Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances
Abstract
1. Introduction
- RQ1:
- How has scientific production and collaboration on AI and solar energy in controlled agriculture evolved during 2012–2025, and what bibliometric patterns explain its consolidation?
- RQ2:
- Which technologies and algorithms, such as photovoltaic–thermal (PV/T) systems, IoT-based sensing, and machine learning (ML), have demonstrated the greatest maturity and impact on the energy and climate management of greenhouses and solar dryers?
- RQ3:
- What technical, methodological, and sustainability limitations identified in the literature constrain the adoption of these systems in real production contexts?
- RQ4:
- What future research and development directions emerge from the convergence between AI, renewable energy, and agricultural sustainability toward autonomous, resilient, and low-carbon systems?
2. Materials and Methods
2.1. Methodological Design
2.2. Sources and Search Equation
2.3. Selection and Eligibility Criteria
2.4. Bibliometric and Systematic Analysis
3. Results and Discussion
3.1. Number of Published Documents
3.2. Subject Areas Encompassed by the Scientific Field According to the Published Documents
3.3. Types of Published Documents
3.4. Countries Where the Publications Originate
3.5. Co-Authorship Network Among Countries
3.6. Bibliographic Coupling Network
3.7. Most Frequently Used Author Keywords
3.8. Keyword Co-Occurrence Network
3.9. Strategic Analysis of the Thematic Structure: Convergence Among Artificial Intelligence, Solar Energy, and Agricultural Sustainability
3.10. Multiple Correspondence Analysis and Thematic Convergence: Integration of Artificial Intelligence, Sustainability, and Solar Energy in Protected Agriculture
3.11. Subsection Artificial Intelligence and Solar Energy in Smart Greenhouses: Integration, Control, and Sustainability in PV/T Systems
3.12. Intelligent IoT-Based Systems for Energy and Environmental Management of Photovoltaic Greenhouses: Advances Toward Near-Zero Energy Consumption
3.13. Artificial Intelligence and Machine Learning for Solar and Climate Management in Controlled Agriculture: Optimization, Prediction, and Predictive Sustainability
3.14. Integration of Computational Intelligence and Solar Energy in Smart Greenhouses: Modeling, Control, and Agrivoltaic Sustainability
3.15. Limitations and Future Challenges
3.16. Perspectives and Research Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ML | Machine Learning |
| DL | Deep Learning |
| ANN | Artificial Neural Network |
| RNN | Recurrent Neural Network |
| LSTM | Long Short-Term Memory Network |
| Bi-LSTM | Bidirectional Long Short-Term Memory |
| CNN | Convolutional Neural Network |
| DCNN | Deep Convolutional Neural Network |
| MLP | Multilayer Perceptron |
| SVM | Support Vector Machine |
| ELM | Extreme Learning Machine |
| XGBoost | Extreme Gradient Boosting |
| TFT | Temporal Fusion Transformer |
| DRL | Deep Reinforcement Learning |
| DDPG | Deep Deterministic Policy Gradient |
| GWO-BP | Gray Wolf Optimizer–Backpropagation Neural Network |
| APSO-Fuzzy-PID | Adaptive Particle Swarm Optimization–Fuzzy–Proportional Integral Derivative Controller |
| RMPC-AI | Robust Model Predictive Control with Artificial Intelligence |
| SSA-CNN-LSTM | Salp Swarm Algorithm–Convolutional Neural Network–Long Short-Term Memory |
| PSO | Particle Swarm Optimization |
| GBRT | Gradient Boosting Regression Trees |
| MOORA | Multi-Objective Optimization on the Basis of Ratio Analysis |
| M-SWARA | Modified Stepwise Weight Assessment Ratio Analysis |
| TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
| Q-SWARA/Q-Theory | Quantum Theory–based Multi-Criteria Decision Model |
| IoT | Internet of Things |
| WSN | Wireless Sensor Network |
| NB-IoT | Narrowband Internet of Things |
| LoRa | Long Range Communication Technology |
