miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication
1. Introduction
2. Extracellular miRNAs
3. miRNAs in Human Diseases
4. “Non-Canonical” miRNAs and miRNA Regulation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Suárez, B.; Solé, C.; Márquez, M.; Nanetti, F.; Lawrie, C.H. Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. Adv. Exp. Med. Biol. 2022, 1385, 23–73. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Miras, M.C.M.; Pappolla, A.; Montalban, X.; Comabella, M. Liquid Biopsy in Neurological Diseases. Cells 2023, 12, 1911. [Google Scholar] [CrossRef] [PubMed]
- Thibeault, K.; Légaré, C.; Desgagné, V.; White, F.; Clément, A.-A.; Scott, M.S.; Jacques, P.-É.; Guérin, R.; Perron, P.; Hivert, M.-F.; et al. Maternal Body Mass Index Is Associated with Profile Variation in Circulating MicroRNAs at First Trimester of Pregnancy. Biomedicines 2022, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Robles, D.; Guo, D.-H.; Watson, N.; Asante, D.; Sukumari-Ramesh, S. Dysregulation of Serum MicroRNA after Intracerebral Hemorrhage in Aged Mice. Biomedicines 2023, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Robotti, M.; Scebba, F.; Angeloni, D. Circulating Biomarkers for Cancer Detection: Could Salivary MicroRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Kondracka, A.; Gil-Kulik, P.; Kondracki, B.; Frąszczak, K.; Oniszczuk, A.; Rybak-Krzyszkowska, M.; Staniczek, J.; Kwaśniewska, A.; Kocki, J. Occurrence, Role, and Challenges of MicroRNA in Human Breast Milk: A Scoping Review. Biomedicines 2023, 11, 248. [Google Scholar] [CrossRef]
- Pomar, C.A.; Castillo, P.; Palou, A.; Palou, M.; Picó, C. Dietary Improvement during Lactation Normalizes MiR-26a, MiR-222 and MiR-484 Levels in the Mammary Gland, but Not in Milk, of Diet-Induced Obese Rats. Biomedicines 2022, 10, 1292. [Google Scholar] [CrossRef]
- Takizawa, S.; Matsuzaki, J.; Ochiya, T. Circulating MicroRNAs: Challenges with Their Use as Liquid Biopsy Biomarkers. Cancer Biomark. 2022, 35, 1–9. [Google Scholar] [CrossRef]
- Lakkisto, P.; Dalgaard, L.T.; Belmonte, T.; Pinto-Sietsma, S.-J.; Devaux, Y.; de Gonzalo-Calvo, D. EU-CardioRNA COST Action CA17129 (https://cardiorna.eu/) Development of Circulating MicroRNA-Based Biomarkers for Medical Decision-Making: A Friendly Reminder of What Should NOT Be Done. Crit. Rev. Clin. Lab. Sci. 2023, 60, 141–152. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandra, Y.; Valerio, V.; Moschetta, D.; Massaiu, I.; Bozzi, M.; Conte, M.; Parisi, V.; Ciccarelli, M.; Leosco, D.; Myasoedova, V.A.; et al. Extraction-Free Absolute Quantification of Circulating MiRNAs by Chip-Based Digital PCR. Biomedicines 2022, 10, 1354. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular MiRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Lucero, R.; Zappulli, V.; Sammarco, A.; Murillo, O.D.; Cheah, P.S.; Srinivasan, S.; Tai, E.; Ting, D.T.; Wei, Z.; Roth, M.E.; et al. Glioma-Derived MiRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells. Cell Rep. 2020, 30, 2065–2074.e4. [Google Scholar] [CrossRef]
- Xu, C.; Wang, P.; Guo, H.; Shao, C.; Liao, B.; Gong, S.; Zhou, Y.; Yang, B.; Jiang, H.; Zhang, G.; et al. MiR-146a-5p Deficiency in Extracellular Vesicles of Glioma-Associated Macrophages Promotes Epithelial-Mesenchymal Transition through the NF-ΚB Signaling Pathway. Cell Death Discov. 2023, 9, 206. [Google Scholar] [CrossRef]
- Canovai, M.; Evangelista, M.; Mercatanti, A.; D’Aurizio, R.; Pitto, L.; Marrocolo, F.; Casieri, V.; Pellegrini, M.; Lionetti, V.; Bracarda, S.; et al. Secreted MiR-210-3p, MiR-183-5p and MiR-96-5p Reduce Sensitivity to Docetaxel in Prostate Cancer Cells. Cell Death Discov. 2023, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Zeng, E.Z.; Chen, I.; Chen, X.; Yuan, X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022, 10, 2485. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Santos, M.; de Sousa, N.; Duarte-Silva, S.; Vaz, A.R.; Salgado, A.J.; Brites, D. Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for MiR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines 2022, 10, 2120. [Google Scholar] [CrossRef] [PubMed]
