Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Group Characteristics
3.2. Results of Serum Tests
3.3. Correlations of SIRT1 with Height, Body Mass and IGF-1
3.4. Sirtuin 1 Levels with Respect to the Severity of GHD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juul, A. Serum Levels of Insulin-like Growth Factor I and Its Binding Proteins in Health and Disease. Growth Horm. IGF Res. 2003, 13, 113–170. [Google Scholar] [CrossRef]
- Boguszewski, C.L.; Barbosa, E.J.L.; Svensson, P.A.; Johannsson, G.; Glad, C.A.M. Mechanisms in Endocrinology: Clinical and Pharmacogenetic Aspects of the Growth Hormone Receptor Polymorphism. Eur. J. Endocrinol. 2017, 177, R309–R321. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Liu, J.-L.; Stannard, B.; Butler, A.; Accili, D.; Sauer, B.; LeRoith, D. Normal Growth and Development in the Absence of Hepatic Insulin-like Growth Factor I. Proc. Natl. Acad. Sci. USA 1999, 96, 7324–7329. [Google Scholar] [CrossRef] [PubMed]
- Juul, A.; Dalgaard, P.; Blum, W.F.; Bang, P.; Hall, K.; Michaelsen, K.F.; Müller, J.; Skakkebaek, N.E. Serum Levels of Insulin-like Growth Factor (IGF)-Binding Protein-3 (IGFBP-3) in Healthy Infants, Children, and Adolescents: The Relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, Age, Sex, Body Mass Index, and Pubertal Maturation. J. Clin. Endocrinol. Metab. 1995, 80, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.G. Biochemical Diagnostic Strategies in the Evaluation of Short Stature: The Diagnosis of Insulin-like Growth Factor Deficiency. Horm. Res. 1996, 46, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Iguchi, G.; Fukuoka, H.; Suda, K.; Bando, H.; Takahashi, M.; Nishizawa, H.; Seino, S.; Takahashi, Y. SIRT1 Regulates Adaptive Response of the Growth Hormone--Insulin-like Growth Factor-I Axis under Fasting Conditions in Liver. Proc. Natl. Acad. Sci. USA 2013, 110, 14948–14953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Lee, J.-H.; Lee, H.-Y.; Min, K.-J. Sirtuin Signaling in Cellular Senescence and Aging. BMB Rep. 2019, 52, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and Aging Related Signaling Pathways. Mech. Ageing Dev. 2020, 187, 111215. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kitamura, T. Roles of FoxO1 and Sirt1 in the Central Regulation of Food Intake. Endocr. J. 2010, 57, 939–946. [Google Scholar] [CrossRef]
- Sipos, F.; Műzes, G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024, 12, 386. [Google Scholar] [CrossRef]
- Fedorczak, A.; Lewiński, A.; Stawerska, R. Sirtuin 1 Serum Concentration in Healthy Children—Dependence on Sex, Age, Stage of Puberty, Body Weight and Diet. Front. Endocrinol. 2024, 15, 1356612. [Google Scholar] [CrossRef]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Swiąder, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 Growth References for Preschool Children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 Growth References for School-Aged Children and Adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Ranke, M.B.; Lindberg, A. Growth Hormone Treatment of Idiopathic Short Stature: Analysis of the Database from KIGS, the Kabi Pharmacia International Growth Study. Acta Paediatr. Suppl. 1994, 406, 18–23, discussion 24. [Google Scholar] [CrossRef]
- Adamczewska, K.; Adamczewski, Z.; Łupińska, A.; Lewiński, A.; Stawerska, R. Strong Positive Correlation between TSH and Ghrelin in Euthyroid Non-Growth Hormone-Deficient Children with Short Stature. Molecules 2020, 25, 3912. [Google Scholar] [CrossRef]
