Sex-Specific Gene Expression Differences in Varicose Veins
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants of the Study
2.2. Sample Collection, RNA Extraction, and Processing
2.3. Gene Expression Analysis by Reverse Transcription qPCR
2.4. Statistical Analysis
2.5. Multiple Linear Regression Analysis
2.6. Sex-Specific Gene Regulation Analysis Through Identification of Sex Hormone-Related Transcription Factor Binding Sites
3. Results
3.1. The Associations Between Sex and Some Descriptive Characteristics of Patients
3.2. Gene Expression Analysis Reveals a Set of Genes with Altered mRNA Level in VVs
3.3. The Associations Between Sex and Differential Expression of Some Genes in Patients’ Veins
3.3.1. STK38L
3.3.2. TIMP1
3.3.3. EBF1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Androgen receptor |
BMI | Body mass index |
cDNA | Complementary DNA |
CEAP | Clinical, Etiological, Anatomical, and Pathophysiological (classification) |
CVeD | Chronic venous disease |
ER-alpha | Estrogen receptor 1 |
ER-beta | Estrogen receptor 2 |
ERR1 | Estrogen-related receptor alpha |
ERR2 | Estrogen-related receptor beta |
ERR3 | Estrogen-related receptor gamma |
GO | Gene Ontology |
GSV | Great saphenous vein |
IQR | Interquartile range |
MLR | Multiple linear regression |
mRNA | Messenger ribonucleic acid |
NVs | Non-varicose veins |
PR | Progesterone receptor |
RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
SSV | Small saphenous vein |
TFBS | Transcription factor binding sites |
VVD | Varicose vein disease |
VVs | Varicose veins |
Appendix A
Appendix A.1
Appendix A.2
References
- Salim, S.; Machin, M.; Patterson, B.O.; Onida, S.; Davies, A.H. Global epidemiology of chronic venous disease: A systematic review with pooled prevalence analysis. Ann. Surg. 2021, 274, 971–976. [Google Scholar] [CrossRef]
- Antani, M.R.; Dattilo, J.B. Varicose Veins; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lurie, F.; Passman, M.; Meisner, M.; Dalsing, M.; Masuda, E.; Welch, H.; Bush, R.L.; Blebea, J.; Carpentier, P.H.; De Maeseneer, M.; et al. The 2020 update of the CEAP classification system and reporting standards. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 342–352. [Google Scholar] [CrossRef]
- Beebe-Dimmer, J.L.; Pfeifer, J.R.; Engle, J.S.; Schottenfeld, D. The epidemiology of chronic venous insufficiency and varicose veins. Ann. Epidemiol. 2005, 15, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, P.; Gianesini, S.; Menegatti, E.; Tacconi, G.; Palazzo, A.; Liboni, A. Great saphenous varicose vein surgery without saphenofemoral junction disconnection. Br. J. Surg. 2010, 97, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Brand, F.N.; Dannenberg, A.L.; Abbott, R.D.; Kannel, W.B. The epidemiology of varicose veins: The Framingham Study. Am. J. Prev. Med. 1988, 4, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.E.; LaMorte, W.W.; Gorin, D.R.; Menzoian, J.O. Risk factors for chronic venous insufficiency: A dual case-control study. J. Vasc. Surg. 1995, 22, 622–628. [Google Scholar] [CrossRef]
- Criqui, M.H.; Denenberg, J.O.; Bergan, J.; Langer, R.D.; Fronek, A. Risk factors for chronic venous disease: The San Diego Population Study. J. Vasc. Surg. 2007, 46, 331–337. [Google Scholar] [CrossRef]
- Helkkula, P.; Hassan, S.; Saarentaus, E.; Vartiainen, E.; Ruotsalainen, S.; Leinonen, J.T.; FinnGen; Palotie, A.; Karjalainen, J.; Kurki, M.; et al. Genome-wide association study of varicose veins identifies a protective missense variant in GJD3 enriched in the Finnish population. Commun. Biol. 2023, 6, 71. [Google Scholar] [CrossRef]