- Panella, R.; Cotton, C.A.; Maymi, V.A.; Best, S.; Berry, K.E.; Lee, S.; Batalini, F.; Vlachos, I.S.; Clohessy, J.G.; Kauppinen, S.; et al. Targeting of MicroRNA-22 Suppresses Tumor Spread in a Mouse Model of Triple-Negative Breast Cancer. Biomedicines 2023, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Levantini, E. Is MiR Therapeutic Targeting Still a MiRage? Front. Biosci. (Landmark Ed) 2021, 26, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.P.; Suman, K.H.; Nguyen, T.B.; Nguyen, H.T.; Do, D.N. The Role of MiR-29s in Human Cancers-An Update. Biomedicines 2022, 10, 2121. [Google Scholar] [CrossRef] [PubMed]
- Chiantore, M.V.; Iuliano, M.; Mongiovì, R.M.; Luzi, F.; Mangino, G.; Grimaldi, L.; Accardi, L.; Fiorucci, G.; Romeo, G.; Di Bonito, P. MicroRNAs Differentially Expressed in Actinic Keratosis and Healthy Skin Scrapings. Biomedicines 2023, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, B.C.; Dos Anjos, L.G.; Dobroff, A.S.; Baracat, E.C.; Yang, Q.; Al-Hendy, A.; Carvalho, K.C. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022, 10, 2567. [Google Scholar] [CrossRef]
- Galardi, A.; Colletti, M.; Palma, A.; Di Giannatale, A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022, 11, 36. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Jakobsen, T.; Hager, H.; Kjems, J. The Emerging Roles of CircRNAs in Cancer and Oncology. Nat. Rev. Clin. Oncol. 2022, 19, 188–206. [Google Scholar] [CrossRef]
- Leavy, A.; Brennan, G.P.; Jimenez-Mateos, E.M. MicroRNA Profiling Shows a Time-Dependent Regulation within the First 2 Months Post-Birth and after Mild Neonatal Hypoxia in the Hippocampus from Mice. Biomedicines 2022, 10, 2740. [Google Scholar] [CrossRef]
- Piquer-Gil, M.; Domenech-Dauder, S.; Sepúlveda-Gómez, M.; Machí-Camacho, C.; Braza-Boïls, A.; Zorio, E. Non Coding RNAs as Regulators of Wnt/β-Catenin and Hippo Pathways in Arrhythmogenic Cardiomyopathy. Biomedicines 2022, 10, 2619. [Google Scholar] [CrossRef] [PubMed]
- An, H.-J.; Cho, S.-H.; Park, H.-S.; Kim, J.-H.; Kim, Y.-R.; Lee, W.-S.; Lee, J.-R.; Joo, S.-S.; Ahn, E.-H.; Kim, N.-K. Genetic Variations MiR-10aA>T, MiR-30cA>G, MiR-181aT>C, and MiR-499bA>G and the Risk of Recurrent Pregnancy Loss in Korean Women. Biomedicines 2022, 10, 2395. [Google Scholar] [CrossRef] [PubMed]
- Coley, A.B.; DeMeis, J.D.; Chaudhary, N.Y.; Borchert, G.M. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022, 10, 1819. [Google Scholar] [CrossRef]
- Esposito, M.; Gualandi, N.; Spirito, G.; Ansaloni, F.; Gustincich, S.; Sanges, R. Transposons Acting as Competitive Endogenous RNAs: In-Silico Evidence from Datasets Characterised by L1 Overexpression. Biomedicines 2022, 10, 3279. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A CeRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levantini, E.; Rizzo, M. miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication. Biomedicines 2024, 12, 721. https://doi.org/10.3390/biomedicines12040721
Levantini E, Rizzo M. miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication. Biomedicines. 2024; 12(4):721. https://doi.org/10.3390/biomedicines12040721
Chicago/Turabian StyleLevantini, Elena, and Milena Rizzo. 2024. "miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication" Biomedicines 12, no. 4: 721. https://doi.org/10.3390/biomedicines12040721
APA StyleLevantini, E., & Rizzo, M. (2024). miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication. Biomedicines, 12(4), 721. https://doi.org/10.3390/biomedicines12040721