- Ranke, M.B.; Wit, J.M. Growth Hormone—Past, Present and Future. Nat. Rev. Endocrinol. 2018, 14, 285–300. [Google Scholar] [CrossRef]
- Cohen, L.E. Idiopathic Short Stature: A Clinical Review. JAMA 2014, 311, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.-L.; et al. Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Arab Sadeghabadi, Z.; Nourbakhsh, M.; Pasalar, P.; Emamgholipour, S.; Golestani, A.; Larijani, B.; Razzaghy-Azar, M. Reduced Gene Expression of Sirtuins and Active AMPK Levels in Children and Adolescents with Obesity and Insulin Resistance. Obes. Res. Clin. Pract. 2018, 12, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Donato, J.; Wasinski, F.; Furigo, I.C.; Metzger, M.; Frazão, R. Central Regulation of Metabolism by Growth Hormone. Cells 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, L.; Waters, M.J.; Chen, C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol. Metab. 2020, 31, 642–654. [Google Scholar] [CrossRef]
- Holt, R.I.G.; Sönksen, P.H. Growth Hormone, IGF-I and Insulin and Their Abuse in Sport. Br. J. Pharmacol. 2008, 154, 542–556. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Determinants of GH Resistance in Malnutrition. J. Endocrinol. 2014, 220, R57–R65. [Google Scholar] [CrossRef]
- Wójcik, M.; Krawczyńska, A.; Antushevich, H.; Herman, A.P. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int. J. Mol. Sci. 2018, 19, 1843. [Google Scholar] [CrossRef] [PubMed]
- Fedorczak, A.; Lewiński, A.; Stawerska, R. Involvement of Sirtuin 1 in the Growth Hormone/Insulin-like Growth Factor 1 Signal Transduction and Its Impact on Growth Processes in Children. Int. J. Mol. Sci. 2023, 24, 15406. [Google Scholar] [CrossRef] [PubMed]
- Satoh, A.; Brace, C.S.; Ben-Josef, G.; West, T.; Wozniak, D.F.; Holtzman, D.M.; Herzog, E.D.; Imai, S.-i. SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. J. Neurosci. 2010, 30, 10220–10232. [Google Scholar] [CrossRef]
- De Lima, J.B.M.; Ubah, C.; Debarba, L.K.; Ayyar, I.; Didyuk, O.; Sadagurski, M. Hypothalamic GHR-SIRT1 Axis in Fasting. Cells 2021, 10, 891. [Google Scholar] [CrossRef]
- Cohen, D.E.; Supinski, A.M.; Bonkowski, M.S.; Donmez, G.; Guarente, L.P. Neuronal SIRT1 Regulates Endocrine and Behavioral Responses to Calorie Restriction. Genes. Dev. 2009, 23, 2812–2817. [Google Scholar] [CrossRef]
- Velásquez, D.A.; Martínez, G.; Romero, A.; Vázquez, M.J.; Boit, K.D.; Dopeso-Reyes, I.G.; López, M.; Vidal, A.; Nogueiras, R.; Diéguez, C. The Central Sirtuin 1/P53 Pathway Is Essential for the Orexigenic Action of Ghrelin. Diabetes 2011, 60, 1177–1185. [Google Scholar] [CrossRef]
- Krukowska-Andrzejczyk, B.; Kalina, M.; Kalina-Faska, B.; Małecka-Tendera, E. Growth Hormone Therapy in Children with Partial Growth Hormone Deficiency. Are We Treating the Right Patients? Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Smyczyńska, J.; Lewiński, A.; Hilczer, M.; Stawerska, R.; Karasek, M. Partial Growth Hormone Deficiency (GHD) in Children Has More Similarities to Idiopathic Short Stature than to Severe GHD. Endokrynol. Pol. 2007, 58, 182–187. [Google Scholar]
- Savage, M.O.; Burren, C.P.; Rosenfeld, R.G. The Continuum of Growth Hormone–IGF-I Axis Defects Causing Short Stature: Diagnostic and Therapeutic Challenges. Clin. Endocrinol. 2010, 72, 721–728. [Google Scholar] [CrossRef]
