Current Diagnostic, Counseling, and Treatment Options in Non-Severe and Severe Apparently Isolated Fetal Ventriculomegaly
Abstract
:1. Introduction
2. INSVM and ISVM Fetal Diagnostic Tools
2.1. Imaging by US
2.2. Imaging by MRI
2.3. Complementary Diagnosis of Fetal Ultrasound and MRI
Imaging Tools Redefined
2.4. Genetic Diagnosis Defining Apparently Isolated Fetal Vm
2.5. Ivm Infectious Agent Testing
3. Counseling in IVM
Outcomes in Fetuses with Isolated Ventriculomegaly
4. Prenatal Treatment Options for ISVM
5. The Result of Destruction Caused by Fetal ISVM
5.1. SVM Decompression Before the IFMSS Moratorium
5.2. Post-Moratorium Era—Advancements in Bio-Engineering and ISVM Decompression Techniques
6. Experimental and Clinical Results of ISVM Decompression
6.1. Endoscopic Third Ventriculostomy
6.2. Open Fetal Surgery in Ventri Culo-Amniotic Drainage Isvm
7. Expected Potential of Fetal Surgery Center for Treatment of Fetal VM
7.1. Model Candidates for Maternal–Fetal Surgery in the Treatment of ISVM
7.2. Optimal Timing Window for ISVM Drainage
8. Conclusions
8.1. Current State of Knowledge About Fetal ISVM
8.2. Future Research
8.3. Further Challenges
8.3.1. Standardization of SVM Diagnosis
8.3.2. Challenges of Counseling
8.3.3. Challenges for FSC Centers Conducting RCTs
- -
- Diagnostics and counseling.
- -
- Specialized staff and the technical possibility of performing ISVM decompression.
- -
- Control of the neurodevelopment of children who have undergone prenatal ISVM decompression.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannon, T.; Tennant, P.W.; Rankin, J.; Robson, S.C. Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet. Gynecol. 2012, 120, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.G.; Sethi, N.; Sulaiman, S. Evaluation of prenatal central nervous system anomalies: Obstetric management, fetal outcomes and chromosome abnormalities. BMC Pregnancy Childbirth 2022, 22, 210. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Nonaka, M.; Bamba, Y.; Teramoto, C.; Ban, C.; Pooh, R.K. Diagnosis, treatment, and long-term outcomes of fetal hydrocephalus. Semin. Fetal Neonatal Med. 2012, 17, 330–335. [Google Scholar] [CrossRef]
- Letouzey, M.; Chadie, A.; Brasseur-Daudruy, M.; Proust, F.; Verspyck, E.; Boileau, P.; Marret, S. Severe apparently isolated fetal ventriculomegaly and neurodevelopmental outcome. Prenat. Diagn. 2017, 37, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Society for Maternal-Fetal Medicine (SMFM); Fox, N.S.; Monteagudo, A.; Kuller, J.A.; Craigo, S.; Norton, M.E. Mild fetal ventriculomegaly: Diagnosis, evaluation, and management. Am. J. Obstet. Gynecol. 2018, 219, B2–B9. [Google Scholar] [CrossRef] [PubMed]
- Benkarim, O.M.; Hahner, N.; Piella, G.; Gratacos, E.; Gonzalez Ballester, M.A.; Eixarch, E.; Sanroma, G. Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly. Neuroimage Clin. 2018, 18, 103–114. [Google Scholar] [CrossRef]
- Ma’ayeh, M.; Ward, C.L.; Chitwood, A.; Gee, S.E.; Schneider, P.; Rood, K.M. Outcomes of Isolated Fetal Ventriculomegaly That Resolve In Utero. Am. J. Perinatol. 2021, 38, 111–114. [Google Scholar] [CrossRef]
- Gerbino, M.; Parodi, S.; Ballarini, M.; Paladini, D. Comparison of fetal and neonatal sonographic measurements of ventricular size in second- and third-trimester fetuses with or without ventriculomegaly: Cross-sectional three-dimensional ultrasound study. Ultrasound Obstet. Gynecol. 2022, 60, 766–773. [Google Scholar] [CrossRef] [PubMed]
- De Robertis, V.; Sen, C.; Timor-Tritsch, I.; Volpe, P.; Galindo, A.; Khalil, A.; Volpe, N.; Gil, M.D.M.; Birnbaum, R.; Villalain, C.; et al. Clinical Practice Guidelines and Recommendations by the World Association of Perinatal Medicine and Perinatal Medicine Foundation: Reporting Suspected Findings from Fetal Central Nervous System Examination. Fetal Diagn. Ther. 2024, 51, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, J.D.; Goldstein, R.B.; Filly, R.A. Exclusion of fetal ventriculomegaly with a single measurement: The width of the lateral ventricular atrium. Radiology 1988, 169, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Giorgione, V.; Haratz, K.K.; Constantini, S.; Birnbaum, R.; Malinger, G. Fetal cerebral ventriculomegaly: What do we tell the prospective parents? Prenat. Diagn. 2022, 42, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Atad-Rapoport, M.; Schweiger, A.; Lev, D.; Sadan-Strul, S.; Malinger, G.; Lerman-Sagie, T. Neuropsychological follow-up at school age of children with asymmetric ventricles or unilateral ventriculomegaly identified in utero. BJOG 2015, 122, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Kolarovszki, B.; Zubor, P.; Kolarovszka, H.; Benco, M.; Richterova, R.; Matasova, K. The assessment of intracranial dynamics by transcranial Doppler sonography in perioperative period in paediatric hydrocephalus. Arch. Gynecol. Obstet. 2013, 287, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Sonographic examination of the fetal central nervous system: Guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet. Gynecol. 2007, 29, 109–116. [CrossRef] [PubMed]