- Evans, C.J.; Fowkes, F.G.; Ruckley, C.V.; Lee, A.J. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J. Epidemiol. Community Health 1999, 53, 149–153. [Google Scholar] [CrossRef]
- Naik, B.; Kumar, M.; Khanna, A.K.; Suman, P.K. Clinico-histopathological study of varicose vein and role of matrix metalloproteinases-1, matrix metalloproteinases-9 and tissue inhibitor of matrix metalloproteinase-1 in varicose vein formation. Indian J. Pathol. Microbiol. 2016, 59, 25–30. [Google Scholar]
- Zolotukhin, I.A.; Seliverstov, E.I.; Shevtsov, Y.N.; Avakiants, I.P.; Nikishkov, A.S.; Tatarintsev, A.M.; Kirienko, A.I. Prevalence and risk factors for chronic venous disease in the general Russian population. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 752–758. [Google Scholar] [CrossRef]
- Ivan, S.; Daniela, O.; Jaroslava, B.D. Sex differences matter: Males and females are equal but not the same. Physiol. Behav. 2023, 259, 114038. [Google Scholar] [CrossRef]
- Jacobs, B.N.; Andraska, E.A.; Obi, A.T.; Wakefield, T.W. Pathophysiology of varicose veins. J. Vasc. Surg. Venous Lymphat. Disord. 2017, 5, 460–467. [Google Scholar] [CrossRef]
- Ismail, L.; Normahani, P.; Standfield, N.J.; Jaffer, U. A systematic review and meta-analysis of the risk for development of varicose veins in women with a history of pregnancy. J. Vasc. Surg. Venous Lymphat. Disord. 2016, 4, 518–524.e1. [Google Scholar] [CrossRef]
- Mullane, D.J. Varicose veins of pregnancy. Am. J. Obstet. Gynecol. 1952, 63, 620–628. [Google Scholar] [CrossRef]
- Lohr, J.M.; Bush, R.L. Venous disease in women: Epidemiology, manifestations, and treatment. J. Vasc. Surg. 2013, 57, 37S–45S. [Google Scholar] [CrossRef]
- Han, A. Sex/gender differences in chronic venous disease. In Sex/Gender-Specific Medicine in Clinical Areas; Kim, N., Ed.; Springer: Singapore, 2024; pp. 355–365. [Google Scholar] [CrossRef]
- Baldazzi, G.; Tessari, M.; Zamboni, M.; Pagani, A.; Zamboni, P. The sex prevalence of lower limb varicose vein networks. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101944. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ma, J.; Li, S.; Liu, C.; Liu, Y.; Chen, J.; Liu, N.; Liu, S.; Huang, H. Sex difference in human diseases: Mechanistic insights and clinical implications. Signal. Transduct. Target. Ther. 2024, 9, 238. [Google Scholar] [CrossRef]
- García-Honduvilla, N.; Asúnsolo, Á.; Ortega, M.A.; Sainz, F.; Leal, J.; Lopez-Hervas, P.; Pascual, G.; Buján, J. Increase and redistribution of sex hormone receptors in premenopausal women are associated with varicose vein remodelling. Oxidative Med. Cell. Longev. 2018, 2018, 3974026. [Google Scholar] [CrossRef] [PubMed]
- Smetanina, M.A.; Kel, A.E.; Sevost’ianova, K.S.; Maiborodin, I.V.; Shevela, A.I.; Zolotukhin, I.A.; Stegmaier, P.; Filipenko, M.L. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics 2018, 10, 1103–1119. [Google Scholar] [CrossRef] [PubMed]
- Smetanina, M.A.; Shadrina, A.S.; Zolotukhin, I.A.; Seliverstov, E.I.; Filipenko, M.L. Differentially expressed genes in varicose veins disease: Current state of the problem, analysis of the published data. J. Venous Disord. 2017, 11, 190–204. (In Russia) [Google Scholar] [CrossRef]
- Smetanina, M.A.; Sipin, F.A.; Seliverstov, E.I.; Zolotukhin, I.A.; Filipenko, M.L. Differentially expressed genes in lower limb varicose vein disease. J. Venous Disord. 2020, 14, 122–134. (In Russia) [Google Scholar] [CrossRef]
- Zolotukhin, I.A.; Porembskaya, O.Y.; Smetanina, M.A.; Sazhin, A.V.; Filipenko, M.L.; Kirienko, A.I. Varicose veins: On the verge of discovering the cause? Ann. Russ. Acad. Med. Sci. 2020, 75, 36–45. [Google Scholar] [CrossRef]
