Development and Application of Online Rapid Monitoring Devices for Volatile Organic Compounds in Soil–Water–Air Systems
Abstract
1. Introduction
2. Materials & Methods
2.1. System Architecture and Monitoring Device Composition
2.2. Device Design and Fabrication
2.2.1. Soil–Water–Air Sampling and Sensing Unit
2.2.2. VOC Transport and Sampling Mechanism
2.3. Device Integration and Laboratory Calibration
2.4. Experimental Methods and Materials for Performance Evaluation
2.4.1. Waterborne VOCs Testing
2.4.2. Soil Sample VOCs Testing
2.4.3. Airborne VOCs Testing
2.5. Software and Early Warning System Design
3. Results and Discussion
3.1. Waterborne VOCs Testing and Trend Analysis
3.2. Soil VOCs Testing and Pattern Analysis
3.2.1. Effect of Temperature on Monitoring VOCs Concentration in Soil
3.2.2. Correlation Between Rapid Monitoring Device Readings and VOC Data at Various Temperatures




3.3. Field Application and Performance
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekar, A.; Varghese, G.K.; Varma, R. Exposure to volatile organic compounds and associated health risk among workers in lignite mines. Int. J. Environ. Sci. Technol. 2023, 20, 4293–4306. [Google Scholar] [CrossRef]
- Fernández-Espinosa, A.J.; Peña-Heras, A.; Rossini-Oliva, S. Atmospheric Emissions of Volatile Organic Compounds from a Mine Soil Treated with Sewage Sludge and Tomato Plants (Lycopersicum esculentum L.). Int. J. Environ. Res. 2022, 16, 47. [Google Scholar] [CrossRef]
- Varshney, C.K.; Padhy, P.K. Emissions of Total Volatile Organic Compounds from Anthropogenic Sources in India. J. Ind. Ecol. 1998, 2, 93–105. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W.; Liu, X.; Tang, Y.; Wang, F.; Li, H.; Wen, M.; Li, G.; An, T. Aqueous VOCs in complex water environment of oil exploitation sites: Spatial distribution, migration flux, and risk assessment. J. Hazard. Mater. 2024, 476, 135121. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, L.; He, H.; Zhang, W. Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer. Coatings 2024, 14, 270. [Google Scholar] [CrossRef]
- Li, F.; Gao, W.; Lin, Y.; Liu, J.; Su, Y.; Zhang, Y.; Cai, K. Soil volatile organic compounds: Source-sink, function, mechanism, detection, and application analysis in environmental ecology. TrAC Trends Anal. Chem. 2025, 184, 118125. [Google Scholar] [CrossRef]
- Azam, S.; Liu, S.; Bhattacharyya, S.; Zheng, S. Assessing the hazard of diesel particulate matter (DPM) in the mining industry: A review of the current state of knowledge. Int. J. Coal Sci. Technol. 2024, 11, 62. [Google Scholar] [CrossRef]
- Li, Z.; Lu, J.; Ruan, X.; Wu, Y.; Zhao, J.; Jiao, X.; Sun, J.; Sun, K. Exposure to volatile organic compounds induces cardiovascular toxicity that may involve DNA methylation. Toxicology 2024, 501, 153705. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Liu, Y.; Li, G.; An, T. A review of disrupted biological response associated with volatile organic compound exposure: Insight into identification of biomarkers. Sci. Total Environ. 2024, 948, 174924. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-J.; Li, X.-Y.; Shen, Y.-C.; You, J.-X.; Wen, M.-Z.; Wang, J.-B.; Yang, X.-T. Assessing volatile organic compounds exposure and chronic obstructive pulmonary diseases in US adults. Front. Public Health 2023, 11, 1210136. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Joseph, A.E.; Wachasunder, S.D. Qualitative Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environ. Monit. Assess. 2004, 96, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhu, X.; Niu, W. Comparative study of domestic and foreign emissionstandards for volatile organic compounds. J. Min. Sci. Technol. 2020, 5, 209–218. [Google Scholar] [CrossRef]
- You, C.; Li, B.; Li, J. Review on emission standards of atmospheric volatile organic compounds from fixed sources at home and abroad. Environ. Pollut. Control 2024, 24, 1384–1390. [Google Scholar] [CrossRef]
- Oka, K.; Iizuka, A.; Inoue, Y.; Mizukoshi, A.; Noguchi, M.; Yamasaki, A.; Yanagisawa, Y. Development of a Combined Real Time Monitoring and Integration Analysis System for Volatile Organic Compounds (VOCs). Int. J. Environ. Res. Public Health 2010, 7, 4100–4110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cheng, Y.; Naidu, R.; Chadalavada, S.; Bekele, D.; Gell, P.; Donaghey, M.; Bowman, M. Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater. Environ. Technol. Innov. 2021, 21, 101274. [Google Scholar] [CrossRef]