- Hahner, N.; Benkarim, O.M.; Aertsen, M.; Perez-Cruz, M.; Piella, G.; Sanroma, G.; Bargallo, N.; Deprest, J.; Gonzalez Ballester, M.A.; Gratacos, E.; et al. Global and Regional Changes in Cortical Development Assessed by MRI in Fetuses with Isolated Nonsevere Ventriculomegaly Correlate with Neonatal Neurobehavior. AJNR Am. J. Neuroradiol. 2019, 40, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Society for Maternal-Fetal Medicine (SMFM); Norton, M.E.; Fox, N.S.; Monteagudo, A.; Kuller, J.A.; Craigo, S. Fetal Ventriculomegaly. Am. J. Obstet. Gynecol. 2020, 223, B30–B33. [Google Scholar] [CrossRef]
- McKechnie, L.; Vasudevan, C.; Levene, M. Neonatal outcome of congenital ventriculomegaly. Semin. Fetal Neonatal Med. 2012, 17, 301–307. [Google Scholar] [CrossRef]
- Gomez-Arriaga, P.I.; Nunez, N.; Zamora, B.; Villalain, C.; Risco, B.; Liebana, C.; Herraiz, I.; Galindo, A. Natural history and mid-term neurodevelopmental outcome of fetuses with isolated mild ventriculomegaly diagnosed in the second half of pregnancy. J. Matern. Fetal Neonatal Med. 2023, 36, 2214836. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S.; Bar-Yosef, O.; Jacobson, J.M.; Gilboa, Y.; Derazne, E.; Achiron, R.; Katorza, E. Natural history of fetal isolated ventriculomegaly: Comparison between pre- and post-natal imaging. J. Matern. Fetal Neonatal Med. 2018, 31, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, R.; Parodi, S.; Donarini, G.; Meccariello, G.; Fulcheri, E.; Paladini, D. The third ventricle of the human fetal brain: Normative data and pathologic correlation. A 3D transvaginal neurosonography study. Prenat. Diagn. 2018, 38, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Rault, E.; Lacalm, A.; Massoud, M.; Massardier, J.; Di Rocco, F.; Gaucherand, P.; Guibaud, L. The many faces of prenatal imaging diagnosis of primitive aqueduct obstruction. Eur. J. Paediatr. Neurol. 2018, 22, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Pisapia, J.M.; Sinha, S.; Zarnow, D.M.; Johnson, M.P.; Heuer, G.G. Fetal ventriculomegaly: Diagnosis, treatment, and future directions. Childs Nerv. Syst. 2017, 33, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Drugan, A.; Krause, B.; Canady, A.; Zador, I.E.; Sacks, A.J.; Evans, M.I. The natural history of prenatally diagnosed cerebral ventriculomegaly. JAMA 1989, 261, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.J.; Polan, R.M.; Baranano, K.W.; Burd, I.; Baschat, A.A.; Blakemore, K.J.; Ahn, E.S.; Jelin, E.B.; Jelin, A.C. Acceleration and plateau: Two patterns and outcomes of isolated severe fetal cerebral ventricular dilation. J. Matern. Fetal Neonatal Med. 2021, 34, 3014–3020. [Google Scholar] [CrossRef] [PubMed]
- Kline-Fath, B.M.; Arroyo, M.S.; Calvo-Garcia, M.A.; Horn, P.S.; Thomas, C. Congenital aqueduct stenosis: Progressive brain findings in utero to birth in the presence of severe hydrocephalus. Prenat. Diagn. 2018, 38, 706–712. [Google Scholar] [CrossRef]
- Nagaraj, U.D.; Kline-Fath, B.M. Clinical Applications of Fetal MRI in the Brain. Diagnostics 2022, 12, 764. [Google Scholar] [CrossRef] [PubMed]
- Epstein, K.N.; Kline-Fath, B.M.; Zhang, B.; Venkatesan, C.; Habli, M.; Dowd, D.; Nagaraj, U.D. Prenatal Evaluation of Intracranial Hemorrhage on Fetal MRI: A Retrospective Review. AJNR Am. J. Neuroradiol. 2021, 42, 2222–2228. [Google Scholar] [CrossRef] [PubMed]
- Heaphy-Henault, K.J.; Guimaraes, C.V.; Mehollin-Ray, A.R.; Cassady, C.I.; Zhang, W.; Desai, N.K.; Paldino, M.J. Congenital Aqueductal Stenosis: Findings at Fetal MRI That Accurately Predict a Postnatal Diagnosis. AJNR Am. J. Neuroradiol. 2018, 39, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Vasung, L.; Rollins, C.K.; Zhang, J.; Velasco-Annis, C.; Yang, E.; Lin, P.Y.; Sutin, J.; Warfield, S.K.; Soul, J.; Estroff, J.; et al. Abnormal development of transient fetal zones in mild isolated fetal ventriculomegaly. Cereb. Cortex 2023, 33, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Brady, D.; Schlatterer, S.D.; Whitehead, M.T. Fetal brain MRI: Neurometrics, typical diagnoses, and resolving common dilemmas. Br. J. Radiol. 2023, 96, 20211019. [Google Scholar] [CrossRef]
