Proteomic Profiling of Non-Muscle Invasive Bladder Cancer Reveals Stage-Specific Molecular Signatures and Prognostic Biomarkers
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Analysis Workflow
2.3. Sample Preparation for Proteomic Analysis
2.4. Two-Dimensional Electrophoresis (2DE)
2.5. Protein Identification by Mass Spectrometry MALDI-ToF
2.6. Statistical Analysis
2.7. Enrichment Analysis
2.8. Western Blot Analysis
3. Results
3.1. Population
3.2. Proteomic Results
3.3. Enrichment Analysis of the Highly Abundant Proteins in pT1-HG NMIBC
3.4. Enrichment Analysis of the Low-Abundant Proteins in pT1-HG NMIBC
3.5. Protein Abundance Correlations with Tumor Size and Tumor Stage
3.6. Protein Abundance Validation by Western Blot Analysis
4. Discussion
4.1. Protein Correlation with Tumor Size
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Hoogstraten, L.M.C.; Vrieling, A.; van der Heijden, A.G.; Kogevinas, M.; Richters, A.; Kiemeney, L.A. Global Trends in the Epidemiology of Bladder Cancer: Challenges for Public Health and Clinical Practice. Nat. Rev. Clin. Oncol. 2023, 20, 287–304. [Google Scholar] [CrossRef]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Compérat, E.; Amin, M.B.; Cathomas, R.; Choudhury, A.; De Santis, M.; Kamat, A.; Stenzl, A.; Thoeny, H.C.; Witjes, J.A. Current Best Practice for Bladder Cancer: A Narrative Review of Diagnostics and Treatments. Lancet 2022, 400, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Matulay, J.T.; Kamat, A.M. Advances in Risk Stratification of Bladder Cancer to Guide Personalized Medicine. F1000Research 2018, 7, 1137. [Google Scholar] [CrossRef] [PubMed]
- Tabaei, S.; Haghshenas, M.R.; Webster, T.J.; Ghaderi, A. Proteomics Strategies for Urothelial Bladder Cancer Diagnosis, Prognosis and Treatment: Trends for Tumor Biomarker Sources. Anal. Biochem. 2023, 666, 115074. [Google Scholar] [CrossRef]
- Lopez-Beltran, A.; Cookson, M.S.; Guercio, B.J.; Cheng, L. Advances in Diagnosis and Treatment of Bladder Cancer. Br. Med. J. 2024, 384, e076743. [Google Scholar] [CrossRef]
- Schmidt, S.; Kunath, F.; Coles, B.; Draeger, D.L.; Krabbe, L.-M.; Dersch, R.; Kilian, S.; Jensen, K.; Dahm, P.; Meerpohl, J.J. Intravesical Bacillus Calmette-Guérin versus Mitomycin C for Ta and T1 Bladder Cancer. Cochrane Database Syst. Rev. 2020, 1, CD011935. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Urothelial Bladder Carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2018, 174, 1033. [Google Scholar] [CrossRef]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen van de Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of Molecular Subtypes in Muscle-Invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.-L.; et al. Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef]
- 510(k) Premarket Notification. Available online: https://www.accessdata.fda.gov/scrIpts/cdrh/cfdocs/cfpmn/pmn.cfm?id=K971402&utm_source=chatgpt.com (accessed on 11 November 2025).
- MATRITECH NMP22(TM) TEST KIT 510(k) FDA Approval. Available online: https://fda.report/PMA/P940035?utm_source=chatgpt.com (accessed on 11 November 2025).
