Some Properties of Meromorphic Functions Defined by the Hurwitz–Lerch Zeta Function
Abstract
1. Introduction
- (i)
- , (see Miller and Mocanu ([9], p. 389);
- (ii)
- , (see Aqlan et al. [11]);
- (iii)
- , (see El-Ashwah and Aouf [12]);
- (iv)
- , (see El-Ashwah [13]).
2. Preliminaries
3. Some Arguments and Subordinate Results
- (i)
- If then for , we obtain
- (ii)
- If and then for , we obtain
- (i)
- If then for , we obtain
- (ii)
- If then for , we obtain
4. Partial Sums for Subclass
5. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent functions. In Grundelehren der Mathematischen Wissenachften; Springer: New York, NY, USA; Berlin/Heidleberg, Germany; Tokyo, Japan, 1983; Volume 259. [Google Scholar]
- Goodman, A.W. Univalent Functions; Polygonl Publishing House: Washington, NJ, USA, 1983; Volume 3. [Google Scholar]
- Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK; London, UK, 1944. [Google Scholar]
- Rogosinski, W. On coefficients of subordinate functions. Proc. Lond. Math. Soc. 1945, 2, 48–82. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. Current Topics in Analytic Functions Theory; Words Scientific Publishing Company: Singapore, 1992. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second-order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Ibrahim, R.E. Hankel and Toeplitz Determinants for q-Starlike Functions Involving a q-Analogue Integral Operator and q-Exponential Function. J. Funct. Spaces 2025, 12, 2771341. [Google Scholar] [CrossRef]
- Tayyah, A.S.; Atshan, W.G. Differential subordination and superordination results for p-valent analytic functions associated with (r,k)-Srivastava fractional integral calculus. Methodsx 2024, 13, 103079. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics No. 225; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- El-Ashwah, R.M.; Bulboaca, T. Sandwich results for p-valent meromorphic functions associated with Hurwitz-Lerch Zeta function. Tamsui Oxf. J. Infor. Math. Sci. 2018, 32, 48–63. [Google Scholar]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. Certain integral operators applied to p-valent functions. J. Nat. Geom. 2003, 24, 111–120. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K. Applications of differential subordination on certain class of meromorphic p-valent functions associated with certain integral operator. Acta Univ. Apulensis 2012, 31, 53–64. [Google Scholar]
- El-Ashwah, R.M. Inclusion relationships properties for certain subclasses of meromorphic functions associated with Hurwitz-Lerech Zeta function. Acta Univ. Apulensis 2013, 34, 191–205. [Google Scholar]
- Ghanim, F.; Al-Shaqsi, K.; Darus, M.; Al-Janaby, H.F. Subordination Properties of Meromorphic Kummer Function Correlated with Hurwitz–Lerch Zeta-Function. Mathematics 2011, 9, 192. [Google Scholar] [CrossRef]
- Venkateswarlul, B.; Reddy, P.T.; Sridevi, S. A certain subclass of meromorphic functions with positive coefficients associated with Hurwitz-Lerch zeta function. Math. Eng. Sci. Aerosp. (MESA) 2022, 13, 157–170. [Google Scholar]
- Ghanim, F.; Batiha, B.; Ali, A.H.; Darus, M. Geometric Properties of a Linear Complex Operator on a Subclass of Meromorphic Functions: An Analysis of Hurwitz–Lerch-Zeta Functions. Appl. Math. Nonlinear Sci. 2023, 8, 2229–2240. [Google Scholar] [CrossRef]
- Reddy, P.T.; Deshmukh, K.C.; Ingle, R.N. Certain subclass of analytic functions involving Hurwitz-Lerch zeta function. Palest. J. Math. 2024, 13, 175–184. [Google Scholar]
- Ferreira, C.; Lopez, J.L. Asymptotic expansions of the Hurwitz-Lerch Zeta function. J. Math. Anal. Appl. 2004, 298, 210–224. [Google Scholar] [CrossRef]
- Ali, E.E.; Oros, G.I.; El-Ashwah, R.M.; Albalahi, A.M.; Ennaceur, M. Fuzzy subordination results for meromorphic functions associated with Hurwitz–Lerch Zeta Function. Mathematics 2024, 12, 3721. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Ashwah, R.M.; Albalahi, A.M. Fuzzy Treatment for Meromorphic Classes of Admissible Functions Connected to Hurwitz–Lerch Zeta Function. Axioms 2025, 14, 378. [Google Scholar] [CrossRef]
- Lashin, A.Y. Application of Nunokawa’s theorem. J. Inequal. Pure Appl. Math. 1993, 69, 234–237. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordinations by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
- El-Ashwah, R.M. Argument properties for p-valent meromorphic functions defined by differintegral operator. South. Asian Bull. Math. 2018, 42, 359–365. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Li, J.L.; Owa, S. On partial sums of the libera integral operator. J. Math. Anal. Appl. 1997, 213, 444–454. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Brickman, L.; Hallenbeck, D.J.; MacGregor, T.H.; Wilken, D. Convex hulls and extreme points of families of starlike and convex mappings. Trans. Am. Math. Soc. 1973, 185, 413–428. [Google Scholar] [CrossRef]
- Sheil-Small, T. A note on partial sums of convex schlicht functions. Bull. Lond. Math. Soc. 1970, 2, 165–168. [Google Scholar] [CrossRef]
- Silvia, E.M. On partial sums of convex functions of order α. Houst. J. Math. 1985, 11, 397–404. [Google Scholar]
- Singh, R.; Singh, S. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
- Yang, D.; Owa, S. Subclasses of certain analytic functions. Hokkaido Math. J. 2003, 32, 127–136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; El-Ashwah, R.M.; Breaz, N.; Albalahi, A.M. Some Properties of Meromorphic Functions Defined by the Hurwitz–Lerch Zeta Function. Mathematics 2025, 13, 3430. https://doi.org/10.3390/math13213430
Ali EE, El-Ashwah RM, Breaz N, Albalahi AM. Some Properties of Meromorphic Functions Defined by the Hurwitz–Lerch Zeta Function. Mathematics. 2025; 13(21):3430. https://doi.org/10.3390/math13213430
Chicago/Turabian StyleAli, Ekram E., Rabha M. El-Ashwah, Nicoleta Breaz, and Abeer M. Albalahi. 2025. "Some Properties of Meromorphic Functions Defined by the Hurwitz–Lerch Zeta Function" Mathematics 13, no. 21: 3430. https://doi.org/10.3390/math13213430
APA StyleAli, E. E., El-Ashwah, R. M., Breaz, N., & Albalahi, A. M. (2025). Some Properties of Meromorphic Functions Defined by the Hurwitz–Lerch Zeta Function. Mathematics, 13(21), 3430. https://doi.org/10.3390/math13213430

