A Very Rare Variant in SREBF2, a Possible Cause of Hypercholesterolemia and Increased Glycemic Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DNA Analysis
2.3. Pgl3-Srebp2 Promoter–Reporter Gene Constructs
2.4. Cell Culture and Luciferase Assay
2.5. Oral Glucose Tolerance Test
2.6. Statistical Analysis
3. Results
3.1. Genetic Analysis
3.2. SREBP2 Promoter Assays
3.3. Promoter Mutation and Glucose Levels
3.4. Promoter Mutation and Cholesterol and Glucose Levels
3.5. Oral Glucose Tolerance Test
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Euro Heart Survey Investigators; Bartnik, M.; Rydén, L.; Ferrari, R.; Malmberg, K.; Pyörälä, K.; Simoons, M.; Standl, E.; Soler-Soler, J.; Ohrvik, J. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: The Euro Heart Survey on diabetes and the heart. Eur. Heart J. 2004, 25, 1880–1890. [Google Scholar] [CrossRef] [PubMed]
- Lusis, A.J. Atherosclerosis. Nature 2000, 14, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 2007, 349, 1498–1504. [Google Scholar] [CrossRef]
- Eberlé, D.; Hegarty, B.; Bossard, P.; Ferre, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848. [Google Scholar] [CrossRef]
- Bengoechea-Alonso, M.T.; Ericsson, J. SREBP in signal transduction: Cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 2007, 19, 215–222. [Google Scholar] [CrossRef]
- Vergnes, L.; Chin, R.G.; Vallim, T.d.; Fong, L.G.; Osborne, T.F.; Young, S.G.; Reue, K. SREBP-2-deficient and hypomorphic mice reveal roles for SREBP-2 in embryonic development and SREBP-1c expression. J. Lipid Res. 2016, 57, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Shimano, H.; Sato, R. SREBP-regulated lipid metabolism: Convergent physiology—Divergent pathophysiology. Nat. Rev. Endocrinol. 2017, 13, 710–730. [Google Scholar] [CrossRef]
- Muller, P.; Miserez, A.R. Identification of mutations in the gene encoding sterol regulatory element binding protein (SREBP)-2 in hypercholesterolaemic subjects. J. Med. Genet. 2002, 39, 271–272. [Google Scholar] [CrossRef]
- Musso, G.; Cassader, M.; Bo, S.; De Michieli, F.; Gambino, R. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes 2013, 62, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.L.; Hobbs, H.; Brown, M.S. Familial Hypercholesterolemia. In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 2863–2913. [Google Scholar]
- Varret, M.; Abifadel, M.; Rabès, J.P.; Boileau, C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin. Genet. 2008, 73, 1–13. [Google Scholar] [CrossRef]
- Singh, S.; Bittner, V. Familial Hypercholesterolemia. Epidemiology, Diagnosis, and Screening. Curr. Atheroscler. Rep. 2015, 17, 482. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Howells, K.; Phillips, A.D.; Thomas, N.S.; Cooper, D.N. The Human Gene Mutation Database: 2008 update. Genome Med. 2009, 22, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damaskos, C.; Garmpis, N.; Kollia, P.; Mitsiopoulos, G.; Barlampa, D.; Drosos, A.; Patsouras, A.; Gravvanis, N.; Antoniou, V.; Litos, A.; et al. Assessing Cardiovascular Risk in Patients with Diabetes: An Update. Curr. Cardiol. Rev. 2020, 16, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.R.; Hunt, S.C.; Schumacher, M.; Hegele, R.A.; Leppert, M.F.; Ludwig, E.H.; Hopkins, P.N. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 1993, 72, 171–176. [Google Scholar] [CrossRef]
