The Multimorbidity Knowledge Domain: A Bibliometric Analysis of Web of Science Literature from 2004 to 2024
Abstract
1. Background
2. Methods
2.1. Data Sources
- (1)
- Literature Search Strategy
- (2)
- Literature Screening Criteria
2.2. Methodology
- (1)
- CiteSpace software
- (2)
- Parameter settings
- a.
- Following data deduplication and screening, the literature dataset (2004–2024) was segmented into 21 annual intervals.
- b.
- Within the CiteSpace framework, the g-index functions as a primary selection criterion for determining node inclusion or exclusion within each time slice via an adapted g-index weighting mechanism. The proportional factor k is adjustable to control the density of nodes displayed in the knowledge map. Specifically, higher values of k increase the number of nodes visualized, while lower values reduce their representation. The current parameter settings are clearly documented in the upper-left corner of each generated visualization.
- c.
- Separate analyses were conducted for keywords, references, and countries/institutions. In keyword co-occurrence networks (Figure 1), node size corresponds to keyword frequency, while color gradients and ring thickness reflect temporal distribution and annual publication volume, respectively (see color legend, lower left). Connecting lines denote co-occurrence relationships, with line thickness indicating frequency and color representing the first co-occurrence year [15].
- d.
- Burst detection algorithms identified prominent keywords marked by purple outer rings, and nodes with betweenness centrality > 0.1 were defined as pivotal hubs bridging research domains [16]. Burst detection algorithms identified prominent keywords marked by purple outer rings, and nodes with betweenness centrality > 0.1 were defined as pivotal hubs bridging the research topic.
- e.
- For recent trend analysis (2015–2024), co-citation clustering was performed using 10 annual slices, log-likelihood ratio (LLR, p < 0.001) for cluster labeling, and modularity (Q > 0.3) and silhouette (S > 0.7) metrics to validate cluster robustness.

3. Results
3.1. Spatiotemporal Distribution of Multimorbidity Research
3.1.1. Temporal Distribution of Multimorbidity Research
3.1.2. Spatial Distribution of Multimorbidity Research
3.2. Research Hotspots and Evolution of Multimorbidity Research
3.3. Frontiers and Development in Multimorbidity Research
3.3.1. Burst Terms in Multimorbidity Research Indexed by WOS
3.3.2. Co-Citation Analysis of Multimorbidity Research Indexed in WOS
- (1)
- Co-citation Analysis of Multimorbidity Literature (2004–2024)
- (2)
- Co-Citation Clustering Analysis of Multimorbidity Research (2015–2024)
4. Discussion
4.1. Developmental Trends in Multimorbidity Research
4.2. Prevalence of Multimorbidity
4.3. Research on Multimorbidity Patterns
4.4. Research on Risk Factors of Multimorbidity
4.5. Health Consequences and Healthcare Burden of Multimorbidity
4.6. Research on Healthcare Services for Multimorbidity
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Cui, Y.; Xue, Y.; Shi, L.; Guo, Y.; Dong, F.; Zhang, C. Adverse childhood experiences in depression and the mediating role of multimorbidity in mid-late life: A nationwide longitudinal study. J. Affect. Disord. 2022, 301, 217–224. [Google Scholar] [CrossRef]
- WHO. Noncommunicable Diseases; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Fortin, M.; Bravo, G.; Hudon, C.; Vanasse, A.; Lapointe, L. Prevalence of multimorbidity among adults seen in family practice. Ann. Fam. Med. 2005, 3, 223–228. [Google Scholar] [CrossRef]