- Gagoski, B.; Xu, J.; Wighton, P.; Tisdall, M.D.; Frost, R.; Lo, W.; Golland, P.; van der Kouwe, A.; Adalsteinsson, E.; Grant, P.E. Automated detection and reacquisition of motion-degraded images in fetal haste imaging at 3 T. Magn. Reson. Med. 2021, 87, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, M.; Turk, E.A.; Zhang, L.; Grant, P.E.; Ying, K.; Golland, P.; Adalsteinsson, E. Fetal pose estimation in volumetric MRI using a 3D convolution neural network. Lect. Notes Comput. Sci. 2019, 11767, 403–410. [Google Scholar]
- Singh, A.; Salehi, S.S.; Gholipour, A. Deep predictive motion tracking in Magnetic Resonance Imaging: Application to fetal imaging. IEEE Trans. Med. Imaging 2020, 39, 3523–3534. [Google Scholar] [CrossRef] [PubMed]
- Group, E.W. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: International multicenter study. Ultrasound Obstet. Gynecol. 2020, 56, 340–347. [Google Scholar] [CrossRef] [PubMed]
- van der Knoop, B.J.; Zonnenberg, I.A.; Verbeke, J.; de Vries, L.S.; Pistorius, L.R.; van Weissenbruch, M.M.; Vermeulen, R.J.; de Vries, J.I.P. Additional value of advanced neurosonography and magnetic resonance imaging in fetuses at risk for brain damage. Ultrasound Obstet. Gynecol. 2020, 56, 348–358. [Google Scholar] [CrossRef]
- Masselli, G.; Vaccaro Notte, M.R.; Zacharzewska-Gondek, A.; Laghi, F.; Manganaro, L.; Brunelli, R. Fetal MRI of CNS abnormalities. Clin. Radiol. 2020, 75, 640.E1–640.E11. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Bradburn, M.; Mandefield, L.; Mooney, C.; Jarvis, D. The rate of brain abnormalities on in utero MRI studies in fetuses with normal ultrasound examinations of the brain and calculation of indicators of diagnostic performance. Clin. Radiol. 2019, 74, 527–533. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Bradburn, M.; Campbell, M.J.; Cooper, C.L.; Graham, R.; Jarvis, D.; Kilby, M.D.; Mason, G.; Mooney, C.; Robson, S.C.; et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): A multicentre, prospective cohort study. Lancet 2017, 389, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Barzilay, E.; Fux, A.; Nezer, M.; Berkenstadt, M.; Bar-Yosef, O.; Katorza, E. The added value of third trimester fetal brain MRI in cases of isolated ventriculomegaly. J. Matern. Fetal Neonatal Med. 2022, 35, 6759–6763. [Google Scholar] [CrossRef]
- D’Addario, V. Diagnostic approach to fetal ventriculomegaly. J. Perinat. Med. 2023, 51, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio, D.; Sileo, F.G.; Khalil, A.; Rizzo, G.; Persico, N.; Brunelli, R.; Giancotti, A.; Panici, P.B.; Acharya, G.; D’Antonio, F. Role of magnetic resonance imaging in fetuses with mild or moderate ventriculomegaly in the era of fetal neurosonography: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Scelsa, B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics 2022, 12, 3083. [Google Scholar] [CrossRef]
- Sileo, F.G.; Di Mascio, D.; Rizzo, G.; Caulo, M.; Manganaro, L.; Bertucci, E.; Masmejan, S.; Liberati, M.; D’Amico, A.; Nappi, L.; et al. Role of prenatal magnetic resonance imaging in fetuses with isolated agenesis of corpus callosum in the era of fetal neurosonography: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2021, 100, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hadjidekov, G.; Haynatzki, G.; Chaveeva, P.; Nikolov, M.; Masselli, G.; Rossi, A. Concordance between US and MRI Two-Dimensional Measurement and Volumetric Segmentation in Fetal Ventriculomegaly. Diagnostics 2023, 13, 1183. [Google Scholar] [CrossRef] [PubMed]
- Emery, S.P.; Lopa, S.; Peterson, E.; Jelin, A.C.; Treadwell, M.C.; Gebb, J.; Galan, H.L.; Bergh, E.; Criebaum, A.; McLennan, A.; et al. Prenatal Diagnosis of Fetal Aqueductal Stenosis: A Multicenter Prospective Observational Study through the North American Fetal Therapy Network. Fetal Diagn. Ther. 2024, 51, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, N.; Zaretsky, M.V.; West, N.A.; Galan, H.L.; Crombleholme, T.M.; Meyers, M.L. Ultrasound versus MRI: Is there a difference in measurements of the fetal lateral ventricles? J. Matern.-Fetal Neonatal Med. 2016, 30, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hwang, M.; Kilbaugh, T.J.; Sridharan, A.; Katz, J. Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat. Commun. 2022, 13, 666. [Google Scholar] [CrossRef]
- Zhuang, H.; Cho, J.; Chiang, G.C.-Y.; Kovanlikaya, I.; Heier, L.A.; Dyke, J.P.; Wang, Y. Cerebral oxygen extraction fraction declines with ventricular enlargement in patients with normal pressure hydrocephalus. Clin. Imaging 2023, 97, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.; Hwang, M. Metabolic pathways in hydrocephalus: Profiling with Proteomics and advanced imaging. Metabolites 2024, 14, 412. [Google Scholar] [CrossRef] [PubMed]
