Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies
Abstract
1. Introduction: The Overlooked Connection Between Phosphate Homeostasis and Respiratory Drive
2. Phosphate Physiology and Regulation in Critical Illness
3. Bidirectional Pathophysiological Mechanisms Between Hypophosphatemia and Hyperventilation
3.1. Hypophosphatemia Leading to Hyperventilation
3.2. Hyperventilation Inducing Hypophosphatemia
3.3. Clinical Implications
4. Clinical Manifestations and Recognition of Hypophosphatemia and Hyperventilation Syndrome
4.1. Respiratory Manifestations
4.2. Neuromuscular and Neurological Features
4.3. Hematological and Cardiac Abnormalities
4.4. Metabolic Consequences
4.5. Diagnostic Approach
4.6. Risk Stratification
5. Diagnostic Approaches, Severity Assessment, and Risk Stratification for Hypophosphatemia-Hyperventilation Syndrome
5.1. Laboratory Diagnosis and Monitoring
5.2. Comprehensive Metabolic Assessment
5.3. Severity Assessment and Scoring Systems
5.4. Risk Stratification and Predictive Factors
5.5. Diagnostic Algorithms and Dynamic Assessment
6. Impact on Clinical Outcomes: Impact on Mechanical Ventilation and Weaning Outcomes, Morbidity, Mortality
6.1. Respiratory Muscle Function and Weaning Outcomes
6.2. Duration of Mechanical Ventilation
6.3. Mortality and Morbidity
6.4. Infectious and Cardiovascular Complications
6.5. Functional Recovery and Economic Impact
6.6. Treatment Implications
7. Management Strategies: From Phosphate Repletion to Ventilatory Support
7.1. Phosphate Repletion Protocols by Severity
7.2. Monitoring and Safety Considerations
7.3. Ventilatory Management Strategies
7.4. Special Populations and Integrated Approach
8. Future Perspectives: Biomarkers, Monitoring Technologies, and Precision Medicine Approaches
8.1. Advanced Monitoring Technologies
8.2. Precision Medicine and Genetic Approaches
8.3. Therapeutic Innovations
9. Conclusions and Clinical Recommendations
9.1. Clinical Recommendations and Protocol Development
9.2. Quality Improvement and Implementation Strategies
9.3. Future Research Priorities and Knowledge Gaps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICU | Intensive care unit |
FGF23 | Fibroblast growth factor 23 |
2,3-DPG | 2,3-diphosphoglycerate |
References
- Berger, M.M.; Appelberg, O.; Reintam-Blaser, A.; Ichai, C.; Joannes-Boyau, O.; Casaer, M.; Schaller, S.; Gunst, J.; Starkopf, J.; Abel, A.; et al. Prevalence of hypophosphatemia in the ICU—Results of an international one-day point prevalence survey. Clin. Nutr. 2021, 40, 3615–3621. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, C.; Chen, L.; Zhang, X.; Kou, Q. Impact of hypophosphatemia on outcome of patients in intensive care unit: A retrospective cohort study. BMC Anesthesiol. 2019, 19, 86. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Gunst, J.; Ichai, C.; Casaer, M.P.; Benstoem, C.; Besch, G.; Dauger, S.; Fruhwald, S.M.; Hiesmayr, M.; Joannes-Boyau, O.; et al. Hypophosphatemia in critically ill adults and children—A systematic review. Clin. Nutr. 2021, 40, 1744–1754. [Google Scholar] [CrossRef]
- Brautbar, N.; Leibovici, H.; Massry, S.G. On the mechanism of hypophosphatemia during acute hyperventilation: Evidence for increased muscle glycolysis. Miner. Electrolyte Metab. 1983, 9, 45–50. [Google Scholar] [PubMed]
- Fiaccadori, E.; Coffrini, E.; Fracchia, C.; Rampulla, C.; Montagna, T.; Borghetti, A. Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD. Chest 1994, 105, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, J.; Reilly, R.F., Jr. Hypophosphatemia: An evidence-based approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol. 2006, 2, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Aubier, M.; Murciano, D.; Lecocguic, Y.; Viires, N.; Jacquens, Y.; Squara, P.; Pariente, R. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N. Engl. J. Med. 1985, 313, 420–424. [Google Scholar] [CrossRef]