- Real, J.T.; Valls, M.; Ascaso, P.; Basanta, M.L.; Viguer, A.A.; Ascaso, J.F.; Carmena, R. Risk factors associated to hospitalization in diabetic patients with foot ulcers. Med. Clin. 2001, 117, 641–644. [Google Scholar] [CrossRef]
- Ascaso, J.F.; Pardo, S.; Real, J.T.; Lorente, R.I.; Priego, A.; Carmena, R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care 2003, 26, 3320–3325. [Google Scholar] [CrossRef] [Green Version]
- Tilzer, L.; Thomas, S.; Moreno, R.F. Use of silica gel polymer for DNA extraction with organic solvents. Anal. Biochem. 1989, 183, 13–15. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.B.; Blesa, S.; Martinez-Hervas, S.; Mansego, M.L.; Gonzalez-Albert, V.; Ascaso, J.F.; Carmena, R.; Real, J.T.; Chaves, F.J. Semiquantitative multiplex PCR: A useful tool for large rearrangement screening and characterization. Hum. Mutat. 2006, 27, 822–828. [Google Scholar] [CrossRef]
- Blesa, S.; Olivares, M.D.; Alic, A.S.; Serrano, A.; Lendinez, V.; González-Albert, V.; Olivares, L.; Martínez-Hervás, S.; Juanes, J.M.; Marín, P.; et al. Easy One-Step Amplification and Labeling Procedure for Copy Number Variation Detection. Clin. Chem. 2020, 66, 463–473. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.-B.; Ivorra, C.; Martinez-Hervas, S.; Blesa, S.; Fuentes, M.J.; Puig, O.; Martín-De-Llano, J.J.; Carmena, R.; Real, J.T.; Chaves, F.J. Reduced penetrance of autosomal dominant hypercholesterolemia in a high percentage of families: Importance of genetic testing in the entire family. Atherosclerosis 2011, 218, 423–430. [Google Scholar] [CrossRef]
- Fouchier, S.W.; Kastelein, J.J.; Defesche, J.C. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum. Mutat. 2005, 26, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Blesa, S.; Vernia, S.; Garcia-Garcia, A.-B.; Martinez-Hervas, S.; Ivorra, C.; Gonzalez-Albert, V.; Ascaso, J.F.; Martín-Escudero, J.C.; Real, J.T.; Carmena, R.; et al. A New PCSK9 Gene Promoter Variant Affects Gene Expression and Causes Autosomal Dominant Hypercholesterolemia. J. Clin. Endocrinol. Metab. 2008, 93, 3577–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozen, S.; Skaletsky, H.J. Bioinformatics Methods and Protocols: Methods in Molecular Biology; Krawetz, S., Misener, S., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 365–386. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, J.D.; Shimomura, I.; Brown, M.S.; Hammer, E.R.; Goldstein, J.L.; Shimano, H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Investig. 1998, 101, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Malhotra, P.; Soni, V.; Hedroug, O.; Annaba, F.; Dudeja, A.; Shen, L.; Turner, J.R.; Khramtsova, E.A.; Saksena, S.; et al. Overactivation of Intestinal SREBP2 in Mice Increases Serum Cholesterol. PLoS ONE 2014, 9, e84221. [Google Scholar] [CrossRef] [Green Version]
- Miserez, A.R.; Muller, P.Y.; Barella, L.; Barella, S.; Staehelin, H.B.; Leitersdorf, E.; Kark, J.D.; Friedlander, Y. Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis 2002, 164, 15–26. [Google Scholar] [CrossRef]
- Durst, R.; Jansen, A.; Erez, G.; Bravdo, R.; Butbul, E.; Ben Avi, L.; Shpitzen, S.; Lotan, C.; Leitersdorf, E.; Defesche, J.; et al. The discrete and combined effect of SREBP-2 and SCAP isoforms in the control of plasma lipids among familial hypercholesterolaemia patients. Atherosclerosis 2006, 189, 443–450. [Google Scholar] [CrossRef]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef]