- Soria, F.; Droller, M.J.; Lotan, Y.; Gontero, P.; D’Andrea, D.; Gust, K.M.; Rouprêt, M.; Babjuk, M.; Palou, J.; Shariat, S.F. An Up-to-Date Catalog of Available Urinary Biomarkers for the Surveillance of Non-Muscle Invasive Bladder Cancer. World J. Urol. 2018, 36, 1981–1995. [Google Scholar] [CrossRef]
- Sathe, G.; George, I.A.; Deb, B.; Jain, A.P.; Patel, K.; Nayak, B.; Karmakar, S.; Seth, A.; Pandey, A.; Kumar, P. Urinary Glycoproteomic Profiling of Non-Muscle Invasive and Muscle Invasive Bladder Carcinoma Patients Reveals Distinct N-Glycosylation Pattern of CD44, MGAM, and GINM1. Oncotarget 2020, 11, 3244–3255. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Rabilloud, T. Silver Staining of 2D Electrophoresis Gels. Methods Mol. Biol. 2012, 893, 61–73. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
- Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354. [Google Scholar] [CrossRef]
- Monypenny, J.; Milewicz, H.; Flores-Borja, F.; Weitsman, G.; Cheung, A.; Chowdhury, R.; Burgoyne, T.; Arulappu, A.; Lawler, K.; Barber, P.R.; et al. ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Rep. 2018, 24, 630–641. [Google Scholar] [CrossRef]
- Holzbeierlein, J.M.; Bixler, B.R.; Buckley, D.I.; Chang, S.S.; Holmes, R.; James, A.C.; Kirkby, E.; McKiernan, J.M.; Schuckman, A.K. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline: 2024 Amendment. J. Urol. 2024, 211, 533–538. [Google Scholar] [CrossRef]
- Yin, W.; Wang, J.; Jiang, L.; James Kang, Y. Cancer and Stem Cells. Exp. Biol. Med. 2021, 246, 1791–1801. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, M.; Yu, Y.; Wang, J.; Jiao, Y.; Zheng, M.; Zhang, S. 14–3-3ε: A Protein with Complex Physiology Function but Promising Therapeutic Potential in Cancer. Cell Commun. Signal. 2024, 22, 72. [Google Scholar] [CrossRef]
- Segal, D.; Maier, S.; Mastromarco, G.J.; Qian, W.W.; Nabeel-Shah, S.; Lee, H.; Moore, G.; Lacoste, J.; Larsen, B.; Lin, Z.-Y.; et al. A Central Chaperone-like Role for 14-3-3 Proteins in Human Cells. Mol. Cell 2023, 83, 974–993.e15. [Google Scholar] [CrossRef]
- Kobori, T.; Tanaka, C.; Tameishi, M.; Urashima, Y.; Ito, T.; Obata, T. Role of Ezrin/Radixin/Moesin in the Surface Localization of Programmed Cell Death Ligand-1 in Human Colon Adenocarcinoma LS180 Cells. Pharmaceuticals 2021, 14, 864. [Google Scholar] [CrossRef]
- Arpin, M.; Chirivino, D.; Naba, A.; Zwaenepoel, I. Emerging Role for ERM Proteins in Cell Adhesion and Migration. Cell Adhes. Migr. 2011, 5, 199–206. [Google Scholar] [CrossRef]
- Tanaka, C.; Kobori, T.; Okada, R.; Doukuni, R.; Tameishi, M.; Urashima, Y.; Ito, T.; Takagaki, N.; Obata, T. Ezrin Regulates the Cell Surface Localization of PD-L1 in HEC-151 Cells. J. Clin. Med. 2022, 11, 2226. [Google Scholar] [CrossRef]