- Ebner, M.; Wang, G.; Li, W.; Aertsen, M.; Patel, P.A.; Aughwane, R.; Melbourne, A.; Doel, T.; Dymarkowski, S.; De Coppi, P.; et al. An automated framework for localization, segmentation and super-resolution reconstruction of Fetal Brain Mri. NeuroImage 2020, 206, 116324. [Google Scholar] [CrossRef] [PubMed]
- Deprest, T.; Fidon, L.; De Keyzer, F.; Ebner, M.; Deprest, J.; Demaerel, P.; De Catte, L.; Vercauteren, T.; Ourselin, S.; Dymarkowski, S.; et al. Application of automatic segmentation on super-resolution reconstruction Mr Images of the abnormal fetal brain. Am. J. Neuroradiol. 2023, 44, 486–491. [Google Scholar] [CrossRef] [PubMed]
- deCampo, D.; Hwang, M. Characterizing the neonatal brain with ultrasound elastography. Pediatr. Neurol. 2018, 86, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hanlo, P.W.; Gooskens, R.H.; Nijhuis, I.J.; Faber, J.A.; Peters, R.J.; van Huffelen, A.C.; Tulleken, C.A.; Willemse, J. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. Child’s Nerv. Syst. 1995, 11, 595–603. [Google Scholar] [CrossRef]
- Dall’Asta, A.; Grisolia, G.; Volpe, N.; Schera, G.; Sorrentino, F.; Frusca, T.; Ghi, T. Prenatal visualisation of the torcular herophili by means of a Doppler technology highly sensitive for low-velocity flow in the expert assessment of the posterior fossa: A prospective study. BJOG Int. J. Obstet. Gynaecol. 2020, 128, 347–352. [Google Scholar] [CrossRef]
- Lok, W.Y.; Kong, C.W.; Hui, S.Y.A.; Shi, M.M.; Choy, K.W.; To, W.K.; Leung, T.Y. Chromosomal abnormalities and neurological outcomes in fetal cerebral ventriculomegaly: A retrospective cohort analysis. Hong. Kong Med. J. 2021, 27, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Peiro, J.L.; Fabbro, M.D. Fetal therapy for congenital hydrocephalus-where we came from and where we are going. Childs Nerv. Syst. 2020, 36, 1697–1712. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.A.; Start, A.O.; Cathcart, B.; Hughes, H.; Denona, B.; Higgins, S.; Corcoran, S.; Walsh, J.; Carroll, S.; Mahony, R.; et al. Prenatal findings and associated survival rates in fetal ventriculomegaly: A prospective observational study. Int. J. Gynaecol. Obstet. 2022, 159, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Pauta, M.; Martinez-Portilla, R.J.; Borrell, A. Diagnostic yield of exome sequencing in fetuses with multisystem malformations: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2022, 59, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Toren, A.; Alpern, S.; Berkenstadt, M.; Bar-Yosef, O.; Pras, E.; Katorza, E. Chromosomal Microarray Evaluation of Fetal Ventriculomegaly. Isr. Med. Assoc. J. 2020, 22, 639–644. [Google Scholar] [PubMed]
- Etchegaray, A.; Juarez-Penalva, S.; Petracchi, F.; Igarzabal, L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv. Syst. 2020, 36, 1645–1660. [Google Scholar] [CrossRef]
- Van den Veyver, I.B.; Chandler, N.; Wilkins-Haug, L.E.; Wapner, R.J.; Chitty, L.S.; Directors, I.B.o. International Society for Prenatal Diagnosis Updated Position Statement on the use of genome-wide sequencing for prenatal diagnosis. Prenat. Diagn. 2022, 42, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Munch, T.N.; Hedley, P.L.; Hagen, C.M.; Baekvad-Hansen, M.; Geller, F.; Bybjerg-Grauholm, J.; Nordentoft, M.; Borglum, A.D.; Werge, T.M.; Melbye, M.; et al. The genetic background of hydrocephalus in a population-based cohort: Implication of ciliary involvement. Brain Commun. 2023, 5, fcad004. [Google Scholar] [CrossRef]
- Mellis, R.; Oprych, K.; Scotchman, E.; Hill, M.; Chitty, L.S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat. Diagn. 2022, 42, 662–685. [Google Scholar] [CrossRef] [PubMed]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef]
- Scelsa, B.; Rustico, M.; Righini, A.; Parazzini, C.; Balestriero, M.A.; Introvini, P.; Spaccini, L.; Mastrangelo, M.; Lista, G.; Zuccotti, G.V.; et al. Mild ventriculomegaly from fetal consultation to neurodevelopmental assessment: A single center experience and review of the literature. Eur. J. Paediatr. Neurol. 2018, 22, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Kurolap, A.; Ilivitzki, A.; Mory, A.; Paperna, T.; Regeneron Genetics, C.; Kedar, R.; Gonzaga-Jauregui, C.; Peleg, A.; Baris Feldman, H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am. J. Med. Genet. A 2020, 182, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Yaron, Y.; Ofen Glassner, V.; Mory, A.; Zunz Henig, N.; Kurolap, A.; Bar Shira, A.; Brabbing Goldstein, D.; Marom, D.; Ben Sira, L.; Baris Feldman, H.; et al. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. Ultrasound Obstet. Gynecol. 2022, 60, 59–67. [Google Scholar] [CrossRef]