- McQueenie, R.; Foster, H.M.E.; Jani, B.D.; Katikireddi, S.V.; Sattar, N.; Pell, J.P.; Ho, F.K.; Niedzwiedz, C.L.; Hastie, C.E.; Anderson, J.; et al. Multimorbidity, polypharmacy, and COVID-19 infection within the UK biobank cohort. PLoS ONE 2020, 15, e0238091. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Azcoaga-Lorenzo, A.; Fagbamigbe, A.F.; Vasileiou, E.; Henery, P.; Simpson, C.R.; Stock, S.J.; Shah, S.A.; Robertson, C.; Woolhouse, M.; et al. Association between multimorbidity and mortality in a cohort of patients admitted to hospital with COVID-19 in scotland. J. R. Soc. Med. 2022, 115, 22–30. [Google Scholar] [CrossRef]
- Low, L.L.; Kwan, Y.H.; Ko, M.S.M.; Yeam, C.T.; Lee, V.S.Y.; Tan, W.B.; Thumboo, J. Epidemiologic Characteristics of Multimorbidity and Sociodemographic Factors Associated With Multimorbidity in a Rapidly Aging Asian Country. JAMA Netw. Open 2019, 2, e1915245. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Sherifali, D.; Fitzpatrick-Lewis, D.; Kenny, M.; Lamarche, L.; Raina, P.; Mangin, D. Interventions to address polypharmacy in older adults living with multimorbidity. Can. Fam. Phys. 2022, 68, e215–e226. [Google Scholar] [CrossRef]
- Mayne, K.J.; Sardell, R.J.; Staplin, N.; Judge, P.K.; Zhu, D.; Sammons, E.; Cherney, D.Z.I.; Cheung, A.K.; Maggioni, A.P.; Nangaku, M.; et al. Frailty, Multimorbidity, and Polypharmacy. Clin. J. Am. Soc. Nephrol. 2024, 19, 1119–1129. [Google Scholar] [CrossRef]
- Dambha-Miller, H.; Simpson, G.; Hobson, L.; Olaniyan, D.; Hodgson, S.; Roderick, P.; Fraser, S.D.; Little, P.; Everitt, H.; Santer, M. Integrating primary care and social services for older adults with multimorbidity: A qualitative study. Br. J. Gen. Pract. 2021, 71, E753–E761. [Google Scholar] [CrossRef]
- Prados-Torres, A.; Calderon-Larranaga, A.; Hancco-Saavedra, J.; Poblador-Plou, B.; van den Akker, M. Multimorbidity patterns: A systematic review. J. Clin. Epidemiol. 2014, 67, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Tazzeo, C.; Zucchelli, A.; Vetrano, D.L.; Demurtas, J.; Smith, L.; Schoene, D.; Sanchez-Rodriguez, D.; Onder, G.; Balci, C.; Bonetti, S.; et al. Risk factors for multimorbidity in adulthood: A systematic review. Ageing Res. Rev. 2023, 91, 102039. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Mishra, G.D.; Jones, M. Mapping the global research landscape and knowledge gaps on multimorbidity: A bibliometric study. J. Glob. Health 2017, 7, 010414. [Google Scholar] [CrossRef]
- Zhou, J.; Song, D.; Ma, J.; Zhang, G.; Wu, C.; Chen, Q.; Zeng, L. Research trends in the mental health and multimorbidity of older people from 2002 to 2022: A bibliometric analysis via CiteSpace. Front. Psychiatry 2023, 14, 1117554. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Duan, Z.-G.; Zheng, X.; Zhang, C.-C.; Chang, Y.-Q.; Yang, J.; Dong, F.; Zhang, J.-C. A Bibliometric Study of 40 Years of Publications in Medicine and Philosophy: 1980–2019. Med. Philos. 2021, 42, 17–22. [Google Scholar]
- Zheng, X.; Tian, F.; Chen, Y.; Xue, B.; Shi, L.; Zhang, C. Analysis of Research Hotspots and Evolution Trends in the Field of Multiple Chronic Conditions in China from 2002 to 2022. Chin. Gen. Pract. 2023, 26, 2567–2573. [Google Scholar]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef]
- Feinstein, A.R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 1970, 23, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Yancik, R.; Ershler, W.; Satariano, W.; Hazzard, W.; Cohen, H.J.; Ferruci, L. Report of the National Institute on Aging Task Force on Comorbidity. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2007, 62, 275–280. [Google Scholar] [CrossRef] [PubMed]
- WHO. The World Health Report 2008: Primary Health Cared-Now more than ever; WHO: New York, NY, USA, 2008. [Google Scholar]
- Marengoni, A.; Angleman, S.; Melis, R.; Mangialasche, F.; Karp, A.; Garmen, A.; Meinow, B.; Fratiglioni, L. Aging with multimorbidity: A systematic review of the literature. Ageing Res. Rev. 2011, 10, 430–439. [Google Scholar] [CrossRef]