- Gravelyn, T.R.; Brophy, N.; Siegert, C.; Peters-Golden, M. Hypophosphatemia-associated respiratory muscle weakness in a general inpatient population. Am. J. Med. 1988, 84, 870–876. [Google Scholar] [CrossRef]
- Knochel, J.P. The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch. Intern. Med. 1977, 137, 203–220. [Google Scholar] [CrossRef]
- Pesta, D.H.; Tsirigotis, D.N.; Befroy, D.E.; Caballero, D.; Jurczak, M.J.; Rahimi, Y.; Cline, G.W.; Dufour, S.; Birkenfeld, A.L.; Rothman, D.L.; et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J. 2016, 30, 3378–3387. [Google Scholar] [CrossRef]
- Ui, M. A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. Biophys. Acta (BBA) Gen. Subj. 1966, 124, 310–322. [Google Scholar] [CrossRef]
- Geerse, D.A.; Bindels, A.J.; Kuiper, M.A.; Roos, A.N.; Spronk, P.E.; Schultz, M.J. Treatment of hypophosphatemia in the intensive care unit: A review. Crit. Care 2010, 14, R147. [Google Scholar] [CrossRef] [PubMed]
- Friedli, N.; Odermatt, J.; Reber, E.; Schuetz, P.; Stanga, Z. Refeeding syndrome: Update and clinical advice for prevention, diagnosis and treatment. Curr. Opin. Gastroenterol. 2020, 36, 136–140. [Google Scholar] [CrossRef]
- Pistolesi, V.; Zeppilli, L.; Fiaccadori, E.; Regolisti, G.; Tritapepe, L.; Morabito, S. Hypophosphatemia in critically ill patients with acute kidney injury on renal replacement therapies. J. Nephrol. 2019, 32, 895–908. [Google Scholar] [CrossRef]
- Alsumrain, M.H.; Jawad, S.A.; Imran, N.B.; Riar, S.; DeBari, V.A.; Adelman, M. Association of hypophosphatemia with failure-to-wean from mechanical ventilation. Ann. Clin. Lab. Sci. 2010, 40, 144–148. [Google Scholar] [PubMed]
- Zhao, Y.; Li, Z.; Shi, Y.; Cao, G.; Meng, F.; Zhu, W.; Yang, G. Effect of hypophosphatemia on the withdrawal of mechanical ventilation in patients with acute exacerbations of chronic obstructive pulmonary disease. Biomed. Rep. 2016, 4, 413–416. [Google Scholar] [CrossRef]
- Demirjian, S.; Teo, B.W.; Guzman, J.A.; Heyka, R.J.; Paganini, E.P.; Fissell, W.H.; Schold, J.D.; Schreiber, M.J. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol. Dial. Transplant. 2011, 26, 3508–3514. [Google Scholar] [CrossRef]
- Bon, N.; Couasnay, G.; Bourgine, A.; Sourice, S.; Beck-Cormier, S.; Guicheux, J.; Beck, L. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J. Biol. Chem. 2018, 293, 2102–2114. [Google Scholar] [CrossRef]
- Michigami, T.; Kawai, M.; Yamazaki, M.; Ozono, K. Phosphate as a signaling molecule and its sensing mechanism. Physiol. Rev. 2018, 98, 2317–2348. [Google Scholar] [CrossRef]
- Agusti, A.G.; Torres, A.; Estopa, R.; Agustividal, A. Hypophosphatemia as a cause of failed weaning: The importance of metabolic factors. Crit. Care Med. 1984, 12, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.J.; Doepker, B.A.; Springer, A.N.; Exline, M.C.; Phillips, G.; Murphy, C.V. Impact of serum phosphate in mechanically ventilated patients with severe sepsis and septic shock. J. Intensive Care Med. 2020, 35, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Egi, M.; Schneider, A.G.; Bellomo, R.; Hart, G.K.; Hegarty, C. Hypophosphatemia in critically ill patients. J. Crit. Care 2013, 28, e9–e19. [Google Scholar] [CrossRef]
- Federspiel, C.K.; Itenov, T.S.; Thormar, K.; Liu, K.D.; Bestle, M.H. Hypophosphatemia and duration of respiratory failure and mortality in critically ill patients. Acta Anaesthesiol. Scand. 2018, 62, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Barak, V.; Schwartz, A.; Kalickman, I.; Nisman, B.; Gurman, G.; Shoenfeld, Y. Prevalence of hypophosphatemia in sepsis and infection: The role of cytokines. Am. J. Med. 1998, 104, 40–47. [Google Scholar] [CrossRef]