- Ma, X.; Lu, C.; Chen, Y.; Li, S.; Ma, N.; Tao, X.; Li, Y.; Wang, J.; Zhou, M.; Yan, Y.-B.; et al. CCT2 Is an Aggrephagy Receptor for Clearance of Solid Protein Aggregates. Cell 2022, 185, 1325–1345.e22. [Google Scholar] [CrossRef]
- Langle, Y.V.; Balarino, N.P.; Belgorosky, D.; Cresta Morgado, P.D.; Sandes, E.O.; Marino, L.; Bilbao, E.R.; Zambrano, M.; Lodillinsky, C.; Eiján, A.M. Effect of Nitric Oxide Inhibition in Bacillus Calmette-Guerin Bladder Cancer Treatment. Nitric Oxide 2020, 98, 50–59. [Google Scholar] [CrossRef]
- Singh, V.; Singh, M.K.; Jain, M.; Pandey, A.K.; Kumar, A.; Sahu, D.K. The Relationship between BCG Immunotherapy and Oxidative Stress Parameters in Patients with Nonmuscle Invasive Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 486.e25–486.e32. [Google Scholar] [CrossRef]
- Yang, D.; Chen, H.; Zhou, Z.; Guo, J. ANXA5 Predicts Prognosis and Immune Response and Mediates Proliferation and Migration in Head and Neck Squamous Cell Carcinoma. Gene 2024, 931, 148867. [Google Scholar] [CrossRef]
- Su, Z.; Shu, K.; Li, G. Increased ANXA5 Expression in Stomach Adenocarcinoma Infers a Poor Prognosis and High Level of Immune Infiltration. Cancer Biomark. 2022, 35, 155–165. [Google Scholar] [CrossRef]
- Cubillos-Ruiz, J.R.; Bettigole, S.E.; Glimcher, L.H. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell 2017, 168, 692–706. [Google Scholar] [CrossRef]
- Oslowski, C.M.; Urano, F. Measuring ER Stress and the Unfolded Protein Response Using Mammalian Tissue Culture System. Methods Enzymol. 2011, 490, 71–92. [Google Scholar] [CrossRef]
- Jhaveri, K.; Chandarlapaty, S.; Lake, D.; Gilewski, T.; Robson, M.; Goldfarb, S.; Drullinsky, P.; Sugarman, S.; Wasserheit-Leiblich, C.; Fasano, J.; et al. A Phase II Open-Label Study of Ganetespib, a Novel Heat Shock Protein 90 Inhibitor for Patients with Metastatic Breast Cancer. Clin. Breast Cancer 2014, 14, 154–160. [Google Scholar] [CrossRef]
- de Souza, M.d.F.D.; da Silva Filho, A.F.; de Barros Albuquerque, A.P.; Quirino, M.W.L.; de Souza Albuquerque, M.S.; Cordeiro, M.F.; Martins, M.R.; da Rocha Pitta, I.; Lucena-Araujo, A.R.; da Rocha Pitta, M.G.; et al. Overexpression of UDP-Glucose 4-Epimerase Is Associated with Differentiation Grade of Gastric Cancer. Dis. Markers 2019, 2019, 6325326. [Google Scholar] [CrossRef]
- Lin, Q.; Pei, L.; Zhao, Z.; Zhuang, X.; Qin, H. Glycoprotein α-Subunit of Glucosidase II (GIIα) Is a Novel Prognostic Biomarker Correlated with Unfavorable Outcome of Urothelial Carcinoma. BMC Cancer 2022, 22, 817. [Google Scholar] [CrossRef]
- Suradej, B.; Pata, S.; Kasinrerk, W.; Cressey, R. Glucosidase II Exhibits Similarity to the P53 Tumor Suppressor in Regards to Structure and Behavior in Response to Stress Signals: A Potential Novel Cancer Biomarker. Oncol. Rep. 2013, 30, 2511–2519. [Google Scholar] [CrossRef]