- Shimano, H.; Shimomura, I.; Hammer, R.E.; Herz, J.; Goldstein, J.L.; Brown, M.S.; Horton, J.D. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Investig. 1997, 100, 2115–2124. [Google Scholar] [CrossRef] [Green Version]
- Rader, D.J. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am. J. Med. 2007, 120 (Suppl. 1), S12–S18. [Google Scholar] [CrossRef]
- Ishikawa, M.; Iwasaki, Y.; Yatoh, S.; Kato, T.; Kumadaki, S.; Inoue, N.; Yamamoto, T.; Matsuzaka, T.; Nakagawa, Y.; Yahagi, N.; et al. Cholesterol accumulation and diabetes in pancreatic beta-cell-specific SREBP-2 transgenic mice: A new model for lipotoxicity. J. Lipid Res. 2008, 49, 2524–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Carrier Relatives | Non-Carrier Relatives | Controls | p Values Carriers vs. Controls | p Values Carriers vs. Non-Carriers | p Values Non-Carriers vs. Controls |
---|---|---|---|---|---|---|
n | 7 | 5 | 429 | |||
Age | 50.9 ± 20.1 | 37.6 ± 5.7 | 43.9 ± 26.4 | 0.2678 | 0.1879 | 0.3903 |
BMI | 22.9 ± 22.9 | 24.5 ± 3.3 | 24.9 ± 3.1 | 0.0993 | 0.4583 | 0.7807 |
Waist | 84.9 ± 13.4 | 85.4 ± 12.2 | 83.9 ± 10.9 | 0.8189 | 0.9444 | 0.7604 |
Glucose | 108.1 ± 8.9 | 88.2 ± 8.2 | 89.3 ± 13.9 | 0.0004 | 0.0027 | 0.859 |
TC | 240 ± 30.4 | 173.4 ± 11.1 | 172.5 ± 19 | 0.0000 | 0.0009 | 0.9191 |
LDLc | 164.1 ± 26.1 | 88.6 ± 23 | 93.6 ± 20.5 | 0.0000 | 0.0004 | 0.5892 |
Parameters | Carriers | Controls | p Values |
---|---|---|---|
n | 4 | 28 | |
Age (years) | 50.8 ± 20.1 | 42.3 ± 10.2 | 0.281 |
BMI (Kg/m2) | 22.9 ± 3.6 | 24.7 ± 2.8 | 0.342 |
Waist (cm) | 84.8 ± 13.4 | 86.1 ± 11.4 | 0.856 |
Glucose 0 min | 108.1 ± 8.9 | 89.3 ± 32.2 | 0.049 * |
Glucose 30 min | 164.1 ± 26.1 | 112.8 ± 33.2 | 0.107 |
Glucose 60 min | 147.5 ± 14.1 | 125.6 ± 38.6 | 0.002 * |
Glucose 90 min | 124.0 ± 10.6 | 104.8 ± 22.9 | 0.049 * |
Glucose 120 min | 114.2 ± 26.0 | 88.6 ± 20.5 | 0.071 |
AUC Glucose | 16,193 ± 1258 | 13,757 ± 2673 | 0.027 * |
Insulin 0 min | 7.1 ± 2.7 | 9.9 ± 3.1 | 0.050 * |
Insulin 30 min | 41.5 ± 22.8 | 55.1 ± 25.6 | 0.429 |
Insulin 60 min | 91.5 ± 29.2 | 60.4 ± 19.1 | 0.042 * |
Insulin 90 min | 44.1 ± 13.3 | 42.1 ± 42.1 | 0.864 |
Insulin 120 min | 54.8 ± 23.3 | 27.7 ± 14.9 | 0.283 |
AUC Insulin | 6254 ± 1769 | 5296 ± 1615 | 0.316 |
HOMA | 1.8 ± 0.8 | 2.1 ± 0.8 | 0.712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, A.-B.; Martínez-Hervás, S.; Vernia, S.; Ivorra, C.; Pulido, I.; Martín-Escudero, J.-C.; Casado, M.; Carretero, J.; Real, J.T.; Chaves, F.J. A Very Rare Variant in SREBF2, a Possible Cause of Hypercholesterolemia and Increased Glycemic Levels. Biomedicines 2022, 10, 1178. https://doi.org/10.3390/biomedicines10051178
García-García A-B, Martínez-Hervás S, Vernia S, Ivorra C, Pulido I, Martín-Escudero J-C, Casado M, Carretero J, Real JT, Chaves FJ. A Very Rare Variant in SREBF2, a Possible Cause of Hypercholesterolemia and Increased Glycemic Levels. Biomedicines. 2022; 10(5):1178. https://doi.org/10.3390/biomedicines10051178
Chicago/Turabian StyleGarcía-García, Ana-Bárbara, Sergio Martínez-Hervás, Santiago Vernia, Carmen Ivorra, Inés Pulido, Juan-Carlos Martín-Escudero, Marta Casado, Julián Carretero, José T. Real, and Felipe Javier Chaves. 2022. "A Very Rare Variant in SREBF2, a Possible Cause of Hypercholesterolemia and Increased Glycemic Levels" Biomedicines 10, no. 5: 1178. https://doi.org/10.3390/biomedicines10051178