- Murray, P.G.; Dattani, M.T.; Clayton, P.E. Controversies in the Diagnosis and Management of Growth Hormone Deficiency in Childhood and Adolescence. Arch. Dis. Child. 2016, 101, 96–100. [Google Scholar] [CrossRef]
- Kaplan, D.S.; Canak, A.; Isık, E.; Orkmez, M.; Kumru, B. Relationship of Fibroblast Growth Factor 21, Sirtuin 1, Visfatin, and Regulators in Children with Short Stature. Growth Factors 2018, 36, 172–177. [Google Scholar] [CrossRef]
- Yamamoto, M.; Bando, H. A New Insight into GH Regulation and Its Disturbance from Nutrition and Autoimmune Perspectives. Endocr. J. 2023, 70, 867–874. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takahashi, Y. The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Front. Endocrinol. 2018, 9, 605. [Google Scholar] [CrossRef]
- Piao, S.; Lee, I.; Jin, S.-A.; Kim, S.; Nagar, H.; Choi, S.; Jeon, B.H.; Kim, C.-S. SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1. Biomedicines 2021, 9, 52. [Google Scholar] [CrossRef]
- Chojdak-Łukasiewicz, J.; Bizoń, A.; Waliszewska-Prosół, M.; Piwowar, A.; Budrewicz, S.; Pokryszko-Dragan, A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022, 10, 2434. [Google Scholar] [CrossRef]
- Pardo, P.S.; Boriek, A.M. SIRT1 Regulation in Ageing and Obesity. Mech. Ageing Dev. 2020, 188, 111249. [Google Scholar] [CrossRef]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef]
- Chen, J.; Lou, R.; Zhou, F.; Li, D.; Peng, C.; Lin, L. Sirtuins: Key Players in Obesity-Associated Adipose Tissue Remodeling. Front. Immunol. 2022, 13, 1068986. [Google Scholar] [CrossRef]
Variable | ISS, n = 62 | GHD, n = 38 | ISS vs. GHD, p< | Controls, n = 47 | p< | |
---|---|---|---|---|---|---|
age [years] | 10.4 ± 2.75 | 10.75 ± 2.88 | 0.4754 | 10.35 ± 2.6 | 0.6780 | |
5.02; 15.98 | 3.01; 15.26 | 4.21; 14.35 | ||||
sex, N (%) | female | 28 (45.16%) | 13 (34.21%) | 0.2798 | 20 (42.5%) | 0.5500 |
male | 34 (54.84%) | 25 (65.7%) | 27 (57.5%) | |||
height [cm] | 127.93 ± 14.17 | 130.97 ± 15.39 | 0.2233 | 146.46 ± 17.89 | 0.0001 * | |
94; 150.1 | 89; 154.4 | 105; 181 | ||||
height SDS | −2.62 ± 0.51 | −2.40 ± 0.3 | 0.1586 | 0.52 ± 1.02 | 0.0001 * | |
−4.85; −2 | −3.77; −2 | −1.07; 2.91 | ||||
body mass [kg] | 26.56 ± 7.86 | 31.17 ± 10.54 | 0.0285 * | 39.40 ± 14.25 | 0.0001 * | |
12.2; 44.6 | 12.5; 54.2 | 16; 78 | ||||
body | −1.99 ± 0.62 | −1.40 ± 1.05 | 0.0050 * | 0.48 ± 1.26 | 0.0001 * | |
mass [SDS] | −3.41; −0.60 | −3.05; −1.77 | −2.08; 3.5 | |||
BMI [kg/m2] | 15.82 ± 2.13 | 17.61 ± 3.22 | 0.0060 * | 17.69 ± 2.73 | 0.0004 * | |
12.53; 22.87 | 12.93; 25.89 | 13.83; 24.07 | ||||
BMI SDS for | −0.87 ± 1.08 | −0.01 ± 1.61 | 0.0066 * | 0.18 ± 1.27 | 0.0001 * | |
CA | −2.60; 2.27 | −2.69; 2.46 | −2.25; 2.83 | |||
height age, | 7.77 ± 2.35 | 8.33 ± 2.45 | 0.2062 | x | x | |
HA [years] | 2.79; 12.81 | 2.96; 11.82 | ||||
BMI SDS for | −0.34 ± 1.36 | 0.69 ± 1.83 | 0.0057 * | x | x | |
HA | −2.70; 4.60 | −1.98; 5.03 |
Variable | ISS, n = 62 | GHD, n = 38 | ISS vs. GHD, p< | Control Group, n = 47 | p< |
---|---|---|---|---|---|
Max GH after | 13.98 ± 4.42 | 6.05 ± 2.64 | 0.0001 * | x | x |
clonidine [ng/mL] | 3.30; 26.12 | 0.90; 9.83 | |||
Max GH after | 9.94 ± 5.48 | 4.91 ± 2.66 | 0.0001 * | x | x |
glucagon [ng/mL] | 1.88; 27.25 | 0.28; 9.85 | |||
IGF-1 [ng/mL] | 155.48 ± 86.92 | 137.17 ± 59.49 | 0.6443 | 270.56 ± 183.39 | 0.0001 * |