- Smetanina, M.A.; Shevela, A.I.; Gavrilov, K.A.; Filipenko, M.L. The genetic constituent of varicose vein pathogenesis as a key for future treatment option development. Vessel Plus 2021, 5, 19. [Google Scholar] [CrossRef]
- Korolenya, V.A.; Gavrilov, K.A.; Sevostyanova, K.S.; Shevela, A.I.; Filipenko, M.L.; Smetanina, M.A. Expression of the ACTA1, PLXNA4, and SEMA3A genes in varicose veins of patients with different length of great saphenous vein reflux. J. Venous Disord. 2022, 16, 270–278. [Google Scholar] [CrossRef]
- Gavrilov, K.A.; Smetanina, M.A.; Korolenya, V.A.; Sevostyanova, K.S.; Filipenko, M.L.; Shevela, A.I. Molecular genetic aspects of varicose vein disease: Modern concepts. J. Venous Disord. 2024, 18, 48–53. (In Russia) [Google Scholar] [CrossRef]
- Korolenya, V.; Filipenko, M.; Smetanina, M. Varicose vein disease in the context of insulin resistance. Vessel Plus 2024, 8, 35. [Google Scholar] [CrossRef]
- Shevela, A.I.; Gavrilov, K.; Sevostyanova, K.S.; Filipenko, M.L.; Smetanina, M.A. Altered expression of the extracellular matrix related genes COL15A1, CHRDL2, EFEMP1 and TIMP1 in varicose veins. Eur. J. Vasc. Endovasc. Surg. 2020, 60, e75–e76. [Google Scholar] [CrossRef]
- Smetanina, M.A.; Korolenya, V.A.; Ershov, N.I.; Arslanbekov, M.M.; Zolotukhin, I.A.; Filipenko, M.L. Genetic factors leading to recurrent varicose veins after surgical treatment. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 9, 537. [Google Scholar] [CrossRef]
- Korolenya, V.A.; Gavrilov, K.A.; Sevostyanova, K.S.; Shevela, A.I.; Filipenko, M.L.; Smetanina, M.A. GPI, CALU, PLA2G2A Genes are Differentially Expressed in Varicose Veins. In Proceedings of the 14th St. Petersburg Venous Forum (Christmas Meetings), Saint-Petersburg, Russia, 8–10 December 2021. [Google Scholar]
- Smetanina, M.A.; Korolenya, V.A.; Gavrilov, K.A.; Sevostyanova, K.S.; Shevela, A.I.; Filipenko, M.L. CCL2, SULF1, and CASZ1 Genes are Up-regulated in Varicose Veins. In Proceedings of the 14th St. Petersburg Venous Forum (Christmas Meetings), Saint-Petersburg, Russia, 8–10 December 2021. [Google Scholar]
- Smetanina, M.A.; Korolenya, V.A.; Kel, A.E.; Arslanbekov, M.M.; Zolotukhin, I.A.; Filipenko, M.L. Systemic changes of gene expression in venous tissue leading to varicose vein disease could be potentially treated by targeting PSMA7 and DUSP9 genes’ activity. J. Vasc. Surg. Venous Lymphat. Disord. 2022, 10, 543. [Google Scholar] [CrossRef]
- Gavrilov, K.A.; Shevela, A.I.; Smetanina, M.A.; Koroleva, L.S.; Sevostyanova, K.S. Horizons of Molecular Genetic Diagnosis and Varicose Veins Treatment. In Proceedings of the UIP XIX World Congress of Phlebology, Istanbul, Turkey, 12–16 September 2022. [Google Scholar] [CrossRef]
- Korolenya, V.A.; Gavrilov, K.A.; Sevostyanova, K.S.; Shevela, A.I.; Filipenko, M.L.; Smetanina, M.A. Evaluation of advantages of lithium chloride as a precipitating agent in RNA isolation from frozen vein segments. Bull. Exp. Biol. Med. 2022, 173, 384–389. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, J.; Vandesompele, J. qPCR data analysis: Unlocking the secret to successful results. In PCR Troubleshooting and Optimization: The Essential Guide; Kennedy, S., Oswald, N., Eds.; Caister Academic Press: Louvain, Belgium, 2011. [Google Scholar]
- Schneider, A.; Hommel, G.; Blettner, M. Linear regression analysis: Part 14 of a series on evaluation of scientific publications. Dtsch. Ärztebl. Int. 2010, 107, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Correlation and Regression. Available online: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression (accessed on 25 July 2025).