- Taylor, B.E.; Huey, W.Y.; Buchman, T.G.; Boyle, W.A.; Coopersmith, C.M. Treatment of hypophosphatemia using a protocol based on patient weight and serum phosphorus level in a surgical intensive care unit. J. Am. Coll. Surg. 2004, 198, 198–204. [Google Scholar] [CrossRef]
- Charron, T.; Bernard, F.; Skrobik, Y.; Simoneau, N.; Gagnon, N.; Leblanc, M. Intravenous phosphate in the intensive care unit: More aggressive repletion regimens for moderate and severe hypophosphatemia. Intensive Care Med. 2003, 29, 1273–1278. [Google Scholar] [CrossRef]
- Penido, M.G.; Alon, U.S. Phosphate homeostasis and its role in bone health. Pediatr. Nephrol. 2012, 27, 2039–2048. [Google Scholar] [CrossRef]
- Manghat, P.; Sodi, R.; Swaminathan, R. Phosphate homeostasis and disorders. Ann. Clin. Biochem. 2014, 51 Pt 6, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Marks, J.; Debnam, E.S.; Unwin, R.J. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2013, 22, 481–487. [Google Scholar] [CrossRef]
- Biber, J.; Hernando, N.; Forster, I. Phosphate transporters and their function. Annu. Rev. Physiol. 2013, 75, 535–550. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef]
- Moviat, M.; van Haren, F.; van der Hoeven, H. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit. Care 2003, 7, R41–R45. [Google Scholar] [CrossRef]
- Vanholder, R.; Van Biesen, W.; Lameire, N. What is the renal replacement method of first choice for intensive care patients? J. Am. Soc. Nephrol. 2001, 12 (Suppl. S17), S40–S43. [Google Scholar] [CrossRef] [PubMed]
- Khoshniat, S.; Bourgine, A.; Julien, M.; Weiss, P.; Guicheux, J.; Beck, L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell. Mol. Life Sci. 2011, 68, 205–218. [Google Scholar] [CrossRef]
- Marik, P.E.; Bedigian, M.K. Refeeding hypophosphatemia in critically ill patients in an intensive care unit. A prospective study. Arch. Surg. 1996, 131, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, P.; Cui, Y.; Lang, X.B.; Yuan, J.; Jiang, H.; Lei, W.H.; Lv, R.; Zhu, Y.L.; Lai, E.Y.; et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury. Crit. Care 2013, 17, R205. [Google Scholar] [CrossRef]
- Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T. Acute kidney injury in sepsis. Intensive Care Med. 2017, 43, 816–828. [Google Scholar] [CrossRef]
- Floege, J. Phosphate binders in chronic kidney disease: A systematic review of recent data. J. Nephrol. 2016, 29, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Liamis, G.; Milionis, H.J.; Elisaf, M. Medication-induced hypophosphatemia: A review. QJM 2010, 103, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Boot, R.; Koekkoek, K.W.A.C.; van Zanten, A.R.H. Refeeding syndrome: Relevance for the critically ill patient. Curr. Opin. Crit. Care 2018, 24, 235–240. [Google Scholar] [CrossRef]
- Craddock, P.R.; Yawata, Y.; VanSanten, L.; Gilberstadt, S.; Silvis, S.; Jacob, H.S. Acquired phagocyte dysfunction. A complication of the hypophosphatemia of parenteral hyperalimentation. N. Engl. J. Med. 1974, 290, 1403–1407. [Google Scholar] [CrossRef]
- Leaf, D.E.; Christov, M. Dysregulated mineral metabolism in patients with acute kidney injury and risk of adverse outcomes. Clin. Endocrinol. 2013, 79, 491–498. [Google Scholar] [CrossRef]