- Bramall, A.N.; Anton, E.S.; Kahle, K.T.; Fecci, P.E. Navigating the ventricles: Novel insights into the pathogenesis of hydrocephalus. eBioMedicine 2022, 78, 103931. [Google Scholar] [CrossRef]
- Kundishora, A.J.; Singh, A.K.; Allington, G.; Duy, P.Q.; Ryou, J.; Alper, S.L.; Jin, S.C.; Kahle, K.T. Genomics of human congenital hydrocephalus. Childs Nerv. Syst. 2021, 37, 3325–3340. [Google Scholar] [CrossRef] [PubMed]
- Tully, H.M.; Dobyns, W.B. Infantile hydrocephalus: A review of epidemiology, classification and causes. Eur. J. Med. Genet. 2014, 57, 359–368. [Google Scholar] [CrossRef]
- Van den Veyver, I.B.; Yaron, Y.; Deans, Z.C. International Society for Prenatal Diagnosis 2022 debate 3-Fetal genome sequencing should be offered to all pregnant patients. Prenat. Diagn. 2023, 43, 428–434. [Google Scholar] [CrossRef]
- Devaseelan, P.; Cardwell, C.; Bell, B.; Ong, S. Prognosis of isolated mild to moderate fetal cerebral ventriculomegaly: A systematic review. J. Perinat. Med. 2010, 38, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Kreitz, S.; Zambon, A.; Ronovsky, M.; Budinsky, L.; Helbich, T.H.; Sideromenos, S.; Ivan, C.; Konerth, L.; Wank, I.; Berger, A.; et al. Maternal immune activation during pregnancy impacts on brain structure and function in the adult offspring. Brain Behav. Immun. 2020, 83, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Mirsky, D.M.; Stence, N.V.; Powers, A.M.; Dingman, A.L.; Neuberger, I. Imaging of fetal ventriculomegaly. Pediatr. Radiol. 2020, 50, 1948–1958. [Google Scholar] [CrossRef]
- Li, Q.; Ju, X.W.; Xu, J.; Jiang, J.; Lu, C.; Ju, X.D. Maternal blood inflammatory marker levels increased in fetuses with ventriculomegaly. Front. Hum. Neurosci. 2022, 16, 998206. [Google Scholar] [CrossRef]
- Weichert, J.; Hartge, D.; Krapp, M.; Germer, U.; Gembruch, U.; Axt-Fliedner, R. Prevalence, characteristics and perinatal outcome of fetal ventriculomegaly in 29,000 pregnancies followed at a single institution. Fetal Diagn. Ther. 2010, 27, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Fa, F.; Laup, L.; Mandelbrot, L.; Sibiude, J.; Picone, O. Fetal and neonatal abnormalities due to congenital herpes simplex virus infection: A literature review. Prenat. Diagn. 2020, 40, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, D.; Holmes, N.E.; Hui, L. A systematic review of maternal TORCH serology as a screen for suspected fetal infection. Prenat. Diagn. 2022, 42, 87–96. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.; McParland, P.; Crimmins, D.; Caird, J.; Cathcart, B.; Hughes, H.; Colleran, G.; Mahony, R.; Higgins, S.; Carroll, S.; et al. A multidisciplinary fetal neurosurgical service-5 years of fetal outcomes from a national referral centre. Ir. J. Med. Sci. 2022, 191, 407–412. [Google Scholar] [CrossRef]
- Ali, F.; Gurung, F.; Nanda, S.; Bakalis, S.; Sankaran, S.; Arichi, T.; Nicolaides, K.H.; Shangaris, P. Perinatal and neurodevelopmental outcomes of fetal isolated ventriculomegaly: A systematic review and meta-analysis. Transl. Pediatr. 2024, 13, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Paladini, D.; Malinger, G.; Birnbaum, R.; Monteagudo, A.; Pilu, G.; Salomon, L.J.; Timor-Tritsch, I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 2: Performance of targeted neurosonography. Ultrasound Obstet. Gynecol. 2021, 57, 661–671. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Jarvis, D.; Connolly, D.J.; Mooney, C.; Embleton, N.; Hart, A.R. Predicting neurodevelopmental outcomes in fetuses with isolated mild ventriculomegaly. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 431–436. [Google Scholar] [CrossRef]
- Melchiorre, K.; Bhide, A.; Gika, A.D.; Pilu, G.; Papageorghiou, A.T. Counseling in isolated mild fetal ventriculomegaly. Ultrasound Obstet. Gynecol. 2009, 34, 212–224. [Google Scholar] [CrossRef]
- Prayer, D.; Malinger, G.; De Catte, L.; De Keersmaecker, B.; Goncalves, L.F.; Kasprian, G.; Laifer-Narin, S.; Lee, W.; Millischer, A.E.; Platt, L.; et al. ISUOG Practice Guidelines (updated): Performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2023, 61, 278–287. [Google Scholar] [CrossRef]
- Carta, S.; Kaelin Agten, A.; Belcaro, C.; Bhide, A. Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 52, 165–173. [Google Scholar] [CrossRef]