- Matys, V.; Kel-Margoulis, O.V.; Fricke, E.; Liebich, I.; Land, S.; Barre-Dirrie, A.; Reuter, I.; Chekmenev, D.; Krull, M.; Hornischer, K.; et al. TRANSFAC® and its module TRANSCompel®: Transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006, 34, D108–D110. [Google Scholar] [CrossRef]
- Kienzl, P.; Deinsberger, J.; Weber, B. Chronic venous disease: Pathophysiological aspects, risk factors, and diagnosis. Hamostaseologie 2024, 44, 277–286. [Google Scholar] [CrossRef]
- Fiebig, A.; Krusche, P.; Wolf, A.; Krawczak, M.; Timm, B.; Nikolaus, S.; Frings, N.; Schreiber, S. Heritability of chronic venous disease. Hum. Genet. 2010, 127, 669–674. [Google Scholar] [CrossRef]
- Singh, K.P.; Miaskowski, C.; Dhruva, A.A.; Flowers, E.; Kober, K.M. Mechanisms and measurement of changes in gene expression. Biol. Res. Nurs. 2018, 20, 369–382. [Google Scholar] [CrossRef]
- Li, X.; Lalić, J.; Baeza-Centurion, P.; Dhar, R.; Lehner, B. Changes in gene expression predictably shift and switch genetic interactions. Nat. Commun. 2019, 10, 3886. [Google Scholar] [CrossRef]
- Oliva, M.; Muñoz-Aguirre, M.; Kim-Hellmuth, S.; Wucher, V.; Gewirtz, A.D.H.; Cotter, D.J.; Parsana, P.; Kasela, S.; Balliu, B.; Viñuela, A.; et al. The impact of sex on gene expression across human tissues. Science 2020, 369, eaba3066. [Google Scholar] [CrossRef]
- Wilson, M.A. Searching for sex differences. Science 2020, 369, 1298–1299. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Wang, X.; Fang, S.; Wang, B. Role of STK38L in atrial fibrillation-associated myocardial fibrosis: Findings from RNA-seq analysis. Cardiovasc. Diagn. Ther. 2024, 14, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Cornils, H.; Kohler, R.S.; Hergovich, A.; Hemmings, B.A. Downstream of human NDR kinases: Impacting on c-myc and p21 protein stability to control cell cycle progression. Cell Cycle 2011, 10, 1897–1904. [Google Scholar] [CrossRef]
- Kitselman, A.K.; Bédard-Matteau, J.; Rousseau, S.; Tabrizchi, R.; Daneshtalab, N. Sex differences in vascular endothelial function related to acute and long COVID-19. Vasc. Pharmacol. 2024, 154, 107250. [Google Scholar] [CrossRef]
- Anderson, C.L.; Brown, C.J. Epigenetic predisposition to expression of TIMP1 from the human inactive X chromosome. BMC Genet. 2005, 6, 48. [Google Scholar] [CrossRef]
- Talebizadeh, Z.; Simon, S.D.; Butler, M.G. X chromosome gene expression in human tissues: Male and female comparisons. Genomics 2006, 88, 675–681. [Google Scholar] [CrossRef]
- Lafta, M.S.; Mwinyi, J.; Affatato, O.; Rukh, G.; Dang, J.; Andersson, G.; Schiöth, H.B. Exploring sex differences: Insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front. Neurosci. 2024, 18, 1340108. [Google Scholar] [CrossRef]
- van Riet, S.; Julien, A.; Atanasov, A.; Nordling, Å.; Ingelman-Sundberg, M. The role of sinusoidal endothelial cells and TIMP1 in the regulation of fibrosis in a novel human liver 3D NASH model. Hepatol. Commun. 2024, 8, e0374. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.F.; Meng, L.B.; Li, J.; Xu, J.; Xu, H.X.; Liu, D.P. HLA-B and TIMP1 as hub genes of the ventricular remodeling caused by hypertension. Aging 2024, 16, 8260–8278. [Google Scholar] [PubMed]