40.00; 510.90 | 19.10; 303.90 | 36.60; 679.40 | |||
IGF-1 SDS | −1.28 ± 0.84 | −1.67 ± 0.98 | 0.0386 * | −0.39 ± 1.14 | 0.0001 * |
−2.92; 0.83 | −3.69; 0.29 | −3.67; 1.41 | |||
IGFBP-3 | 3482 ± 979 | 3481 ± 979 | 0.7493 | 4317 ± 1435 | 0.0017 * |
[ng/mL] | 2100; 5521 | 1458; 5703 | 1542; 6336 | ||
IGF-1/IGFBP-3 | 0.23 ± 0.09 | 0.22 ± 0.06 | 0.5820 | 0.32 ± 0.16 | 0.0088 * |
molar ratio | 0.08; 0.51 | 0.06; 0.42 | 0.11; 0.71 | ||
SIRT1 [ng/mL] | 0.89 ± 0.45 | 1.24 ± 0.86 | 0.090 | 0.29 ± 0.21 | 0.0001 * |
0.15; 2.14 | 0.16; 3.33 | 0.04; 0.96 |
Variable | ISS, n = 62 | pGHD, n = 22 | sGHD, n = 16 | p< | |
---|---|---|---|---|---|
age [years] | 10.4 ± 2.75 | 10.34 ± 2.84 | 11.32 ± 2.92 | 0.6780 | |
5.02; 15.98 | 5.35; 13.85 | 3.01; 15.26 | |||
sex, N (%) | female | 28 (45.16%) | 9 (40.91%) | 12 (75%) | 0.5500 |
male | 34 (54.84%) | 13 (59.09%) | 5 (25%) | ||
height [cm] | 127.93 ± 14.17 | 128.59 ± 15.05 | 134.25 ± 15.73 | 0.2134 | |
94; 150.1 | 101.20; 148.50 | 89; 154.40 | |||
height SDS | −2.62 ± 0.64 | −2.46 ± 0.56 | −2.32 ± 0.48 | 0.3321 | |
−4.85; −2 | −3.77; −2 | −2.61; −2.09 | |||
BMI [kg/m2] | 15.82 ± 2.13 a,b | 16.36 ± 2.25 a,c | 19.33 ± 3.60 b,c | 0.0011 * | |
12.53; 22.87 | 12.93; 21.48 | 13.89; 25,89 | |||
BMI SDS | −0.87 ± 1.08 a | −0.59 ± 1.09 b | 0.79 ± 1.09 a,b | 0.0020 * | |
for CA | −2.60; 2.27 | −2.17; 1.52 | 2.17; 1.52 | ||
height age, | 7.77 ± 2.35 | 7.97 ± 2.44 | 8.83 ± 2.45 | 0.2288 | |
HA [years] | 2.83; 12.81 | 3.75; 11.5 | 2.16; 12 | ||
BMI SDS | −0.34 ± 1.36 a | −0.01± 1.26 | 1.65 ± 2.08 a | 0.0018 * | |
for HA | −2.70; 4.60 | −1.98; 2.53 | −1.87; 5.03 |
Variable | ISS, n = 62 | pGHD, n = 22 | sGHD, n = 16 | p< |
---|---|---|---|---|
GH peak | 15.23 ± 4.28 a,b | 8.52 ± 0.98 a,c | 4.3 ± 2.19 b,c | 0.0001 * |
[ng/mL] | 10; 27.25 | 7.09; 9.85 | 0.90; 6.9 | |
IGF-1 | 155.48 ± 86.92 | 137.72 ± 56.35 | 136.43 ± 65.45 | 0.8942 |
[ng/mL] | 40.00; 510.90 | 55.40; 287.20 | 19.10; 303.90 | |
IGF-1 SDS | −1.28 ± 0.84 a | −1.44 ± 0.89 | −1.99 ± 1.04 a | 0.0395 * |
−2.92; 0.83 | 3.63; 0.29 | −2.61; −1.40 | ||
IGFBP-3 | 3482 ± 979 | 3501 ± 935 | 3454 ± 1069 | 0.9379 |
[ng/mL] | 2100; 5521 | 2180; 5703 | 1458; 5628 | |
IGF-1/IGFBP-3 | 0.23 ± 0.09 | 0.22 ± 0.07 | 0.21 ± 0.06 | 0.8570 |
0.08; 0.51 | 0.11; 0.42 | 0.06; 0.30 | ||
SIRT1 [ng/mL] | 0.89 ± 0.45 a | 1.51 ± 0.98 a | 0.87 ± 0.49 | 0.0391 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorczak, A.; Kowalik, D.; Kopciuch, J.; Głowacka, E.; Mikołajczyk, K.; Tkaczyk, M.; Lewiński, A.; Stawerska, R. Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines 2024, 12, 1433. https://doi.org/10.3390/biomedicines12071433
Fedorczak A, Kowalik D, Kopciuch J, Głowacka E, Mikołajczyk K, Tkaczyk M, Lewiński A, Stawerska R. Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines. 2024; 12(7):1433. https://doi.org/10.3390/biomedicines12071433
Chicago/Turabian StyleFedorczak, Anna, Dorota Kowalik, Justyna Kopciuch, Ewa Głowacka, Katarzyna Mikołajczyk, Marcin Tkaczyk, Andrzej Lewiński, and Renata Stawerska. 2024. "Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature" Biomedicines 12, no. 7: 1433. https://doi.org/10.3390/biomedicines12071433
APA StyleFedorczak, A., Kowalik, D., Kopciuch, J., Głowacka, E., Mikołajczyk, K., Tkaczyk, M., Lewiński, A., & Stawerska, R. (2024). Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines, 12(7), 1433. https://doi.org/10.3390/biomedicines12071433