- Mereiter, S.; Balmaña, M.; Campos, D.; Gomes, J.; Reis, C.A. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell 2019, 36, 6–16. [Google Scholar] [CrossRef]
- Chandler, K.B.; Costello, C.E.; Rahimi, N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019, 8, 544. [Google Scholar] [CrossRef]
- Onisko, B.C. The Hydroxyproline Proteome of HeLa Cells with Emphasis on the Active Sites of Protein Disulfide Isomerases. J. Proteome Res. 2020, 19, 756–768. [Google Scholar] [CrossRef]
- Martiniuk, F.; Ellenbogen, A.; Hirschhorn, R. Identity of Neutral Alpha-Glucosidase AB and the Glycoprotein Processing Enzyme Glucosidase II. Biochemical and Genetic Studies. J. Biol. Chem. 1985, 260, 1238–1242. [Google Scholar] [CrossRef]
- Weng, M.; Zhang, H.; Hou, W.; Sun, Z.; Zhong, J.; Miao, C. ACAT2 Promotes Cell Proliferation and Associates with Malignant Progression in Colorectal Cancer. OncoTargets Ther. 2020, 13, 3477–3488. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, F.; Guo, J.; Liu, S.; Ma, G.; Cai, M.; Zhang, R.; Deng, J. ACAT2 Suppresses the Ubiquitination of YAP1 to Enhance the Proliferation and Metastasis Ability of Gastric Cancer via the Upregulation of SETD7. Cell Death Dis. 2024, 15, 297. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Q.; Ruan, S.; Cui, J.; Li, Z.; Zhang, Z.; Yang, J.; Fang, J.; Liu, S.; Huang, S.; et al. GCLM Lactylation Mediated by ACAT2 Promotes Ferroptosis Resistance in KRASG12D-Mutant Cancer. Cell Rep. 2025, 44, 115774. [Google Scholar] [CrossRef]
- Yang, J.; Yu, X.; Xiao, M.; Xu, H.; Tan, Z.; Lei, Y.; Guo, Y.; Wang, W.; Xu, J.; Shi, S.; et al. Histone Lactylation-Driven Feedback Loop Modulates Cholesterol-Linked Immunosuppression in Pancreatic Cancer. Gut 2025, 74, 1859–1872. [Google Scholar] [CrossRef]
- Hsu, S.C.; Hazuka, C.D.; Roth, R.; Foletti, D.L.; Heuser, J.; Scheller, R.H. Subunit Composition, Protein Interactions, and Structures of the Mammalian Brain Sec6/8 Complex and Septin Filaments. Neuron 1998, 20, 1111–1122. [Google Scholar] [CrossRef]
- Beites, C.L.; Xie, H.; Bowser, R.; Trimble, W.S. The Septin CDCrel-1 Binds Syntaxin and Inhibits Exocytosis. Nat. Neurosci. 1999, 2, 434–439. [Google Scholar] [CrossRef]
- Larisch, S.; Yi, Y.; Lotan, R.; Kerner, H.; Eimerl, S.; Tony Parks, W.; Gottfried, Y.; Birkey Reffey, S.; de Caestecker, M.P.; Danielpour, D.; et al. A Novel Mitochondrial Septin-like Protein, ARTS, Mediates Apoptosis Dependent on Its P-Loop Motif. Nat. Cell Biol. 2000, 2, 915–921. [Google Scholar] [CrossRef]
- Russell, S.E.H.; Hall, P.A. Do Septins Have a Role in Cancer? Br. J. Cancer 2005, 93, 499–503. [Google Scholar] [CrossRef]