- Shadrina, A.S.; Sharapov, S.Z.; Shashkova, T.I.; Tsepilov, Y.A. Varicose veins of lower extremities: Insights from the first large-scale genetic study. PLoS Genet. 2019, 15, e1008110. [Google Scholar] [CrossRef]
- Pagani, F.; Tratta, E.; Dell’Era, P.; Cominelli, M.; Poliani, P.L. EBF1 is expressed in pericytes and contributes to pericyte cell commitment. Histochem. Cell Biol. 2021, 156, 333–347. [Google Scholar] [CrossRef]
- Xie, G.; Myint, P.K.; Voora, D.; Laskowitz, D.T.; Shi, P.; Ren, F.; Wang, H.; Yang, Y.; Huo, Y.; Gao, W.; et al. Genome-wide association study on progression of carotid artery intima media thickness over 10 years in a Chinese cohort. Atherosclerosis 2015, 243, 30–37. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.; Chen, L.; Yan, J.; Ma, Y.; Wang, L.; Chen, Z. Association in a Chinese population of a genetic variation in the early B-cell factor 1 gene with coronary artery disease. BMC Cardiovasc. Disord. 2017, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Babyak, M.A.; Nolan, D.K.; Brummett, B.H.; Jiang, R.; Siegler, I.C.; Kraus, W.E.; Shah, S.H.; Williams, R.B.; Hauser, E.R. Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene. Eur. J. Hum. Genet. 2015, 23, 854–862. [Google Scholar] [CrossRef]
- van der Stoel, M.M.; Kotini, M.P.; Schoon, R.M.; Affolter, M.; Belting, H.G.; Huveneers, S. Vinculin strengthens the endothelial barrier during vascular development. Vasc. Biol. 2023, 5, e220012. [Google Scholar] [CrossRef]
- Pham, K.; Langlais, P.; Zhang, X.; Chao, A.; Zingsheim, M.; Yi, Z. Insulin-stimulated phosphorylation of protein phosphatase 1 regulatory subunit 12B revealed by HPLC-ESI-MS/MS. Proteome Sci. 2012, 10, 52. [Google Scholar] [CrossRef]
- Ryu, D.; Ryu, J.; Lee, C. Genome-wide association study reveals sex-specific selection signals against autosomal nucleotide variants. J. Hum. Genet. 2016, 61, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Wang, T.; Lin, X.; Wang, J.; Tan, Y.; Wang, X.; Yu, X.; Luo, X. Sex difference of autosomal alleles in populations of European and African descent. Genes Genom. 2015, 37, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Wang, K.; Huang, L.; Zhou, Z.; Zhang, Y.; Chen, N.; Yang, Q.; Wen, Z.; Jiang, H.; Yao, C.; et al. Revealing PPP1R12B and COL1A1 as piRNA pathway genes contributing to abdominal aortic aneurysm through integrated analysis and experimental validation. Gene 2024, 897, 148068. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, J.; Chen, C.; Xu, J.; Bell, R.L.; Hall, F.S.; Koob, G.F.; Volkow, N.D.; Qing, H.; Lin, Z. Epistatic evidence for gender-dependant slow neurotransmission signalling in substance use disorders: PPP1R12B versus PPP1R1B. eBioMedicine 2020, 61, 103066. [Google Scholar] [CrossRef]
- Wizemann, T.M.; Pardue, M.L. Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. In Exploring the Biological Contributions to Human Health: Does Sex Matter? National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Orshal, J.M.; Khalil, R.A. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R233–R249. [Google Scholar] [CrossRef]