- Moufid, M.; Bouchikhi, B.; Tiebe, C.; Bartholmai, M.; El Bari, N. Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches. Atmos. Environ. 2021, 256, 118449. [Google Scholar] [CrossRef]
- Prestage, J.; Day, C.; Husheer, S.L.G.; Winter, W.T.; Ho, W.O.; Saffell, J.R.; Hutter, T. Selective Detection of Volatile Organics in a Mixture Using a Photoionization Detector and Thermal Desorption from a Nanoporous Preconcentrator. ACS Sens. 2022, 7, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Liu, Y.; Liu, H.; Liu, B.; Qiao, J.; Lin, W.; Zhang, W. Air Pollution Monitoring by Integrating Local and Global Information in Self-Adaptive Multiscale Transform Domain. IEEE Trans. Multimed. 2025, 27, 3716–3728. [Google Scholar] [CrossRef]
- Krismadinata; Aulia, F.B.; Maulana, R.; Yuhendri, M.; Azri, M.; Kanimozhi, K. Development of graphical user interface for boost converter employing visual studio. IOP Conf. Ser. Earth Environ. Sci. 2023, 1281, 012037. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Gopalan, S.; Luo, F.; Amreen, K.; Singh, R.K.; Goel, S.; Lin, Z.; Naidu, R. Review and Perspective: Gas Separation and Discrimination Technologies for Current Gas Sensors in Environmental Applications. ACS Sens. 2023, 8, 1373–1390. [Google Scholar] [CrossRef] [PubMed]















| Instrument Name | Manufacturer | Model Specification |
|---|---|---|
| Ultra-Pure Water System | Shuohuoquan (Xiamen) Intelligent Technology Co., Ltd., Xiamen, China. | YK-RO-B |
| Electronic Balance | Shanghai Lichen Bangxi Instrument Technology Co., Ltd., Shanghai, China. | YP6002B |
| PTFE Gas Sampling Holder | Haining Defilter New Materials Technology Co., Ltd., Haining, China. | 25 mm |
| GC-MS | Agilent Technologies Inc., Santa Clara, CA, USA. | 8890-5977B |
| Thermostatic Magnetic Stirring Bath with Heating | Zhengzhou Great Wall Science and Industry Trade Co., Ltd., Zhengzhou, China. | HWCL-3, 500 W |
| Handheld VOC detector | Qingdao Rechi Environmental Protection Technology Co., Ltd., Qingdao, China. | RC-0910 PRO |
| Name | Chemical Formula | Molecular Weight | R.T. | CAS |
|---|---|---|---|---|
| naphthalene | C10H8 | 128.18 | 7.14 | 91-20-3 |
| Dodecane | C12H26 | 170.33 | 7.214 | 112-40-3 |
| Tridecane | C13H28 | 184.41 | 8.578 | 629-50-5 |
| 2-methylnaphthalene | C11H10 | 142.20 | 8.888 | 91-57-6 |
| 2,6,10-trimethyltridecane | C15H32 | 212.41 | 9.593 | 3891-98-3 |
| tetradecane | C14H30 | 198.39 | 9.89 | 629-59-4 |
| 2,7-dimethylnaphthalene | C12H12 | 156.22 | 10.097 | 582-16-1 |
| pentadecane | C15H32 | 212.41 | 11.143 | 629-62-9 |
| 1,6,7-trimethylnaphthalene | C13H14 | 170.27 | 11.603 | 2245-38-7 |
| hexadecane | C16H34 | 226.44 | 12.335 | 544-76-3 |
| 2-ethylhexyl 2-ethylhexanoate | C16H32O2 | 256.48 | 12.416 | 7425-14-1 |
| heptadecane | C17H36 | 240.47 | 13.466 | 629-78-7 |
| 2,6,10,14-tetramethylpentadecane | C19H40 | 268.52 | 13.535 | 1921-70-6 |
| octadecane | C18H38 | 254.49 | 14.547 | 593-45-3 |
| tetradecane | C14H30 | 198.39 | 15.571 | 629-59-4 |
| 2-methylanthracene | C15H12 | 192.26 | 16.001 | 613-12-7 |
| icosane | C20H42 | 282.55 | 16.552 | 112-95-8 |
| Temperature | 0.2 mol/L | 0.4 mol/L | 0.6 mol/L | 0.8 mol/L | 1.0 mol/L |
|---|---|---|---|---|---|
| 50 °C | 14 min | 24 min | 20 min | 36 min | 20 min |
| 55 °C | 16 min | 22 min | 24 min | 40 min | 36 min |
| 60 °C | 14 min | 26 min | 18 min | 48 min | 10 min |
| 65 °C | 18 min | 24 min | 20 min | 28 min | 22 min |
| 70 °C | 22 min | 24 min | 16 min | 18 min | 48 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Guo, H.; Yang, J.; Dong, C.; Zhao, F.; Cheng, S. Development and Application of Online Rapid Monitoring Devices for Volatile Organic Compounds in Soil–Water–Air Systems. Chemosensors 2025, 13, 427. https://doi.org/10.3390/chemosensors13120427
Feng X, Guo H, Yang J, Dong C, Zhao F, Cheng S. Development and Application of Online Rapid Monitoring Devices for Volatile Organic Compounds in Soil–Water–Air Systems. Chemosensors. 2025; 13(12):427. https://doi.org/10.3390/chemosensors13120427
Chicago/Turabian StyleFeng, Xiujuan, Haotong Guo, Jing Yang, Chengliang Dong, Fuzhong Zhao, and Shaozhong Cheng. 2025. "Development and Application of Online Rapid Monitoring Devices for Volatile Organic Compounds in Soil–Water–Air Systems" Chemosensors 13, no. 12: 427. https://doi.org/10.3390/chemosensors13120427
APA StyleFeng, X., Guo, H., Yang, J., Dong, C., Zhao, F., & Cheng, S. (2025). Development and Application of Online Rapid Monitoring Devices for Volatile Organic Compounds in Soil–Water–Air Systems. Chemosensors, 13(12), 427. https://doi.org/10.3390/chemosensors13120427