| CFD | Computational Fluid Dynamics |
| BIM | Building Information Modeling |
| FSPM | Functional–Structural Plant Modeling |
| PV | Photovoltaic |
| ST | Solar Thermal |
| PV/T | Photovoltaic–Thermal Hybrid System |
| CPV/T | Concentrated Photovoltaic–Thermal System |
| BIPV | Building-Integrated Photovoltaics |
| TSP | Transparent Solar Panels |
| TES | Thermal Energy Storage |
| PCM | Phase Change Material |
| SHS | Sensible Heat Storage |
| LHS | Latent Heat Storage |
| TCES | Thermochemical Energy Storage |
| GSHP | Ground Source Heat Pump |
| SOC | State of Charge (Battery) |
| HVAC | Heating, Ventilation, and Air Conditioning |
| PAR | Photosynthetically Active Radiation |
| PFAL | Plant Factory with Artificial Lighting |
| NZEG | Near Zero Energy Greenhouse |
| SDGs | Sustainable Development Goals |
| LCA | Life Cycle Assessment |
| Agri-PV/Agrivoltaics | Combined Agricultural Production and Photovoltaic Energy Generation |
| PV-CEA | Photovoltaic-Controlled Environment Agriculture |
| EWMS | Energy–Water Management System |
| MPPT | Maximum Power Point Tracking |
| RMSE | Root Mean Square Error |
| MAE | Mean Absolute Error |
| R2 | Coefficient of Determination |
| ANN–SVM | Artificial Neural Network–Support Vector Machine Hybrid |
| RNA (Modelos RNA) | Artificial Neural Network (Spanish acronym) |
| PVG | Photovoltaic Generation (when used in cited works) |
References
- Khan, H.A.; Pervaiz, S. Technological Review on Solar PV in Pakistan: Scope, Practices and Recommendations for Optimized System Design. Renew. Sustain. Energy Rev. 2013, 23, 147–154. [Google Scholar] [CrossRef]
- Yildirim, N.; Bilir, L. Evaluation of a Hybrid System for a Nearly Zero Energy Greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, H.; Zhang, S.; Wang, Y.; Chow, D. Modeling and Optimization of Environment in Agricultural Greenhouses for Improving Cleaner and Sustainable Crop Production. J. Clean. Prod. 2021, 285, 124843. [Google Scholar] [CrossRef]
- Wang, T.; Wu, G.; Chen, J.; Cui, P.; Chen, Z.; Yan, Y.; Zhang, Y.; Li, M.; Niu, D.; Li, B. Integration of Solar Technology to Modern Greenhouse in China: Current Status, Challenges and Prospect. Renew. Sustain. Energy Rev. 2017, 70, 1178–1188. [Google Scholar] [CrossRef]
- Omidi-Arjenaki, O.; Ebrahimi, R.; Ghanbarian, D. Analysis of Energy Input and Output for Honey Production in Iran (2012–2013). Renew. Sustain. Energy Rev. 2016, 59, 952–957. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Ataiee, F.S.; Akram, A.; Kaab, A. Feasibility Study of Using Photovoltaic Cells for a Commercial Hydroponic Greenhouse: Energy Analysis and Life Cycle Assessment. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 8, 100597. [Google Scholar] [CrossRef]
- Elyasi, S.N.; Marami, H.; He, L.; Kaab, A.; Pan, J.; Liu, H.; Khoshnevisan, B. Up and Downstream Technologies of Anaerobic Digestion from Life Cycle Assessment Perspective. In Renewable Energy Technologies for Energy Efficient Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2022; pp. 361–389. [Google Scholar]
- Soussi, A.; Zero, E.; Ouammi, A.; Zejli, D.; Zahmoun, S.; Sacile, R. Smart Greenhouse Farming: A Review towards near Zero Energy Consumption. Discov. Cities 2025, 2, 55. [Google Scholar] [CrossRef]
- Kumar, R.; Thakur, A.K.; Gupta, L.R.; Gehlot, A.; Sikarwar, V.S. Advances in Phase Change Materials and Nanomaterials for Applications in Thermal Energy Storage. Environ. Sci. Pollut. Res. 2024, 31, 6649–6677. [Google Scholar] [CrossRef]
- Verma, S.K.; Kumar, R.; Mendiburu, A.Z.; Thakur, A.K.; Gupta, L.R.; Gehlot, A.; Sikarwar, V.S. Experimental and Numerical Investigations with Multifunctional Heat Transfer Fluid to Evaluate the Performance of a Thermal Energy Storage System. Therm. Sci. Eng. Prog. 2024, 53, 102717. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Hassanpour Adeh, E.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Widmer, J.; Christ, B.; Grenz, J.; Norgrove, L. Agrivoltaics, a Promising New Tool for Electricity and Food Production: A Systematic Review. Renew. Sustain. Energy Rev. 2024, 192, 114277. [Google Scholar] [CrossRef]