- Kendler, M.; Makrantonaki, E.; Tzellos, T.; Kratzsch, J.; Anderegg, U.; Wetzig, T.; Zouboulis, C.; Simon, J.C. Elevated sex steroid hormones in great saphenous veins in men. J. Vasc. Surg. 2010, 51, 639–646. [Google Scholar] [CrossRef]
- Fan, Q.; Meng, Y.; Nie, Z.; Xie, S.; Chen, C. Sex hormone-binding globulin exerts sex-related causal effects on lower extremity varicose veins: Evidence from gender-stratified Mendelian randomization. Front. Endocrinol. 2023, 14, 1230955. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Nicolì, V.; Stoccoro, A. Gender specific differences in disease susceptibility: The role of epigenetics. Biomedicines 2021, 9, 652. [Google Scholar] [CrossRef]
- Landen, S.; Jacques, M.; Hiam, D.; Alvarez-Romero, J.; Harvey, N.R.; Haupt, L.M.; Griffiths, L.R.; Ashton, K.J.; Lamon, S.; Voisin, S.; et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin. Epigenet. 2021, 13, 202. [Google Scholar] [CrossRef]
- Özturan, D.; Morova, T.; Lack, N.A. Androgen receptor-mediated transcription in prostate cancer. Cells 2022, 11, 898. [Google Scholar] [CrossRef]
- Maurya, S.S. Role of enhancers in development and diseases. Epigenomes 2021, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Carleton, J.B.; Ginley-Hidinger, M.; Berrett, K.C.; Layer, R.M.; Quinlan, A.R.; Gertz, J. Regulatory sharing between estrogen receptor α bound enhancers. Nucleic Acids Res. 2020, 48, 6597–6610. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S. Pharmacokinetics/pharmacodynamics and sex differences. In Sex/Gender-Specific Medicine in Clinical Areas; Kim, N., Ed.; Springer: Singapore, 2024; pp. 541–552. [Google Scholar] [CrossRef]
- González-Correa, J.A.; Arrebola, M.M.; Muñoz-Marín, J.; Moreno, A.; Guerrero, A.; Arranz, I.; De La Cuesta, F.S.; De La Cruz, J.P. Gender differences in the effect of aspirin on retinal ischemia, prostanoid synthesis and nitric oxide production in experimental type 1-like diabetes. Vasc. Pharmacol. 2007, 47, 83–89. [Google Scholar] [CrossRef]
- Soylemez, S.; Gurdal, H.; Sepici, A.; Akar, F. The effect of long-term resveratrol treatment on relaxation to estrogen in aortae from male and female rats: Role of nitric oxide and superoxide. Vasc. Pharmacol. 2008, 49, 97–105. [Google Scholar] [CrossRef]
Gene | Gene Description | Gene Expression Fold Change † (95% CI) § | p-Value * |
---|---|---|---|
ABCA1 | ATP binding cassette subfamily A member 1 | (↓) 3.12 (2.38–4.09) | 0.00024 |
AXL | AXL receptor tyrosine kinase | (↓) 1.48 (1.18–1.88) | 0.00415 |
CALU | calumenin | (↑) 1.89 (1.40–2.56) | 0.00004 |
CASZ1 | castor zinc finger 1 | (↑) 1.28 (1.00–1.63) | 0.03588 |
CCL2 | C-C motif chemokine ligand 2 | (↑) 1.94 (1.37–2.75) | 0.00868 |
CHRDL2 | chordin like 2 | (↑) 2.15 (1.37–3.39) | 0.00464 |
COL15A1 | collagen type XV alpha 1 chain | (↑) [1.46] (1.21–1.76) | 0.00171 |
COMP | cartilage oligomeric matrix protein | (↑) 2.19 (1.58–3.05) | 0.00014 |