- Start, A.O.; Ryan, G.A.; Cathcart, B.; Hughes, H.; Higgins, S.; Corcoran, S.; Walsh, J.; Carroll, S.; Mahony, R.; Crimmins, D.; et al. Severe fetal ventriculomegaly: Fetal morbidity and mortality, caesarean delivery rates and obstetrical challenges in a large prospective cohort. Prenat. Diagn. 2022, 42, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rekate, H.L. Classification of Hydrocephalus. In Pediatric Hydrocephalus; Cinalli, G., Ozek, M.M., Sainte-Rose, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–17. [Google Scholar]
- Emery, S.P.; Greene, S.; Hogge, W.A. Fetal Therapy for Isolated Aqueductal Stenosis. Fetal Diagn. Ther. 2015, 38, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Duru, S.; Peiro, J.L.; Oria, M.; Aydin, E.; Subasi, C.; Tuncer, C.; Rekate, H.L. Successful endoscopic third ventriculostomy in children depends on age and etiology of hydrocephalus: Outcome analysis in 51 pediatric patients. Childs Nerv. Syst. 2018, 34, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.V.D.; Alexiou, G.; Laube, K.A.C.; Manfroi, G.; Rehder, R. Novel concepts in the pathogenesis of hydrocephalus. Childs Nerv. Syst. 2023, 39, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- McAllister, J.P., 2nd; Chovan, P. Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg. Clin. N. Am. 1998, 9, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.F.; Miyabe, M.M.; Oria, M. Fetal brain damage in congenital hydrocephalus. Childs Nerv. Syst. 2020, 36, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Appelgren, T.; Zetterstrand, S.; Elfversson, J.; Nilsson, D. Long-term outcome after treatment of hydrocephalus in children. Pediatr. Neurosurg. 2010, 46, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.S.; Prasad, R.J.V.; Roy, A.; Reddy, R. Ventriculoperitoneal Shunt Surgery and the Incidence of Shunt Revision in Pediatric Patients. Int. J. Sci. Stud. 2021, 9, 103–106. [Google Scholar]
- Glick, P.L.; Harrison, M.R.; Halks-Miller, M.; Adzick, N.S.; Nakayama, D.K.; Anderson, J.H.; Nyland, T.G.; Villa, R.; Edwards, M.S. Correction of congenital hydrocephalus in utero II: Efficacy of in utero shunting. J. Pediatr. Surg. 1984, 19, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, N.; Sallout, B.; Albaqawi, B.; Al AlAali, W. The impact of fetal middle cerebral artery Doppler on the outcome of congenital hydrocephalus. J. Matern. Fetal Neonatal Med. 2018, 31, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Del Bigio, M.R.; Di Curzio, D.L. Nonsurgical therapy for hydrocephalus: A comprehensive and critical review. Fluids Barriers CNS 2016, 13, 3. [Google Scholar] [CrossRef]
- von Koch, C.S.; Gupta, N.; Sutton, L.N.; Sun, P.P. In utero surgery for hydrocephalus. Childs Nerv. Syst. 2003, 19, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S. “The First Thousand Days” Define a Fetal/Neonatal Neurology Program. Front. Pediatr. 2021, 9, 683138. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Scher, M.S. Fetal-neonatal neurology program development: Continuum of care during the first 1000 days. J. Perinatol. 2022, 42, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.J.; Palaniyappan, L.; Scerif, G.; Groom, M.J.; Liddle, E.B.; Liddle, P.F.; Hollis, C. Morphological abnormalities in prefrontal surface area and thalamic volume in attention deficit/hyperactivity disorder. Psychiatry Res. 2015, 233, 225–232. [Google Scholar] [CrossRef]
- Kyriakopoulou, V.; Davidson, A.; Chew, A.; Gupta, N.; Arichi, T.; Nosarti, C.; Rutherford, M.A. Characterisation of ASD traits among a cohort of children with isolated fetal ventriculomegaly. Nat. Commun. 2023, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.L.; Harrison, M.R. Modern fetal surgery-a historical review of the happenings that shaped modern fetal surgery and its practices. Transl. Pediatr. 2021, 10, 1401–1417. [Google Scholar] [CrossRef] [PubMed]
- Birnholz, J.C.; Frigoletto, F.D. Antenatal treatment of hydrocephalus. N. Engl. J. Med. 1981, 304, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.R.; Golbus, M.S.; Filly, R.A.; Callen, P.W.; Katz, M.; de Lorimier, A.A.; Rosen, M.; Jonsen, A.R. Fetal surgery for congenital hydronephrosis. N. Engl. J. Med. 1982, 306, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Clewell, W.H.; Johnson, M.L.; Meier, P.R.; Newkirk, J.B.; Zide, S.L.; Hendee, R.W.; Bowes, W.A., Jr.; Hecht, F.; O’Keeffe, D.; Henry, G.P.; et al. A surgical approach to the treatment of fetal hydrocephalus. N. Engl. J. Med. 1982, 306, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Manning, F.A.; Harrison, M.R.; Rodeck, C. Catheter shunts for fetal hydronephrosis and hydrocephalus. Report of the International Fetal Surgery Registry. N. Engl. J. Med. 1986, 315, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Deprest, J.A.; Flake, A.W.; Gratacos, E.; Ville, Y.; Hecher, K.; Nicolaides, K.; Johnson, M.P.; Luks, F.I.; Adzick, N.S.; Harrison, M.R. The making of fetal surgery. Prenat. Diagn. 2010, 30, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Winkler, S.M.; Harrison, M.R.; Messersmith, P.B. Biomaterials in fetal surgery. Biomater. Sci. 2019, 7, 3092–3109. [Google Scholar] [CrossRef]