- Chen, P.; Huang, X.; Li, W.; Wen, W.; Cao, Y.; Li, J.; Huang, Y.; Hu, Y. Myeloid-Derived Growth Factor in Diseases: Structure, Function and Mechanisms. Mol. Med. 2024, 30, 103. [Google Scholar] [CrossRef]
- Lu, Y.; Liao, X.; Wang, T.; Hong, X.; Li, Z. The Clinical Relevance and Tumor Promoting Function of C19orf10 in Kidney Renal Clear Cell Carcinoma. Front. Oncol. 2021, 11, 725959. [Google Scholar] [CrossRef]









| pTa-LG | pT1-HG | |
|---|---|---|
| AGE | 71.4 ± 11 | 76.3 ± 7 |
| WEIGHT (Kg) | 76.5 ± 11 | 78.6 ± 13 |
| BMI | 26.2 ± 3 | 27 ± 3 |
| DIABETES % | 40 | 46.10 |
| SMOKER % | 50 | 46.10 |
| HYPERTENSION % | 50 | 46.10 |
| HAEMATURIA % | 70 | 92 |
| TUMOR SIZE (cm) | 1.6 ± 0.4 | 2.4 ± 1.7 |
| Spot N. | Protein Name | Entry Name _HUMAN | Gene Name | AC | Anova Test | Experimental pI-MW (kDa) | Theorical pI-MW (Da) | Mascot Search Results | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Anova (p) | pT1-HG | pTa-LG | FC | Score | No. of Matched Peptides | Sequence Coverage (%) | |||||||
| 2 | T-complex protein 1 subunit beta | TCPB | CCT2 | P78371 | 4.62 × 10−4 | 0.008 | 0.0226 | 2.932 | 5.95–46 | 6.01–57,794 | 148 | 12/17 | 33 |
| 36 | T-complex protein 1 subunit epsilon | TCPE | CCT5 | P48643 | 0.0171 | 0.0121 | 0.0421 | 3.475 | 5.33–55 | 5.45–60,089 | 121 | 9/11 | 24 |
| 4 | Proteasome subunit alpha type-3 | PSA3 | PSMA3 | P25788 | 5.98 × 10−4 | 0.0263 | 0.1294 | 4.932 | 5.05–27 | 5.19–28,643 | 174 | 12/16 | 37 |
| 32 | Proteasome subunit alpha type-6 | PSA6 | PSMA6 | P60900 | 0.01541 | 0.015 | 0.0305 | 2.032 | 6.15–26 | 6.34–27,838 | 87 | 6/11 | 25 |
| 15 | 26S proteasome non-ATPase regulatory subunit 14 | PSDE | PSMD14 | O00487 | 0.0048 | 0.0152 | 0.0303 | 1.997 | 5.94–31 | 6.06–34,726 | 151 | 12/16 | 44 |
| 6 | Non-selective voltage-gated ion channel VDAC1 | VDAC1 | VDAC1 | P21796 | 7.43 × 10−4 | 0.00868 | 0.1096 | 12.627 | 9.53–29 | 8.62–30,868 | 228 | 13/16 | 61 |
| 8 | Adenosine 5′-monophosphoramidase HINT1 | HINT1 | HINT1 | P49773 | 0.0027 | 0.2921 | 0.1240 | 2.354 | 6.46–11 | 6.43–13,907 | 75 | 4/8 | 51 |
| 9 | Peptidyl-prolyl cis-trans isomerase FKBP4 | FKBP4 | FKBP4 | Q02790 | 0.0034 | 0.0302 | 0.0682 | 2.261 | 5.28–47 | 5.35–52,057 | 217 | 17/21 | 32 |
| 10 | Involucrin | INVO | IVL | P07476 | 0.0035 | 0.0366 | 0.1212 | 3.311 | 4.45–109 | 4.62–68,551 | 261 | 19/25 | 42 |
| 11 | Myosin light polypeptide 6 | MYL6 | MYL6 | P60660 | 0.0037 | 0.0916 | 0.164 | 1.791 | 4.3–13 | 4.56–16,930 | |||
| 12 | Protein disulfide-isomerase A3 | PDIA3 | PDIA3 | P30101 | 0.0041 | 0.0092 | 0.0179 | 1.955 | 5.94–45 | 5.98–57,146 | 111 | 13/24 | 23 |
| 14 | Vasodilator-stimulated phosphoprotein | VASP | VASP | P50552 | 0.0047 | 0.0129 | 0.0812 | 6.3094 | 9.86–40 | 9.05–39,976 | 74 | 6/14 | 21 |
