First Robin Eigenvalue of the Laplacian on Kähler and Quaternionic Kähler Manifolds
Abstract
1. Introduction
2. Preliminaries
2.1. Kähler Manifolds and Quaternionic Kähler Manifolds
- 1.
- In any coordinate neighborhood U of M, there exists a local basis of V such thatandfor all and .
- 2.
- If , then for all .
2.2. Barta’s Inequality
- 1.
- Assume that v satisfiesin the sense of distributions. Then
- 2.
- Assume that v satisfiesin the sense of distributions. Then
2.3. Properties of One-Dimensional Eigenvalue Models
- (1)
- If , then on .
- (2)
- If , then on .
3. Proof of Theorems 1 and 2
- 1.
- Let be a complete Kähler manifold of complex dimension m, and let . Assume that the holomorphic sectional curvature bound and the orthogonal Ricci curvature bound hold on M for . Thenholds for all , and distributionally on M.
- 2.
- Let be a complete quaternionic Kähler manifold of quaternionic dimension , and let . Assume that the scalar curvature bound on M for . Thenholds for all , and distributionally on M.
4. Proof of Theorems 4 and 5
- 1.
- Let be a compact Kähler manifold of complex dimension m with smooth nonempty boundary . Suppose that the holomorphic sectional curvature bound and the orthogonal Ricci curvature bound hold on M for , and that the second fundamental form of is bounded from below by . Then, satisfieson .
- 2.
- Let be a compact quaternionic Kähler manifold of quaternionic dimension with smooth nonempty boundary . Suppose that the scalar curvature satisfies on M for , and the second fundamental form of is bounded from below by . Then, satisfieson .
- 1.
- For every , ;
- 2.
- ;
- 3.
- For every k, on , there exists the unit outer normal vector field for such that ;
- 4.
- For every k, the set is a smooth hypersurface in M and satisfies .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, B.; Clutterbuck, J.; Hauer, D. Non-concavity of the Robin ground state. Camb. J. Math. 2020, 8, 243–310. [Google Scholar] [CrossRef]
- Laugesen, R.S. The Robin Laplacian—Spectral conjectures, rectangular theorems. J. Math. Phys. 2019, 60, 121507. [Google Scholar] [CrossRef]
- Li, X.; Wang, K. First Robin eigenvalue of the p-Laplacian on Riemannian manifolds. Math. Z. 2021, 298, 1033–1047. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Wu, H. On the second Robin eigenvalue of the Laplacian. Calc. Var. Partial. Differ. Equ. 2023, 62, 256. [Google Scholar] [CrossRef]
- Savo, A. Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds. J. Differ. Equ. 2020, 268, 2280–2308. [Google Scholar] [CrossRef]
- Cheng, S.Y. Eigenvalue comparison theorems and its geometric applications. Math. Z. 1975, 143, 289–297. [Google Scholar] [CrossRef]
- Li, X.; Wang, K. Lower bounds for the first eigenvalue of the Laplacian on Kähler manifolds. Trans. Amer. Math. Soc. 2021, 374, 8081–8099. [Google Scholar] [CrossRef]
- Li, X.; Wang, K. Eigenvalue estimates on quaternion-Kähler manifolds. J. Geom. Anal. 2023, 33, 85. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S. Lower bounds for the first eigenvalue of p-Laplacian on Kähler manifolds. Proc. Amer. Math. Soc. 2023, 151, 2503–2515. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S. Lower bounds for the first eigenvalue of the p-Laplacian on quaternionic Kähler manifolds. J. Geom. Anal. 2024, 34, 123. [Google Scholar] [CrossRef]
- Rutkowski, B.; Seto, S. Explicit lower bound of the first eigenvalue of the Laplacian on Kähler manifolds. Involve 2023, 16, 519–527. [Google Scholar] [CrossRef]
- Ni, L.; Zheng, F. Comparison and vanishing theorems for Kähler manifolds. Calc. Var. Partial. Differ. Equ. 2018, 57, 151. [Google Scholar] [CrossRef]
- Li, P.; Yau, S.T. Estimates of eigenvalues of a compact Riemannian manifold. In Proceedings of the Geometry of the Laplace Operator (Proceedings Symposia in Pure Mathematics, University of Hawaii, Honolulu, HI, USA, 27–30 March 1979); American Mathematical Society: Providence, RI, USA, 1980; Volume XXXVI, pp. 205–239. [Google Scholar]
- Kasue, A. On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. École Norm. Sup. 1984, 17, 31–44. [Google Scholar] [CrossRef][Green Version]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Reprint of the 1969 original, A Wiley-Interscience Publication; Wiley Classics Library, John Wiley & Sons, Inc.: New York, NY, USA, 1996; Volume II, pp. xvi + 468. [Google Scholar][Green Version]
- Baudoin, F.; Yang, G. Brownian motions and heat kernel lower bounds on Kähler and quaternion Kähler manifolds. Int. Math. Res. Not. IMRN 2022, 2022, 4659–4681. [Google Scholar] [CrossRef]
- Ishihara, S. Quaternion Kählerian manifolds. J. Differ. Geom. 1974, 9, 483–500. [Google Scholar] [CrossRef]
- Chavel, I. Eigenvalues in Riemannian Geometry; Pure and Applied Mathematics; Academic Press, Inc.: Orlando, FL, USA, 1984; Volume 115, pp. xiv + 362. [Google Scholar]
- Castillon, P.; Ruffini, B. A spectral characterization of geodesic balls in non-compact rank one symmetric spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2019, 19, 1359–1388. [Google Scholar] [CrossRef] [PubMed]
- Bérard-Bergery, L.; Bourguignon, J.P. Laplacians and Riemannian submersions with totally geodesic fibres. Ill. J. Math. 1982, 26, 181–200. [Google Scholar] [CrossRef]
- Li, P. Geometric Analysis; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2012; Volume 134, pp. x + 406. [Google Scholar] [CrossRef]
- Sakurai, Y. Rigidity of manifolds with boundary under a lower Bakry-Émery Ricci curvature bound. Tohoku Math. J. 2019, 71, 69–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhu, W. First Robin Eigenvalue of the Laplacian on Kähler and Quaternionic Kähler Manifolds. Mathematics 2025, 13, 3970. https://doi.org/10.3390/math13243970
Zhang S, Zhu W. First Robin Eigenvalue of the Laplacian on Kähler and Quaternionic Kähler Manifolds. Mathematics. 2025; 13(24):3970. https://doi.org/10.3390/math13243970
Chicago/Turabian StyleZhang, Shaoheng, and Weijie Zhu. 2025. "First Robin Eigenvalue of the Laplacian on Kähler and Quaternionic Kähler Manifolds" Mathematics 13, no. 24: 3970. https://doi.org/10.3390/math13243970
APA StyleZhang, S., & Zhu, W. (2025). First Robin Eigenvalue of the Laplacian on Kähler and Quaternionic Kähler Manifolds. Mathematics, 13(24), 3970. https://doi.org/10.3390/math13243970