- Kingston, A.; Robinson, L.; Booth, H.; Knapp, M.; Jagger, C. Projections of multi-morbidity in the older population in England to 2035: Estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing 2018, 47, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Violan, C.; Foguet-Boreu, Q.; Flores-Mateo, G.; Salisbury, C.; Blom, J.; Freitag, M.; Glynn, L.; Muth, C.; Valderas, J.M. Prevalence, Determinants and Patterns of Multimorbidity in Primary Care: A Systematic Review of Observational Studies. PLoS ONE 2014, 9, e102149. [Google Scholar] [CrossRef]
- Marengoni, A.; Rizzuto, D.; Wang, H.X.; Winblad, B.; Fratiglioni, L. Patterns of Chronic Multimorbidity in the Elderly Population. J. Am. Geriatr. Soc. 2009, 57, 225–230. [Google Scholar] [CrossRef]
- van den Bussche, H.; Koller, D.; Kolonko, T.; Hansen, H.; Wegscheider, K.; Glaeske, G.; von Leitner, E.-C.; Schaefer, I.; Schoen, G. Which chronic diseases and disease combinations are specific to multimorbidity in the elderly? Results of a claims data based cross-sectional study in Germany. BMC Public Health 2011, 11, 101. [Google Scholar] [CrossRef]
- Puri, P.; Singh, S.K. Patterns and predictors of non-communicable disease multimorbidity among older adults in India: Evidence from longitudinal ageing study in India (LASI), 2017–2018. J. Public Health Policy 2022, 43, 109–128. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Jeong, H.; Noh, Y. Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel. Int. J. Environ. Res. Public Health 2020, 17, 2618. [Google Scholar] [CrossRef]
- Canizares, M.; Hogg-Johnson, S.; Gignac, M.A.M.; Glazier, R.H.; Badley, E.M. Increasing Trajectories of Multimorbidity Over Time: Birth Cohort Differences and the Role of Changes in Obesity and Income. J. Gerontol. Ser. B-Psychol. Sci. Soc. Sci. 2018, 73, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Kivimaki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2017, 2, E277–E285. [Google Scholar] [CrossRef]
- Loprinzi, P.D. Sedentary behavior and medical multimorbidity. Physiol. Behav. 2015, 151, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.; Rodrigues, R.; Anderson, K.K.; Wilk, P.; Guaiana, G.; Stranges, S. Sleep behaviours and multimorbidity occurrence in middle-aged and older adults: Findings from the Canadian Longitudinal Study on Aging (CLSA). Sleep Med. 2020, 75, 156–162. [Google Scholar] [CrossRef]
- Chudasama, Y.; Khunti, K.; Gillies, C.L.; Dhalwani, N.N.; Davies, M.J.; Yates, T.; Zaccardi, F. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study. PLos Med. 2020, 17, e1003332. [Google Scholar] [CrossRef]
- Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and depression: A systematic review and meta-analysis. J. Affect. Disord. 2017, 221, 36–46. [Google Scholar] [CrossRef]
- Dugravot, A.; Fayosse, A.; Dumurgier, J.; Bouillon, K.; Ben Rayana, T.; Schnitzler, A.; Kivimaki, M.; Sabia, S.; Singh-Manoux, A. Social inequalities in multimorbidity, frailty, disability, and transitions to mortality: A 24-year follow-up of the Whitehall II cohort study. Lancet Public Health 2020, 5, E42–E50. [Google Scholar] [CrossRef]
- Pathirana, T.I.; Jackson, C.A. Socioeconomic status and multimorbidity: A systematic review and meta-analysis. Aust. NZ J. Public Health 2018, 42, 186–194. [Google Scholar] [CrossRef]
- Vetrano, D.L.; Palmer, K.; Marengoni, A.; Marzetti, E.; Lattanzio, F.; Roller-Wirnsberger, R.; Lopez Samaniego, L.; Rodriguez-Manas, L.; Bernabei, R.; Onder, G. Frailty and Multimorbidity: A Systematic Review and Meta-analysis. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2019, 74, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Nunes, B.P.; Flores, T.R.; Mielke, G.I.; Thume, E.; Facchini, L.A. Multimorbidity and mortality in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2016, 67, 130–138. [Google Scholar] [CrossRef]