- Szaflik, K.; Czaj, M.; Polis, L.; Wojtera, J.; Szmanski, W.; Krzeszowski, W.; Polis, B.; Litwinska, M.; Mikolajczyk, W.; Janiak, K.; et al. Fetal therapy—Evaluation of ventriculo-amniotic shunts in the treatment of hydrocephalus. Ginekol. Pol. 2014, 85, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Emery, S.P.; Maxey, A.P.; Gu, X.; Wagner, W.R.; Chun, Y. A novel low-profile ventriculoamniotic shunt for foetal aqueductal stenosis. J. Med. Eng. Technol. 2016, 40, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Emery, S.P.; Greene, S.; Elsisy, M.; Chung, K.; Ye, S.H.; Kim, S.; Wagner, W.R.; Hazen, N.; Chun, Y. In vitro and in vivo assessment of a novel ultra-flexible ventriculoamniotic shunt for treating fetal hydrocephalus. J. Biomater. Appl. 2023, 37, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, S.; Moron, A.F.; Zymberg, S.T.; Dastoli, P. Fetal hydrocephalus–prenatal treatment. Childs Nerv. Syst. 2003, 19, 561–573. [Google Scholar] [CrossRef]
- Cavalheiro, S.; da Costa, M.D.S.; Mendonca, J.N.; Dastoli, P.A.; Suriano, I.C.; Barbosa, M.M.; Moron, A.F. Antenatal management of fetal neurosurgical diseases. Childs Nerv. Syst. 2017, 33, 1125–1141. [Google Scholar] [CrossRef] [PubMed]
- Litwinska, M.; Litwinska, E.; Czaj, M.; Polis, B.; Polis, L.; Szaflik, K. Ventriculo-amniotic shunting for severe fetal ventriculomegaly. Acta Obstet. Gynecol. Scand. 2019, 98, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Minta, K.J.; Kannan, S.; Kaliaperumal, C. Outcomes of endoscopic third ventriculostomy (ETV) and ventriculoperitoneal shunt (VPS) in the treatment of paediatric hydrocephalus: Systematic review and meta-analysis. Childs Nerv. Syst. 2024, 40, 1045–1052. [Google Scholar] [CrossRef]
- Peiro, J.L.; Duru, S.; Fernandez-Tome, B.; Peiro, L.; Encinas, J.L.; Sanchez-Margallo, F.M.; Oria, M. Fetal Endoscopic Third Ventriculostomy Is Technically Feasible in Prenatally Induced Hydrocephalus Ovine Model. Neurosurgery 2023, 92, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, S.; Moron, A.F.; Almodin, C.G.; Suriano, I.C.; Hisaba, V.; Dastoli, P.; Barbosa, M.M. Fetal hydrocephalus. Childs Nerv. Syst. 2011, 27, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.F.A.; Medrado, A.P.; Botelho, R.D.; Jorge Rodrigues da Costa, K.; Imada, V.; Lamis, F. Percutaneous fetal endoscopic third ventriculostomy for severe isolated cerebral ventriculomegaly. Prenat. Diagn. 2023, 43, 1614–1621. [Google Scholar] [CrossRef]
- Donoho, D.A.; Syed, H.R. Fetal Neurosurgical Interventions for Spinal Malformations, Cerebral Malformations, and Hydrocephalus: Past, Present, and Future. Semin. Pediatr. Neurol. 2022, 42, 100964. [Google Scholar] [CrossRef] [PubMed]
- Coulter, I.C.; Kulkarni, A.V.; Sgouros, S.; Constantini, S.; International Infant Hydrocephalus Study Investigaters; Constantini, S.; Sgouros, S.; Kulkarni, A.V.; Leitner, Y.; Kestle, J.R.; et al. Cranial and ventricular size following shunting or endoscopic third ventriculostomy (ETV) in infants with aqueductal stenosis: Further insights from the International Infant Hydrocephalus Study (IIHS). Childs Nerv. Syst. 2020, 36, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Sgouros, S.; Leitner, Y.; Constantini, S.; International Infant Hydrocephalus Study Investigators. International Infant Hydrocephalus Study (IIHS): 5-year health outcome results of a prospective, multicenter comparison of endoscopic third ventriculostomy (ETV) and shunt for infant hydrocephalus. Childs Nerv. Syst. 2018, 34, 2391–2397. [Google Scholar] [CrossRef] [PubMed]
- Michejda, M.; Queenan, J.T.; McCullough, D. Present status of intrauterine treatment of hydrocephalus and its future. Am. J. Obstet. Gynecol. 1986, 155, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Al-Anazi, A.; Al-Mejhim, F.; Al-Qahtani, N. In uteroventriculo-amniotic shunt for hydrocephalus. Childs Nerv. Syst. 2008, 24, 193–195. [Google Scholar] [CrossRef]
- Al-Anazi, A.R. In Utero Ventriculo-uterine Shunt Treatment for Fetal Hydrocephalus: Preliminary Study of Al-Anazi Ventriculo-uterine Shunt. Neurosurg. Q. 2010, 20, 1–4. [Google Scholar] [CrossRef]