| 16 | Acyl-protein thioesterase 1 | LYPA1 | LYPLA1 | O75608 | 0.00502 | 0.0165 | 0.0443 | 2.692 | 6.23–22 | 6.29–24,996 | 89 | 5/8 | 37 |
| 17 | Programmed cell death 6-interacting protein | PDC6I | PDCD6IP | Q8WUM4 | 0.00515 | 0.0104 | 0.024 | 2.3103 | 5.95–89 | 6.13–96,590 | 60 | 5/7 | 8 |
| 25 | Programmed cell death 6-interacting protein | PDC6I | PDCD6IP | Q8WUM4 | 0.01114 | 0.0058 | 0.014 | 2.411 | 5.85–90 | 6.13–96,590 | 67 | 6/5 | 8 |
| 52 | Programmed cell death 6-interacting protein | PDC6I | PDCD6IP | Q8WUM4 | 0.0263 | 0.0082 | 0.0237 | 2.878 | 6.02–89 | 6.13–96,590 | 160 | 12/14 | 21 |
| 70 | Programmed cell death 6-interacting protein | PDC6I | PDCD6IP | Q8WUM4 | 0.0366 | 0.02442 | 0.0564 | 2.310 | 6.11–90 | 6.13–96,590 | 304 | 22/23 | 34 |
| 18 | Myeloid-derived growth factor | MYDGF | MYDGF | Q969H8 | 0.0063 | 0.0402 | 0.0238 | 1.687 | 6.38–13 | 6.20–18,897 | 69 | 5/8 | 27 |
| 19 | Superoxide dismutase [Mn], mitochondrial | SODM | SOD2 | P04179 | 0.0064 | 0.099 | 0.052 | 1.916 | 7.12–21 | 8.35–24,906 | 118 | 7/11 | 41 |
| 20 | Peptidyl-prolyl cis-trans isomerase A | PPIA | PPIA | P62937 | 0.0075 | 0.188 | 0.3493 | 1.857 | 7.34–15 | 7.68–18,229 | 222 | 13/17 | 71 |
| 22 | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial | HIBCH | HIBCH | Q6NVY1 | 0.0106 | 0.0113 | 0.0467 | 4.11 | 7.12–34 | 8.38–43,797 | 64 | 5/8 | 14 |
| 23 | Acetyl-CoA acetyltransferase, cytosolic | THIC | ACAT2 | Q9BWD1 | 0.0106 | 0.0201 | 0.0366 | 1.822 | 6.2–36 | 6.47–41,838 | 102 | 7/11 | 23 |
| 40 | Acetyl-CoA acetyltransferase, cytosolic | THIC | ACAT2 | Q9BWD1 | 0.0178 | 0.0198 | 0.0436 | 2.197 | 6.48–36 | 6.47–41,838 | 138 | 8/9 | 29 |
| 24 | Annexin A5 | ANXA5 | ANXA5 | P08758 | 0.011 | 0.141 | 0.051 | 2.767 | 4.66–28 | 4.94–35,971 | 173 | 12/20 | 41 |
| 30 | Annexin A2 | ANXA2 | ANXA2 | P07355 | 0.01393 | 0.0108 | 0.0201 | 1.857 | 6.99–31 | 7.57–38,808 | 113 | 8/12 | 32 |
| 26 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 | GBB2 | GNB2 | P62879 | 0.01126 | 0.0097 | 0.0335 | 3.449 | 5.37–31 | 5.60–38,048 | 87 | 8/17 | 21 |
| 28 | Cytosolic non-specific dipeptidase | CNDP2 | CNDP2 | Q96KP4 | 0.0123 | 0.0565 | 0.1804 | 3.195 | 5.61–45 | 5.66–53,187 | 125 | 9/13 | 24 |
| 29 | MIX | 236 | |||||||||||
| Apolipoprotein A-I | APOA1 | APOA1 | P02647 | 0.0123 | 0.2501 | 0.1462 | 1.711 | 4.98–22 | 5.56–30,759 | 183 | 19/47 | 49 | |
| Endoplasmic reticulum chaperone BiP Fragment C | BIP | HSPA5 | P11021 | 5.07–72,402 | 80 | 13/47 | 19 | ||||||
| 54 | Endoplasmic reticulum chaperone BiP Fragment C | BIP | HSPA5 | P11021 | 0.0276 | 0.063 | 0.012 | 5.3 | 4.79–22 | 5.07–72,402 | 78 | 7/14 | 13 |
| 35 | Heat shock protein HSP 90-beta | HS90B | HSP90AB1 | P08238 | 0.0168 | 0.115 | 0.056 | 2.059 | 4.89–55 | 4.97–83,554 | 156 | 18/27 | 23 |