- Lichtman, M.A.; Miller, D.R.; Cohen, J.; Waterhouse, C. Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann. Intern. Med. 1971, 74, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Travis, S.F.; Sugerman, H.J.; Ruberg, R.L.; Dudrick, S.J.; Delivoria-Papadopoulos, M.; Miller, L.D.; Oski, F.A. Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N. Engl. J. Med. 1971, 285, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, G.F.; Grzyb, S. Phosphate depletion and repletion: Relation to parenteral nutrition and oxygen transport. Ann. Surg. 1975, 182, 683–689. [Google Scholar] [CrossRef]
- Dempsey, D.T.; Caruana, J.A.; Mullen, J.L. The link between nutritional status and clinical outcome: Can nutritional intervention modify it? Am. J. Clin. Nutr. 1988, 47 (Suppl. S2), 352–356. [Google Scholar] [CrossRef]
- Mostellar, M.E.; Tuttle, E.P., Jr. Effects of alkalosis on plasma concentration and urinary excretion of inorganic phosphate in man. J. Clin. Investig. 1964, 43, 138–149. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Lang, R. Hypophosphatemia and glucose intolerance: Evidence for tissue insensitivity to insulin. N. Engl. J. Med. 1980, 303, 1259–1263. [Google Scholar] [CrossRef]
- Kebler, R.; McDonald, F.D.; Cadnapaphornchai, P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am. J. Med. 1985, 79, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.H.; Neff, T.A.; Ziporin, P. Acute respiratory failure associated with hypophosphatemia. N. Engl. J. Med. 1977, 296, 1101–1103. [Google Scholar] [CrossRef]
- O’Connor, L.R.; Wheeler, W.S.; Bethune, J.E. Effect of hypophosphatemia on myocardial performance in man. N. Engl. J. Med. 1977, 297, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Varsano, S.; Shapiro, M.; Taragan, R.; Bruderman, I. Hypophosphatemia as a reversible cause of refractory ventilatory failure. Crit. Care Med. 1983, 11, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Klock, J.C.; Williams, H.E.; Mentzer, W.C. Hemolytic anemia and somatic cell dysfunction in severe hypophosphatemia. Arch. Intern. Med. 1974, 134, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Fuller, T.J.; Nichols, W.W.; Brenner, B.J.; Peterson, J.C. Reversible depression in myocardial performance in dogs with experimental phosphorus deficiency. J. Clin. Investig. 1978, 62, 1194–1200. [Google Scholar] [CrossRef]
- Bevington, A.; Mundy, K.I.; Yates, A.J.; Kanis, J.A.; Russell, R.G.G.; Taylor, D.J.; Rajagopalan, B.; Radda, G.K. A study of intracellular orthophosphate concentration in human muscle and erythrocytes by 31P nuclear magnetic resonance spectroscopy and selective chemical assay. Clin. Sci. (Lond.) 1986, 71, 729–735. [Google Scholar] [CrossRef]
- Knochel, J.P. The clinical status of hypophosphatemia: An update. N. Engl. J. Med. 1985, 313, 447–449. [Google Scholar] [CrossRef]
- Wood, H.G.; Katz, J.; Landau, B.R. Estimation of pathways of carbohydrate metabolism. Biochem. Z. 1963, 338, 809–847. [Google Scholar] [PubMed]
- Albright, F.; Carroll, E.L.; Dempsey, E.F.; Henneman, P.H. The cause of hypercalcuria in sarcoid and its treatment with cortisone and sodium phytate. J. Clin. Investig. 1956, 35, 1229–1242. [Google Scholar] [CrossRef]
- Knochel, J.P. Hypophosphatemia and rhabdomyolysis. Am. J. Med. 1992, 92, 455–457. [Google Scholar] [CrossRef]
- Gold, L.W.; Massry, S.G.; Arieff, A.I.; Coburn, J.W. Renal bicarbonate wasting during phosphate depletion. A possible cause of altered acid-base homeostasis in hyperparathyroidism. J. Clin. Investig. 1973, 52, 2556–2561. [Google Scholar] [CrossRef]