EBF1 | EBF transcription factor 1 | (↓) 1.81 (1.49–2.20) | 0.00024 |
EFEMP1 | EGF containing fibulin extracellular matrix protein 1 | (↑) 2.01 (1.29–3.14) | 0.00464 |
GPI | glucose-6-phosphate isomerase | (↑) 1.57 (1.29–1.92) | 0.00015 |
ITGA5 | integrin subunit alpha 5 | (↑) 1.42 (1.20–2.46) | 0.02186 |
MFAP5 | microfibril associated protein 5 | (↑) 1.60 (1.12–2.28) | 0.00664 |
Mn-SOD | superoxide dismutase 2 | (↓) 1.53 (1.33–1.83) | 0.00101 |
MYO18B | myosin XVIIIB | (↑) 1.67 (1.17–2.39) | 0.00745 |
MYOD1 | myogenic differentiation 1 | (↓) 1.53 (1.27–1.81) | 0.00298 |
PLA2G2A | phospholipase A2 group IIA | (↑) 3.80 (2.36–6.10) | 0.00004 |
PPP1R12B | protein phosphatase 1 regulatory subunit 12B | (↓) 1.56 (1.11–2.19) | 0.02148 |
STK38L | serine/threonine kinase 38 like | (↑) 2.04 (1.36–3.04) | 0.00203 |
SULF1 | sulfatase 1 | (↑) 1.46 (1.22–1.76) | 0.00018 |
TIMP1 | TIMP metallopeptidase inhibitor 1 | (↑) [1.58] (1.15–2.17) | 0.00464 |
TNC | tenascin C | (↑) 1.36 (1.13–1.74) | 0.03978 |
VCL | vinculin | (↓) 1.30 (1.21–1.49) | 0.00006 |
Gene | Chromosome | Number of TFBS †: Total (in the Promoter; in the Enhancer(s)) | Affinity Score ‡ | Affinity p-Value § |
---|---|---|---|---|
STK38L | 12 | 78 (2; 76) for AR and PR | 12.20 | 4.88 × 10−5 |
43 (1; 42) for ER-alpha, ER-beta, ERR1, ERR2, ERR3 | 10.35 | 5.68 × 10−4 | ||
TIMP1 | X | 5 (0; 5) for AR and PR | 8.44 | 1.85 × 10−2 |
– | – | – | ||
EBF1 | 5 | 59 (2; 57) for AR and PR | 4.39 | 6.88 × 10−5 |
52 (0; 52) for ER-alpha, ER-beta, ERR1, ERR2, ERR3 | 6.06 | 3.6 × 10−3 | ||
VCL | 10 | 29 (5; 24) for AR and PR | 9.33 | 1.35 × 10−3 |
23 (0; 23) for ER-alpha, ER-beta, ERR1, ERR2, ERR3 | 9.77 | 1.07 × 10−3 | ||
PPP1R12B | 1 | 14 (2; 12) for AR and PR | 6.82 | 1.28 × 10−2 |
6 (0; 6) for ER-alpha, ER-beta, ERR1, ERR2, ERR3 | 10.78 | 1.1 × 10−3 | ||
ITGA5 | 12 | 16 (1; 15) for AR and PR | 5.1 | 5.02 × 10−3 |
28 (2; 26) for ER-alpha, ER-beta, ERR1, ERR2, ERR3 | 10.39 | 6.1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smetanina, M.A.; Korolenya, V.A.; Sevostyanova, K.S.; Gavrilov, K.A.; Sipin, F.A.; Shevela, A.I.; Filipenko, M.L. Sex-Specific Gene Expression Differences in Varicose Veins. Biomedicines 2025, 13, 2373. https://doi.org/10.3390/biomedicines13102373
Smetanina MA, Korolenya VA, Sevostyanova KS, Gavrilov KA, Sipin FA, Shevela AI, Filipenko ML. Sex-Specific Gene Expression Differences in Varicose Veins. Biomedicines. 2025; 13(10):2373. https://doi.org/10.3390/biomedicines13102373
Chicago/Turabian StyleSmetanina, Mariya A., Valeria A. Korolenya, Ksenia S. Sevostyanova, Konstantin A. Gavrilov, Fedor A. Sipin, Andrey I. Shevela, and Maxim L. Filipenko. 2025. "Sex-Specific Gene Expression Differences in Varicose Veins" Biomedicines 13, no. 10: 2373. https://doi.org/10.3390/biomedicines13102373
APA StyleSmetanina, M. A., Korolenya, V. A., Sevostyanova, K. S., Gavrilov, K. A., Sipin, F. A., Shevela, A. I., & Filipenko, M. L. (2025). Sex-Specific Gene Expression Differences in Varicose Veins. Biomedicines, 13(10), 2373. https://doi.org/10.3390/biomedicines13102373