- Baehler, C.; Huber, C.A.; Bruengger, B.; Reich, O. Multimorbidity, health care utilization and costs in an elderly community-dwelling population: A claims data based observational study. BMC Health Serv. Res. 2015, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- McPhail, S.M. Multimorbidity in chronic disease: Impact on health care resources and costs. Risk Manag. Health Policy 2016, 9, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, T.; Heider, D.; Leicht, H.; Heinrich, S.; Corrieri, S.; Luppa, M.; Riedel-Heller, S.; Koenig, H.-H. Health Care Utilization and Costs of Elderly Persons With Multiple Chronic Conditions. Med. Care Res. Rev. 2011, 68, 387–420. [Google Scholar] [CrossRef]
- Salisbury, C.; Johnson, L.; Purdy, S.; Valderas, J.M.; Montgomery, A.A. Epidemiology and impact of multimorbidity in primary care: A retrospective cohort study. Br. J. Gen. Pract. 2011, 61, e12. [Google Scholar] [CrossRef]
- Palmer, K.; Marengoni, A.; Joao Forjaz, M.; Jureviciene, E.; Laatikainen, T.; Mammarella, F.; Muth, C.; Navickas, R.; Prados-Torres, A.; Rijken, M.; et al. Multimorbidity care model: Recommendations from the consensus meeting of the Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle (JA-CHRODIS). Health Policy 2018, 122, 4–11. [Google Scholar] [CrossRef]
- Boyd, C.; Smith, C.D.; Masoudi, F.A.; Blaum, C.S.; Dodson, J.A.; Green, A.R.; Kelley, A.; Matlock, D.; Ouellet, J.; Rich, M.W.; et al. Decision Making for Older Adults With Multiple Chronic Conditions: Executive Summary for the American Geriatrics Society Guiding Principles on the Care of Older Adults With Multimorbidity. J. Am. Geriatr. Soc. 2019, 67, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.Y.; Lun, P.; Teng, P.H.J.; Ang, W.; Tan, K.T.; Ding, Y.Y. Intervention elements and behavior change techniques to improve prescribing for older adults with multimorbidity in Singapore: A modified Delphi study. Eur. Geriatr. Med. 2022, 13, 531–539. [Google Scholar] [CrossRef]
- Smith, S.M.; Wallace, E.; O’Dowd, T.; Fortin, M. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings. Cochrane Database Syst. Rev. 2016, 3, CD006560. [Google Scholar] [CrossRef]
- Sinnott, C.; Mercer, S.W.; Payne, R.A.; Duerden, M.; Bradley, C.P.; Byrne, M. Improving medication management in multimorbidity: Development of the MultimorbiditY COllaborative Medication Review And DEcision Making (MY COMRADE) intervention using the Behaviour Change Wheel. Implement Sci. 2015, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Pascual-de la Pisa, B.; Palou-Lobato, M.; Marquez Calzada, C.; Jose Garcia-Lozano, M. Effectiveness of interventions based on telemedicine on health outcomes in patients with multimorbidity in Primary Care: A systematic review. Aten. Prim. 2020, 52, 759–769. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Yang, L.; Zhang, X.; Chen, C.; Zheng, T.; Li, Y.; Li, X.; Wang, Y.; Ma, L.; Zhang, C. The Multimorbidity Knowledge Domain: A Bibliometric Analysis of Web of Science Literature from 2004 to 2024. Healthcare 2025, 13, 2687. https://doi.org/10.3390/healthcare13212687
Zheng X, Yang L, Zhang X, Chen C, Zheng T, Li Y, Li X, Wang Y, Ma L, Zhang C. The Multimorbidity Knowledge Domain: A Bibliometric Analysis of Web of Science Literature from 2004 to 2024. Healthcare. 2025; 13(21):2687. https://doi.org/10.3390/healthcare13212687
Chicago/Turabian StyleZheng, Xiao, Lingli Yang, Xinyi Zhang, Chengyu Chen, Ting Zheng, Yuyang Li, Xiyan Li, Yanan Wang, Lijun Ma, and Chichen Zhang. 2025. "The Multimorbidity Knowledge Domain: A Bibliometric Analysis of Web of Science Literature from 2004 to 2024" Healthcare 13, no. 21: 2687. https://doi.org/10.3390/healthcare13212687
APA StyleZheng, X., Yang, L., Zhang, X., Chen, C., Zheng, T., Li, Y., Li, X., Wang, Y., Ma, L., & Zhang, C. (2025). The Multimorbidity Knowledge Domain: A Bibliometric Analysis of Web of Science Literature from 2004 to 2024. Healthcare, 13(21), 2687. https://doi.org/10.3390/healthcare13212687