- Emmett, M.; Goldfarb, S.; Agus, Z.S.; Narins, R.G. The pathophysiology of acid-base changes in chronically phosphate-depleted rats: Bone-kidney interactions. J. Clin. Investig. 1977, 59, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H.; Bloemers, F.W.; Peerdeman, S.M.; Girbes, A.R. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit. Care Med. 2000, 28, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.R.; Tray, K. Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann. Surg. 2005, 241, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Zerwekh, J.E.; Ruml, L.A.; Gottschalk, F.; Pak, C.Y. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Miner. Res. 1998, 13, 1594–1601. [Google Scholar] [CrossRef]
- Papazian, L.; Forel, J.M.; Gacouin, A.; Penot-Ragon, C.; Perrin, G.; Loundou, A.; Jaber, S.; Arnal, J.-M.; Perez, D.; Seghboyan, J.-M.; et al. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Juan, D.; Elrazak, M.A. Hypophosphatemia in hospitalized patients. JAMA 1979, 242, 163–164. [Google Scholar] [CrossRef]
- Lotz, M.; Zisman, E.; Bartter, F.C. Evidence for a phosphorus-depletion syndrome in man. N. Engl. J. Med. 1968, 278, 409–415. [Google Scholar] [CrossRef]
- Michell, A.W.; Burn, D.J.; Reading, P.J. Central pontine myelinolysis temporally related to hypophosphataemia. J. Neurol. Neurosurg. Psychiatry 2003, 74, 820. [Google Scholar] [CrossRef]
- Jacob, H.S.; Amsden, T. Acute hemolytic anemia with rigid red cells in hypophosphatemia. N. Engl. J. Med. 1971, 285, 1446–1450. [Google Scholar] [CrossRef]
- Davis, S.V.; Olichwier, K.K.; Chakko, S.C. Reversible depression of myocardial performance in hypophosphatemia. Am. J. Med. Sci. 1988, 295, 183–187. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Shiu, M.H. Hypophosphatemia after major hepatic resection. Surgery 1992, 111, 281–286. [Google Scholar] [PubMed]
- Schmidt, L.E.; Dalhoff, K. Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity. Hepatology 2002, 36, 659–665. [Google Scholar] [CrossRef]
- Betro, M.G.; Pain, R.W. Hypophosphataemia and hyperphosphataemia in a hospital population. Br. Med. J. 1972, 1, 273–276. [Google Scholar] [CrossRef]
- Camp, M.A.; Allon, M. Severe hypophosphatemia in hospitalized patients. Miner. Electrolyte Metab. 1990, 16, 365–368. [Google Scholar] [PubMed]
- Territo, M.C.; Tanaka, K.R. Hypophosphatemia in chronic alcoholism. Arch. Intern. Med. 1974, 134, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Lentz, R.D.; Brown, D.M.; Kjellstrand, C.M. Treatment of severe hypophosphatemia. Ann. Intern. Med. 1978, 89, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, R.; Khardori, R. Severe hypophosphatemia: Pathophysiologic implications, clinical presentations, and treatment. Medicine 2000, 79, 1–8. [Google Scholar] [CrossRef]
- Portale, A.A.; Halloran, B.P.; Morris, R.C.J.r. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J. Clin. Investig. 1987, 80, 1147–1154. [Google Scholar] [CrossRef]
- Morgan, T.J. The oxyhaemoglobin dissociation curve in critical illness. Crit. Care Resusc. 1999, 1, 93–100. [Google Scholar] [CrossRef]
- Zazzo, J.F.; Troche, G.; Ruel, P.; Maintenant, J. High incidence of hypophosphatemia in surgical intensive care patients: Efficacy of phosphorus therapy on myocardial function. Intensive Care Med. 1995, 21, 826–831. [Google Scholar] [CrossRef]
- Marinella, M.A. Refeeding syndrome and hypophosphatemia. J. Intensive Care Med. 2005, 20, 155–159. [Google Scholar] [CrossRef]
- National Collaborating Centre for Acute Care (UK). Nutrition Support for Adults: Oral Nutrition Support, Enteral Tube Feeding and Parenteral Nutrition; National Collaborating Centre for Acute Care: London, UK, 2006. [Google Scholar]
- Rio, A.; Whelan, K.; Goff, L.; Reidlinger, D.P.; Smeeton, N. Occurrence of refeeding syndrome in adults started on artificial nutrition support: Prospective cohort study. BMJ Open 2013, 3, e002173. [Google Scholar] [CrossRef]