| 31 | Heterogeneous nuclear ribonucleoprotein H | HNRH1 | HNRNPH1 | P31943 | 0.0153 | 0.024 | 0.0481 | 2.032 | 5.8–43 | 5.89–49,484 | 197 | 15/24 | 48 |
| 39 | Heterogeneous nuclear ribonucleoprotein H | HNRH1 | HNRNPH1 | P31943 | 0.0177 | 0.0109 | 0.0222 | 2.034 | 6.03–39 | 5.89–49,484 | 75 | 6/13 | 22 |
| 61 | Heterogeneous nuclear ribonucleoprotein H | HNRH1 | HNRNPH1 | P31943 | 0.03219 | 0.0151 | 0.032 | 2.089 | 5.85–43 | 5.89–49,484 | 124 | 9/13 | 28 |
| 73 | Serpin B3 | SPB3 | SERPINB3 | P29508 | 0.0383 | 0.0088 | 0.0024 | 3.758 | 6.41–37 | 6.35–44,594 | 220 | 16/18 | 42 |
| 33 | Serpin B5 | SPB5 | SERPINB5 | P36952 | 0.0155 | 0.057 | 0.132 | 2.325 | 5.62–35 | 5.72–42,530 | 223 | 15/21 | 51 |
| 37 | Ubiquitin-fold modifier-conjugating enzyme 1 | UFC1 | UFC1 | Q9Y3C8 | 0.0172 | 0.01 | 0.02 | 2.024 | 6.65–19 | 6.90–19,617 | 75 | 5/9 | 28 |
| 38 | Stress-induced-phosphoprotein 1 | STIP1 | STIP1 | P31948 | 0.0172 | 0.034 | 0.0754 | 2.221 | 6.25–55 | 6.40–63,227 | 183 | 14/14 | 25 |
| 41 | Stress-induced-phosphoprotein 1 | STIP1 | STIP1 | P31948 | 0.0178 | 0.011 | 0.0263 | 2.5185 | 6.26–53 | 6.40–63,227 | 137 | 13/17 | 24 |
| 42 | Chloride intracellular channel protein 1 | CLIC1 | CLIC1 | O00299 | 0.01789 | 0.115 | 0.208 | 1.81028 | 5.01–27 | 5.09–27,248 | 120 | 7/10 | 37 |
| 44 | Major vault protein | MVP | MVP | Q14764 | 0.0207 | 0.0058 | 0.0166 | 2.83339 | 5.03–98 | 5.34–99,551 | 387 | 27/28 | 40 |
| 45 | Arfaptin-1 | ARFP1 | ARFIP1 | P53367 | 0.0212 | 0.0104 | 0.0217 | 2.07471 | 6.28–40 | 6.24–41,770 | 141 | 9/12 | 35 |
| 48 | Nucleoside diphosphate kinase B | NDKB | NME2 | P22392 | 0.0246 | 0.0282 | 0.1414 | 5.02072 | 9.24–16 | 8.52–17,401 | 130 | 9/14 | 59 |
| 50 | 14-3-3 protein epsilon | 1433E | YWHAE | P62258 | 0.0256 | 0.040 | 0.073 | 1.8259 | 4.26–27 | 4.63–29,326 | 221 | 17/20 | 47 |
| 51 | Vinculin | VINC | VCL | P18206 | 0.0261 | 0.006 | 0.018 | 3.16065 | 5.78–106 | 5.50–124,292 | 130 | 13/16 | 15 |
| 55 | UDP-glucose 4-epimerase | GALE | GALE | Q14376 | 0.028 | 0.0204 | 0.046 | 2.26711 | 6.27–32 | 6.26–38,656 | |||
| 78 | Neutral alpha-glucosidase AB | GANAB | GANAB | Q14697 | 0.0427 | 0.01 | 0.0202 | 2.045 | 5.73–89 | 5.74–107,263 | 239 | 2/25 | 25 |
| 46 | Ezrin | EZRI | EZR | P15311 | 0.022 | 0.0099 | 0.022 | 2.174 | 5.88–68 | 5.94–69,484 | 205 | 21/31 | 34 |
| 56 | MIX | 228 | |||||||||||
| Serotransferrin | TRFE | TF | P02787 | 0.0285 | 0.039 | 0.0962 | 2.449 | 6.29–67 | 6.81–79,280 | 119 | 15/38 | 25 | |
| Radixin | RADI | RDX | P35241 | 6.03–68,635 | 113 | 15/38 | 21 | ||||||
| 63 | Protein S100-A9 | S10A9 | S100A9 | P06702 | 0.0332 | 0.052 | 0.014 | 3.599 | 5.57–11 | 5.71–13,291 | |||
| 64 | Plectin fragm. (aa. 1061–1854) | PLEC | PLEC | Q15149 | 0.0334 | 0.0014 | 0.0059 | 4.239 | 5.32–142 | 5.74–533,462 | 91 | 13/13 | 3 |
