; Takano, H.; Owada, Y.; Enomoto, T.; Oda, T.; Miura, H.; Yamanashi, T.; Watanabe, M.; et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 2020, 34, 4924–4931. [Google Scholar] [CrossRef]
- Sato, Y.; Sese, J.; Matsuyama, T.; Onuki, M.; Mase, S.; Okuno, K.; Saito, K.; Fujiwara, N.; Hoshino, A.; Kawada, K.; et al. Preliminary study for developing a navigation system for gastric cancer surgery using artificial intelligence. Surg. Today 2022, 52, 1753–1758. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kawakubo, H.; Tsuji, T.; Maeda, Y.; Matsuda, S.; Fukuda, K.; Nakamura, R.; Kitagawa, Y. Evaluation of surgical complexity by automated surgical process recognition in robotic distal gastrectomy using artificial intelligence. Surg. Endosc. 2023, 37, 4517–4524. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Zhou, Y.-B.; Li, T.-Y.; Li, J.-P.; Zhou, Z.-W.; She, J.-J.; Hu, J.-K.; Qian, F.; Shi, Y.; Tian, Y.-L.; et al. Robotic Gastrectomy Versus Laparoscopic Gastrectomy for Gastric Cancer: A Multicenter Cohort Study of 5402 Patients in China. Ann. Surg. 2023, 277, e87–e95. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.W.; Lee, Y.C.; Ma, T.; Lee, T.S.; Lin, Y.C.; Wang, W.; Lee, W.J. The application of artificial neural networks and decision tree model in predicting post-operative complication for gastric cancer patients. Hepatogastroenterology 2008, 55, 1140–1145. [Google Scholar]
- Chidambaram, S.; Sounderajah, V.; Maynard, N.; Markar, S.R. ASO Author Reflections: Applications of Artificial Intelligence in Oesophago-Gastric Malignancies—Present Work and Future Directions. Ann. Surg. Oncol. 2022, 29, 1991–1992. [Google Scholar] [CrossRef]
- Lei, C.; Sun, W.; Wang, K.; Weng, R.; Kan, X.; Li, R. Artificial intelligence-assisted diagnosis of early gastric cancer: Present practice and future prospects. Ann. Med. 2025, 57, 2461679. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Shin, C.M.; Lee, H.D.; Park, J.; Jeon, J.; Cho, S.J.; Kang, S.J.; Chung, J.Y.; Jun, Y.K.; Choi, Y.; et al. Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions. J. Gastric Cancer 2024, 24, 327–340. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Wang, Y.; Liu, X.; Xu, W.; Sun, R.; Xue, B.; Zhang, X.; Ai, Y.; Du, Y.; et al. The artificial intelligence revolution in gastric cancer management: Clinical applications. Cancer Cell Int. 2025, 25, 111. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.L.; Zhou, Y.; Liu, W.; Luo, Q.; Zeng, X.H.; Yi, Z.; Hu, B. Artificial intelligence for diagnosing gastric lesions under white-light endoscopy. Surg. Endosc. 2022, 36, 9444–9453. [Google Scholar] [CrossRef]
- Qadir, H.A.; Shin, Y.; Bergsland, J.; Balasingham, I. Accurate real-time polyp detection in videos from concatenation of latent features extracted from consecutive frames. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; pp. 2461–2466. [Google Scholar]
- Renna, F.; Martins, M.; Neto, A.; Cunha, A.; Libânio, D.; Dinis-Ribeiro, M.; Coimbra, M. Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice. Diagnostics 2022, 12, 1278. [Google Scholar] [CrossRef]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef]
- Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended Consequences of Machine Learning in Medicine. JAMA 2017, 318, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Kapteijn, N.E.A.; Mülder, D.T.; Lansdorp-Vogelaar, I. Cost-effectiveness of upper endoscopy for gastric cancer screening and surveillance in Western populations. Best Pract. Res. Clin. Gastroenterol. 2025, 75, 101982. [Google Scholar] [CrossRef]
- Yeh, J.M.; Hur, C.; Kuntz, K.M.; Ezzati, M.; Goldie, S.J. Cost-effectiveness of treatment and endoscopic surveillance of precancerous lesions to prevent gastric cancer. Cancer 2010, 116, 2941–2953. [Google Scholar] [CrossRef]
- Plana, D.; Shung, D.L.; Grimshaw, A.A.; Saraf, A.; Sung, J.J.Y.; Kann, B.H. Randomized Clinical Trials of Machine Learning Interventions in Health Care: A Systematic Review. JAMA Netw. Open 2022, 5, e2233946. [Google Scholar] [CrossRef]
- Hanna, M.G.; Pantanowitz, L.; Jackson, B.; Palmer, O.; Visweswaran, S.; Pantanowitz, J.; Deebajah, M.; Rashidi, H.H. Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Mod. Pathol. 2025, 38, 100686. [Google Scholar] [CrossRef] [PubMed]


| Clinical Trial ID | Population | Intervention | Clinical Outcome | AI Software Used | Status |
|---|---|---|---|---|---|
| NCT06971471 (AIMING study) | >60 years-old patients undergoing upper gastrointestinal endoscopy for selected indications at areas with high-risk of gastric cancer | Integration of AI assistance in screening gastroscopy | Miss rate reduction: change in the miss rate of early gastric cancer and dysplastic lesions at upper endoscopy when using AI assistance | Core work packages (WPs): WP1, WP2, WP3, WP4 | Not yet recruiting |