- Santana e Meneses, J.F.; Leite, H.P.; de Carvalho, W.B.; Lopes, E., Jr. Hypophosphatemia in critically ill children: Prevalence and associated risk factors. Pediatr. Crit. Care Med. 2009, 10, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Zemlin, A.E.; Meyer, W.P.; Erasmus, R.T. Hypophosphataemia at a large academic hospital in South Africa. J. Clin. Pathol. 2008, 61, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W. Fluid and electrolyte disturbances in critically ill patients. Electrolyte Blood Press. 2010, 8, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.L.; Tobin, M.J. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N. Engl. J. Med. 1991, 324, 1445–1450. [Google Scholar] [CrossRef]
- Shor, R.; Halabe, A.; Rishver, S.; Tilis, Y.; Matas, Z.; Fux, A.; Boaz, M.; Weinstein, J. Severe hypophosphatemia in sepsis as a mortality predictor. Ann. Clin. Lab. Sci. 2006, 36, 67–72. [Google Scholar] [PubMed]
- Schwartz, A.; Gurman, G.; Cohen, G.; Gilutz, H.; Brill, S.; Schily, M.; Gurevitch, B.; Shoenfeld, Y. Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis. Eur. J. Intern. Med. 2002, 13, 434. [Google Scholar] [CrossRef]
- Cohen, J.; Kogan, A.; Sahar, G.; Lev, S.; Vidne, B.; Singer, P. Hypophosphatemia following open heart surgery: Incidence and consequences. Eur. J. Cardiothorac. Surg. 2004, 26, 306–310. [Google Scholar] [CrossRef]
- Brown, K.A.; Dickerson, R.N.; Morgan, L.M.; Alexander, K.H.; Minard, G.; Brown, R.O. A new graduated dosing regimen for phosphorus replacement in patients receiving nutrition support. JPEN J. Parenter. Enteral Nutr. 2006, 30, 209–214. [Google Scholar] [CrossRef]
- French, C.; Bellomo, R. A rapid intravenous phosphate replacement protocol for critically ill patients. Crit. Care Resusc. 2004, 6, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.L.; Sacks, G.S.; Dickerson, R.N.; Kudsk, K.A.; Brown, R.O. Treatment of hypophosphatemia in patients receiving specialized nutrition support using a graduated dosing scheme: Results from a prospective clinical trial. Crit. Care Med. 1995, 23, 1504–1511. [Google Scholar] [CrossRef]
- Rosen, G.H.; Boullata, J.I.; O’Rangers, E.A.; Enow, N.B.; Shin, B. Intravenous phosphate repletion regimen for critically ill patients with moderate hypophosphatemia. Crit. Care Med. 1995, 23, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Kingston, M.; Al-Siba’i, M.B. Treatment of severe hypophosphatemia. Crit. Care Med. 1985, 13, 16–18. [Google Scholar] [CrossRef]
- Perreault, M.M.; Ostrop, N.J.; Tierney, M.G. Efficacy and safety of intravenous phosphate replacement in critically ill patients. Ann. Pharmacother. 1997, 31, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.D.; Btaiche, I.F.; Sacks, G.S.; Kudsk, K.A. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am. J. Health Syst. Pharm. 2005, 62, 1663–1682. [Google Scholar] [CrossRef]
- Berger, M.M.; Broman, M.; Forni, L.; Ostermann, M.; De Waele, E.; Wischmeyer, P.E. Nutrients and micronutrients at risk during renal replacement therapy: A scoping review. Curr. Opin. Crit. Care 2021, 27, 367–377. [Google Scholar] [CrossRef]
- Padelli, M.; Leven, C.; Sakka, M.; Plée-Gautier, E.; Carré, J.L. Causes, consequences and treatment of hypophosphatemia: A systematic review. Presse Med. 2017, 46, 987–999. [Google Scholar] [CrossRef]
- Leaf, D.E.; Wolf, M.; Waikar, S.S.; Chase, H.; Christov, M.; Cremers, S.; Stern, L. FGF-23 levels in patients with acute kidney injury and risk of adverse outcomes. Clin. J. Am. Soc. Nephrol. 2012, 7, 1217–1223. [Google Scholar] [CrossRef]