| 66 | Putative protein-lysine deacylase ABHD14B | ABHEB | ABHD14B | Q96IU4 | 0.0337 | 0.0251 | 0.051 | 2.012 | 5.72–22 | 5.94–22,446 | 154 | 8/9 | 45 |
| 72 | Adenine phosphoribosyltransferase | APT | APRT | P07741 | 0.0382 | 0.014 | 0.061 | 4.2812 | 5.31–19 | 5.78–19,766 | 183 | 10/14 | 71 |
| 74 | MICOS complex subunit MIC60 | MIC60 | IMMT | Q16891 | 0.038 | 0.005 | 0.0132 | 2.436 | 5.86–72 | 6.08–84,025 | 140 | 9/9 | 17 |
| 75 | F-actin-capping protein subunit alpha-2 | CAZA2 | CAPZA2 | P47755 | 0.03991 | 0.0418 | 0.0824 | 1.97 | 5.47–31 | 5.57–33,157 | 222 | 12/13 | 55 |
| 76 | Vinculin | VINC | VCL | P18206 | 0.0405 | 0.001 | 0.004 | 3.853 | 5.3–142 | 5.50–124,292 | 253 | 23/26 | 27 |
| 77 | Septin-8 | SEPT8 | SEPTIN8 | Q92599 | 0.0413 | 0.029 | 0.058 | 2.035 | 5.73–44 | 5.89–56,234 | 194 | 15/19 | 30 |
| 79 | Enoyl-CoA hydratase, mitochondrial | ECHM | ECHS1 | P30084 | 0.0456 | 0.045 | 0.097 | 2.123 | 5.81–25 | 8.34–31,823 | 183 | 10/11 | 43 |
| 80 | Far upstream element-binding protein 2 | FUBP2 | KHSRP | Q92945 | 0.0458 | 0.0173 | 0.01 | 1.827 | 6.58–73 | 6.85–73,355 | 265 | 18/20 | 35 |
| 81 | Aminoacylase-1 | ACY1 | ACY1 | Q03154 | 0.0459 | 0.016 | 0.052 | 3.339 | 5.74–38 | 5.77–46,084 | 161 | 10/12 | 32 |
| 82 | 2-oxoglutarate dehydrogenase complex component E1 | ODO1 | OGDH | Q02218 | 0.047 | 0.003 | 0.007 | 2.529 | 6.16–101 | 6.40–117,059 | 165 | 14/16 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vantaggiato, L.; Frisenda, M.; Shaba, E.; Splendore, C.; Sciarra, B.; Bini, L.; Sciarra, A.; Landi, C. Proteomic Profiling of Non-Muscle Invasive Bladder Cancer Reveals Stage-Specific Molecular Signatures and Prognostic Biomarkers. Proteomes 2025, 13, 65. https://doi.org/10.3390/proteomes13040065
Vantaggiato L, Frisenda M, Shaba E, Splendore C, Sciarra B, Bini L, Sciarra A, Landi C. Proteomic Profiling of Non-Muscle Invasive Bladder Cancer Reveals Stage-Specific Molecular Signatures and Prognostic Biomarkers. Proteomes. 2025; 13(4):65. https://doi.org/10.3390/proteomes13040065
Chicago/Turabian StyleVantaggiato, Lorenza, Marco Frisenda, Enxhi Shaba, Chiara Splendore, Beatrice Sciarra, Luca Bini, Alessandro Sciarra, and Claudia Landi. 2025. "Proteomic Profiling of Non-Muscle Invasive Bladder Cancer Reveals Stage-Specific Molecular Signatures and Prognostic Biomarkers" Proteomes 13, no. 4: 65. https://doi.org/10.3390/proteomes13040065
APA StyleVantaggiato, L., Frisenda, M., Shaba, E., Splendore, C., Sciarra, B., Bini, L., Sciarra, A., & Landi, C. (2025). Proteomic Profiling of Non-Muscle Invasive Bladder Cancer Reveals Stage-Specific Molecular Signatures and Prognostic Biomarkers. Proteomes, 13(4), 65. https://doi.org/10.3390/proteomes13040065