| NCT06275997 GAIN project | >60 years-old patients undergoing upper gastrointestinal endoscopy for selected indications at areas with high-risk of gastric cancer | Integration of AI assistance in screening gastroscopy | Miss rate reduction: change in the miss rate of early gastric cancer and dysplastic lesions with upper endoscopy when using AI assistance | Core work packages (WPs): WP1, WP2, WP3, WP4 | Not yet recruiting |
| NCT05447221 2022-SDU-QILU-110 | Patients aged 40–75 years old who undergo the gastroscopy examination and biopsy at Qilu Hospital, Shandong Univesity | Pathologists and AI will assess the severity of intestinal metaplasia with whole slide images of gastric biopsies | The diagnostic performance of the AI model to assess the severity of intestinal metaplasia in a single biopsy tissue slide | Digital Pathology artificial intelligence diagnosis systems (DPAIDS) | Currently recruiting |
| NCT06495645 Protocol_upper_RCTV10 | Patients > 40 years old scheduled for elective upper endoscopy | AI-assisted upper gastrointestinal endoscopy | The diagnostic miss rate: the number of newly detected gastric neoplasia in the second examination divided by the total number of gastric neoplasia detected in both examinations for each patient | NA | Currently recruiting |
| NCT05819099 2023SDU-QILU-1 | Patients aged 18 to 75 years old who underwent endoscopic examination or treatment with pathologically confirmed esophageal gastric junction adenocarcinoma at Qilu Hospital, Shandong University | Pathologists and AI will assess the severity of intestinal metaplasia with whole slide images of gastric biopsy | The diagnostic performance of the AI model when assessing the severity of intestinal metaplasia in a single biopsy tissue slide | Digital Pathology artificial intelligence diagnosis systems (DPAIDS) | Νοt yet recruiting |
| NCT05368636 2022SDU-QILU-G001 | Patients aged 40 to 80 years old who are scheduled for gastroscopy | Observational study | Sensitivity and specificity of artificial intelligence models | NA | Not yet recruiting |
| NCT04675138 2022SDU-QILU-G001 | Patients aged 21 years old and older with primary gastric adenocarcinoma or patients with gastroesophageal junction cancers or esophageal cancer | Development of an alternative Clinical Decision Support Systems (CDSS) for oncology therapy selection | NA | Concordance Rate: Comparative agreement in recommendations between the two study groups | Not yet recruiting |
| NCT04840056 2021.082 | Patients aged 18 years old and older, with histologically proven atrophic gastritis or intestinal metaplasia (at antrum and/or body and/or angular of stomach) | Development of an alternative Clinical Decision Support Systems (CDSS) for oncology therapy selection | NA | Concordance Rate: Comparative agreement in recommendations between the two study groups | Not yet recruiting |
| NCT05916014 2022SDU-QILU-123 | Patients aged 18 years old and older, who undergo the white light endoscope examination at Qilu Hospital, Shandong University | Endoscopists and AI will assess the Kimura–Takemoto classification independently | NA | Accuracy, sensitivity, or specificity | Recruiting |
| NCT06632886 AI-MCScreen | Patients aged 18 years old and older who have undergone an abdominal or chest non-contrast CT scan | AI-assisted Non-contrast CT for Multi-Cancer Screening | NA | Diagnostic yield, incidence, resectable rate | Recruiting |
| NCT05426135 Jin_cancer risk | Patients aged 18 years old to 75 years old with suspected lung/stomach or colorectal cancer/lesions | Observational study | NA | The outcome of clinical diagnosis of suspected patients with stomach cancer and lesions | Recruiting |
| NCT06506825 HBGCCN | Patients aged 18 years old and older with gastric cancer at the Fourth Hospital of Hebei Medical University | Retrospective observational study | Gastric cancer AI-driven data integration genomic analysis | 5-year overall survival | Recruiting |
| NCT05722275 CASMI003 | Patients aged 18 years old and older with diagnosis of advanced gastric cancer (>cT3) by endoscopy–biopsy pathology, with both enhanced CT and laparoscopy, without typical peritoneal metastasis | Extracting and combining the radiomics features related to peritoneal metastasis of gastric cancer | Radiomics for gastric cancer | AUC of the intelligent analysis system in predicting peritoneal metastasis for gastric cancer | Recruiting |
| NCT06078930 IRB-2021-289 | Patients aged 18 years old until 90 years with histologically and cytologically confirmed gastric cancer with no prior oncological therapy | Extracting and combining the radiomics on tongue imaging, tongue coating, saliva, gastric juice, and feces | Radiomics for gastric cancer | The differences in tongue images, tongue coating, saliva, gastric juice, and fecal samples between patients with gastric cancer and healthy individuals | Recruiting |
| NCT03452774 SYNERGY-AI | All patients with hematological and solid malignancies from the SYNERGY | A proprietary application programming interface (API) linked to existing electronic health records (HR) is used for dynamic matching based on CT allocation and availability for optimized matching | VTB (virtual tumor boards) program | Proportion of patients eligible for clinical trial enrollment (CTE) | Recruiting |