- Wolf, M.; White, K.E. Coupling fibroblast growth factor 23 production and cleavage: Iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertens. 2014, 23, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Courbon, G.; Martinez-Calle, M.; David, V. Simultaneous management of disordered phosphate and iron homeostasis to correct fibroblast growth factor 23 and associated outcomes in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2020, 29, 359–366. [Google Scholar] [CrossRef]
- Ix, J.H.; Anderson, C.A.; Smits, G.; Persky, M.S.; Block, G.A. Effect of dietary phosphate intake on the circadian rhythm of serum phosphate concentrations in chronic kidney disease: A crossover study. Am. J. Clin. Nutr. 2014, 100, 1392–1397. [Google Scholar] [CrossRef]
- Ditzel, J.; Lervang, H.H. Disturbance of inorganic phosphate metabolism in diabetes mellitus: Clinical manifestations of phosphorus-depletion syndrome during recovery from diabetic ketoacidosis. Diabetes Metab. Syndr. Obes. 2010, 3, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.; Leroy, C.; Salaün, C.; Margall-Ducos, G.; Desdouets, C.; Friedlander, G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J. Biol. Chem. 2009, 284, 31363–31374. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, C.; Li, Y.; Gao, S.; Han, Y.-C.; Wang, X.; Du, J.; Zhang, C. MicroRNA-223-3p promotes skeletal muscle regeneration by regulating inflammation in mice. J. Biol. Chem. 2020, 295, 10212–10223. [Google Scholar] [CrossRef]
- Foley, K.F.; Boccuzzi, L. Urine calcium: Laboratory measurement and clinical utility. Lab. Med. 2010, 41, 683–686. [Google Scholar] [CrossRef]
- Witteveen, J.E.; van Thiel, S.; Romijn, J.A.; Hamdy, N.A. Therapy of endocrine disease: Hungry bone syndrome: Still a challenge in the post-operative management of primary hyperparathyroidism: A systematic review of the literature. Eur. J. Endocrinol. 2013, 168, R45–R53. [Google Scholar] [CrossRef]
- Prie, D.; Friedlander, G. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system. Clin. J. Am. Soc. Nephrol. 2010, 5, 1717–1722. [Google Scholar] [CrossRef]
- Vervloet, M.G.; van Ittersum, F.J.; Büttler, R.M.; Heijboer, A.C.; Blankenstein, M.A.; ter Wee, P.M. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin. J. Am. Soc. Nephrol. 2011, 6, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Burnett, S.M.; Gunawardene, S.C.; Bringhurst, F.R.; Jüppner, H.; Lee, H.; Finkelstein, J.S. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 2006, 21, 1187–1196. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Prié, D.; Torres, P.U.; Friedlander, G. Latest findings in phosphate homeostasis. Kidney Int. 2009, 75, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Meltzer, D.O.; Kattan, M.W.; Edelson, D.P. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit. Care Med. 2016, 44, 368–374. [Google Scholar] [CrossRef]
- Sharma, S.; Brugnara, C.; Betensky, R.A.; Waikar, S.S. Reductions in red blood cell 2,3-diphosphoglycerate concentration during continuous renal replacement therapy. Clin. J. Am. Soc. Nephrol. 2015, 10, 74–79. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Alizadeh Naderi, A.S.; Reilly, R.F. Hereditary disorders of renal phosphate wasting. Nat. Rev. Nephrol. 2010, 6, 657–665. [Google Scholar] [CrossRef]
- Savica, V.; Calò, L.A.; Monardo, P.; Santoro, D.; Bellinghieri, G. Phosphate binders and management of hyperphosphataemia in end-stage renal disease. Nephrol. Dial. Transplant. 2006, 21, 2065–2068. [Google Scholar] [CrossRef]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592, 3985–3995. [Google Scholar] [CrossRef]
- Schiavi, S.C.; Kumar, R. The phosphatonin pathway: New insights in phosphate homeostasis. Kidney Int. 2004, 65, 1–14. [Google Scholar] [CrossRef]
- Shalhoub, V.; Shatzen, E.M.; Ward, S.C.; Davis, J.; Stevens, J.; Bi, V.; Renshaw, L.; Hawkins, N.; Wang, W.; Chen, C.; et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Investig. 2012, 122, 2543–2553. [Google Scholar] [CrossRef]