- Bruner, J.P.; Davis, G.; Tulipan, N. Intrauterine shunt for obstructive hydrocephalus—Still not ready. Fetal Diagn. Ther. 2006, 21, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Zamlynski, M.; Olejek, A.; Koszutski, T.; Bohosiewicz, J.; Mandera, M.; Zamlynski, J.; Maruniak-Chudek, I.; Herman-Sucharska, I.; Pastuszka, A. Open Fetal Surgery for Ventricular-Amniotic Valve Implantation in Aqueductal Stenosis-Dependent Severe Fetal Hydrocephalus: A Case Report with 7-Year Follow-Up. Fetal Diagn. Ther. 2024, 51, 278–284. [Google Scholar] [CrossRef]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W., 3rd; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef]
- Baschat, A.A.; Blackwell, S.B.; Chatterjee, D.; Cummings, J.J.; Emery, S.P.; Hirose, S.; Hollier, L.M.; Johnson, A.; Kilpatrick, S.J.; Luks, F.I.; et al. Care Levels for Fetal Therapy Centers. Obstet. Gynecol. 2022, 139, 1027–1042. [Google Scholar] [CrossRef] [PubMed]
- Moldenhauer, J.S.; Johnson, A.; Van Mieghem, T. International Society for Prenatal Diagnosis 2022 DEBATE: There should be formal accreditation and ongoing quality assurance/review for units offering fetal therapy that includes public reporting of outcomes. Prenat. Diagn. 2023, 43, 411–420. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO: Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obs. Gynecol. Scand. 1977, 56, 247–253. [Google Scholar]
- Michejda, M.; Hodgen, G.D. In utero diagnosis and treatment of non-human primate fetal skeletal anomalies. I. Hydrocephalus. JAMA 1981, 246, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, D.K.; Harrison, M.R.; Berger, M.S.; Chinn, D.H.; Halks-Miller, M.; Edwards, M.S. Correction of congenital hydrocephalus in utero I. The model: Intracisternal kaolin produces hydrocephalus in fetal lambs and rhesus monkeys. J. Pediatr. Surg. 1983, 18, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Sutton, L.N.; Sun, P.; Adzick, N.S. Fetal neurosurgery. Neurosurgery 2001, 48, 124–142; discussion 142–124. [Google Scholar] [CrossRef] [PubMed]
Advantages | Limitations | |
---|---|---|
Prenatal percutaneous EVT [Peralta] | minimally invasive percutaneous surgery ‘one-step’ surgical approach during pregnancy effective CSF drainage within the CNS during pregnancy no foreign body in the third ventricle—low risk for fetal infection one-port surgery low risk for maternal infection | challenging to position the fetal head challenging to locate the Monro foramen bleeding from the choroid plexus dedicated fetoscopic instrumentation the need for shunting using alternative technique during MFS need for postnatal shunting MFS complications: not reported |
VAVI per OFS [Bruner, Zamłyński] | ‘one-step’ surgical approach permanent VAVI implant without dislocation positioning of the fetal head and the Keen’s point is possible satisfactory control of the operative field effective CSF drainage during pregnancy possibility of VAS conversion to VPS without the need for valve removal | highly invasive maternal eligibility process using the MOMS exclusion criteria is required complex anesthesiologic procedures uterus must be exteriorized MFS complications: PROM, CAS, PTL |
Ultrasound-guided VAS [Litwińska] | moderately invasive percutaneous intervention permanent one-way drainage low risk for infection | risk for several VAS reimplantation VAS dislocation to the amniotic cavity or the ventricle need for postnatal VP shunting MFS complications: IUFD, PTL, PROM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamłyński, M.; Grokhovska, M.; Surányi, A.; Olejek, A. Current Diagnostic, Counseling, and Treatment Options in Non-Severe and Severe Apparently Isolated Fetal Ventriculomegaly. Biomedicines 2024, 12, 2929. https://doi.org/10.3390/biomedicines12122929
Zamłyński M, Grokhovska M, Surányi A, Olejek A. Current Diagnostic, Counseling, and Treatment Options in Non-Severe and Severe Apparently Isolated Fetal Ventriculomegaly. Biomedicines. 2024; 12(12):2929. https://doi.org/10.3390/biomedicines12122929
Chicago/Turabian StyleZamłyński, Mateusz, Marta Grokhovska, Andrea Surányi, and Anita Olejek. 2024. "Current Diagnostic, Counseling, and Treatment Options in Non-Severe and Severe Apparently Isolated Fetal Ventriculomegaly" Biomedicines 12, no. 12: 2929. https://doi.org/10.3390/biomedicines12122929
APA StyleZamłyński, M., Grokhovska, M., Surányi, A., & Olejek, A. (2024). Current Diagnostic, Counseling, and Treatment Options in Non-Severe and Severe Apparently Isolated Fetal Ventriculomegaly. Biomedicines, 12(12), 2929. https://doi.org/10.3390/biomedicines12122929