| NCT06534814 FUTURE08 | Patients aged 18 years and older with confirmed diagnosis of gastric cancer and lymph node involvement | Application of artificial intelligence system to enhance the identification and characterization of lymph node metastasis | AID-GLNM | Identification of metastatic perigastric lymph nodes before surgery | Recruiting |
| NCT06478368 FUTURE06 | Patients aged 18 years and older with Locally Advanced Gastric Cancer (LAGC) with consent to provide intraoperative dynamic video and a scheduled surgical treatment | Application of artificial intelligence system to enhance the identification and characterization of lymph node metastasis | NA | Peritoneal metastasis | Not yet recruiting |
| NCT05762991 202111108RINC | Patients aged between 20 years old and 80 years old with scheduled urea breath test and endoscopy | Application of artificial intelligence system to analyze the correlation between endoscopic images and urea breath test/histopathological tests | NA | Sensitivity to detect premalignant gastric lesions | Recruiting |
| NCT05762991 202111108RINC | Patients aged between 20 years old and 80 years old with scheduled urea breath test and endoscopy | Application of artificial intelligence system to analyze the correlation between endoscopic images and urea breath test/histopathological tests | NA | Sensitivity to detect premalignant gastric lesions | Not yet recruiting |
| Summary of the Main Uses, Strengths, and Limitations of Artificial Intelligence Models in Gastric Cancer | |||
|---|---|---|---|
| Clinical Uses | Key Metrics | Strengths | Limitations |
| Endoscopy | Identify and segment pathological sites, classification of precancerous changes, and tumor invasion depth for early gastric cancer | Higher sensitivity and specificity than endoscopists in internal validation sets | False positive results in AI models highly trained to recognize malignancy; still images with no real-time navigation; limited performance in external validation sets and for highly inflamed compartments |
| Radiology | Lymph node involvement assessment, metastasis detection, and intratumoral heterogeneity | Strong discriminatory performance, high predictive power, image-based performance, and no need for clinical characteristics | Vulnerable in different biological and histopathological tumor characteristics; need for international imaging archive |
| Pathology | Histopathological classification, tumor microenvironment (TME), immunophenotype, and molecular classification (EBV and HER-2 status) | High diagnostic accuracy and high concordance rate with pathologists and prognostic algorithms | Long processing time and costly tissue elaboration; limited performance in tumors with a high combined positive score (CPS); performance deviations depending on patients’ clinical characteristics; high misclassification rates in poorly differentiated tumor issue and stromal fibrosis |
| Prognosis | Cox proportional hazard models for calculation of outcomes and treatment response | Complex multivariate algorithms and high concordance rate with clinical pathologists | High discrepancy rate with outliers such as extremely older patients and stage IV disease; limited generalizability among countries and heath care systems |
| Surgery | Detect and replicate surgical instruments, predict critical momentum during surgery, identify surgical contour of anatomical regions, and prediction of postoperative complications | Effective at capturing the complex, nonlinear relationships between clinical variables and postoperative outcomes and high concordance rates between experienced surgeons | Limited available real-time processing studies; limited data on performance in external validation sets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liatsou, E.; Driva, T.S.; Vergadis, C.; Sakellariou, S.; Lykoudis, P.; Apostolou, K.G.; Tsapralis, D.; Schizas, D. Current Role of Artificial Intelligence in the Management of Gastric Cancer. Biomedicines 2025, 13, 2939. https://doi.org/10.3390/biomedicines13122939
Liatsou E, Driva TS, Vergadis C, Sakellariou S, Lykoudis P, Apostolou KG, Tsapralis D, Schizas D. Current Role of Artificial Intelligence in the Management of Gastric Cancer. Biomedicines. 2025; 13(12):2939. https://doi.org/10.3390/biomedicines13122939
Chicago/Turabian StyleLiatsou, Efstathia, Tatiana S. Driva, Chrysovalantis Vergadis, Stratigoula Sakellariou, Panagis Lykoudis, Konstantinos G. Apostolou, Dimitrios Tsapralis, and Dimitrios Schizas. 2025. "Current Role of Artificial Intelligence in the Management of Gastric Cancer" Biomedicines 13, no. 12: 2939. https://doi.org/10.3390/biomedicines13122939
APA StyleLiatsou, E., Driva, T. S., Vergadis, C., Sakellariou, S., Lykoudis, P., Apostolou, K. G., Tsapralis, D., & Schizas, D. (2025). Current Role of Artificial Intelligence in the Management of Gastric Cancer. Biomedicines, 13(12), 2939. https://doi.org/10.3390/biomedicines13122939