- Tonelli, M.; Pannu, N.; Manns, B. Oral phosphate binders in patients with kidney failure. N. Engl. J. Med. 2010, 362, 1312–1324. [Google Scholar] [CrossRef]
- Gaasbeek, A.; Meinders, A.E. Hypophosphatemia: An update on its etiology and treatment. Am. J. Med. 2005, 118, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Yeh, D.D.; Quraishi, S.A.; Johnson, E.A.; Kaafarani, H.; Lee, J.; King, D.R.; DeMoya, M.; Fagenholz, P.; Butler, K.; et al. Hypophosphatemia in Enterally Fed Patients in the Surgical Intensive Care Unit: Common but Unrelated to Timing of Initiation or Aggressiveness of Nutrition Delivery. Nutr. Clin. Pract. 2017, 32, 252–257. [Google Scholar] [CrossRef]
- Singer, P.; Berger, M.M.; Van den Berghe, G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Sin, J.C.K.; King, L.; Ballard, E.; Llewellyn, S.; Laupland, K.B.; Tabah, A. Hypophosphatemia and Outcomes in ICU: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2021, 36, 1025–1035. [Google Scholar] [CrossRef]
- Pistolesi, V.; Zeppilli, L.; Polistena, F.; Sacco, M.I.; Pierucci, A.; Tritapepe, L.; Regolisti, G.; Fiaccadori, E.; Morabito, S. Preventing Continuous Renal Replacement Therapy-Induced Hypophosphatemia: An Extended Clinical Experience with a Phosphate-Containing Solution in the Setting of Regional Citrate Anticoagulation. Blood Purif. 2017, 44, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, N.; Nogi, M.; Ando, A.; Watanabe, H.; Umekawa, S. Hypophosphatemia-induced Cardiomyopathy. Am. J. Med. Sci. 2016, 352, 317–323. [Google Scholar] [CrossRef]
System/Category | Clinical Manifestations | Specific Features | Phosphate Threshold | References |
---|---|---|---|---|
Respiratory | Hypophosphatemia-induced hyperventilation |
| <1.5 mg/dL | [4,9,20,68] |
Hyperventilation-induced respiratory muscle weakness |
| Variable | [7,8] | |
Neurological | Central nervous system |
| <1.5 mg/dL | [69,70] |
Peripheral nervous system |
| <1.5 mg/dL | [70] | |
Neuromuscular | Muscle dysfunction |
| <0.5 mg/dL (rhabdomyolysis) | [9,60] |
Hematological | Red blood cell abnormalities |
| <1.0 mg/dL | [71] |
White blood cell dysfunction |
| <1.0 mg/dL | [45] | |
Platelet dysfunction |
| <1.0 mg/dL | [42] | |
Cardiac | Myocardial effects |
| <1.0 mg/dL | [52,72] |
ECG changes |
| <1.0 mg/dL | [72] | |
Metabolic | Glucose metabolism |
| <1.5 mg/dL | [49] |
Acid-base disturbance |
| <1.0 mg/dL | [50] | |
Hepatic (Acute Liver Failure) | Liver-specific manifestations |
| <1.0 mg/dL (severe) <0.5 mg/dL (critical) | [73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinatra, N.; Cuttone, G.; Geraci, G.; Carollo, C.; Fici, M.; Senussi Testa, T.; La Via, L. Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies. Biomedicines 2025, 13, 2382. https://doi.org/10.3390/biomedicines13102382
Sinatra N, Cuttone G, Geraci G, Carollo C, Fici M, Senussi Testa T, La Via L. Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies. Biomedicines. 2025; 13(10):2382. https://doi.org/10.3390/biomedicines13102382
Chicago/Turabian StyleSinatra, Nicola, Giuseppe Cuttone, Giulio Geraci, Caterina Carollo, Michele Fici, Tarek Senussi Testa, and Luigi La Via. 2025. "Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies" Biomedicines 13, no. 10: 2382. https://doi.org/10.3390/biomedicines13102382
APA StyleSinatra, N., Cuttone, G., Geraci, G., Carollo, C., Fici, M., Senussi Testa, T., & La Via, L. (2025). Correlation Between Hypophosphatemia and Hyperventilation in Critically Ill Patients: Causes, Clinical Manifestations, and Management Strategies. Biomedicines, 13(10), 2382. https://doi.org/10.3390/biomedicines13102382