- Bicamumakuba, E.; Reza, M.N.; Jin, H.; Samsuzzaman; Lee, K.-H.; Chung, S.-O. Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management. Sensors 2025, 25, 6134. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Paranjape, R. A Systematic Review of Optimal and Practical Methods in Design, Construction, Control, Energy Management and Operation of Smart Greenhouses. IEEE Access 2023, 12, 2830–2853. [Google Scholar] [CrossRef]
- Volosciuc, C.; Bogdan, R.; Blajovan, B.; Stângaciu, C.; Marcu, M. GreenLab, an IoT-Based Small-Scale Smart Greenhouse. Futur. Internet 2024, 16, 195. [Google Scholar] [CrossRef]
- Don Chua, W.F.; Lim, C.L.; Koh, Y.Y.; Kok, C.L. A Novel IoT Photovoltaic-Powered Water Irrigation Control and Monitoring System for Sustainable City Farming. Electronics 2024, 13, 676. [Google Scholar] [CrossRef]
- Dimitriadis, C.N.; Passalis, N.; Georgiadis, M.C. A Deep Learning Framework for Photovoltaic Power Forecasting in Multiple Interconnected Countries. Sustain. Energy Technol. Assess. 2025, 77, 104330. [Google Scholar] [CrossRef]
- Nautiyal, M.; Joshi, S.; Hussain, I.; Rawat, H.; Joshi, A.; Saini, A.; Kapoor, R.; Verma, H.; Nautiyal, A.; Chikara, A. Revolutionizing Agriculture: A Comprehensive Review on Artificial Intelligence Applications in Enhancing Properties of Agricultural Produce. Food Chem. X 2025, 29, 102748. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, B.-W.; Lin, Y.-J.; Zheng, J.-X. Smart Crop Growth Monitoring Based on System Adaptivity and Edge AI. IEEE Access 2022, 10, 64114–64125. [Google Scholar] [CrossRef]
- Villagran, E.; Espitia, J.J.; Velázquez, F.A.; Rodriguez, J. Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies. AgriEngineering 2024, 6, 4041–4063. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae 2023, 10, 15. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Santillan-Angeles, A.; Mendoza-Perez, C.; Villagrán, E.; Garcia, F.; Flores-Velazquez, J. Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades. Water 2025, 17, 746. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Q.; Minami, M. Generating Capacity Prediction of Automatic Tracking Power Generation System on Inflatable Membrane Greenhouse Attached Photovoltaic. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2012, 43, 305–310+299. [Google Scholar]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Riahi, J.; Vergura, S.; Mezghani, D.; Mami, A. Intelligent Control of the Microclimate of an Agricultural Greenhouse Powered by a Supporting PV System. Appl. Sci. 2020, 10, 1350. [Google Scholar] [CrossRef]
- Hamied, A.; Mellit, A.; Benghanem, M.; Boubaker, S. IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region. Energies 2023, 16, 3860. [Google Scholar] [CrossRef]
- Pour, S.; Motevali, A.; Samadi, S.H.; Nedamani, R.-N.; Biparva, P.; Anvari-Moghaddam, A. An Artificial Intelligence Approach to Predict Energy Parameters in a Photovoltaic-Thermal System within a Greenhouse. Sol. Energy 2025, 295, 113544. [Google Scholar] [CrossRef]
- Torres, M.A.; Muñoz, D.; Burgos, C.; Casagrande, D.; Ortiz, J.; Reyes, H. Design and Performance Evaluation of a Photovoltaic Greenhouse as an Energy Hub with Battery Storage and an Electric Vehicle Charger. Sustainability 2024, 16, 981. [Google Scholar] [CrossRef]
- Banluesapy, S.; Ketcham, M.; Rattanasiriwongwut, M. AI-Augmented Smart Irrigation System Using IoT and Solar Power for Sustainable Water and Energy Management. Energy Eng. 2025, 122, 4261–4296. [Google Scholar]
- Boateng, I.D. A Review of Solar and Solar-assisted Drying of Fresh Produce: State of the Art, Drying Kinetics, and Product Qualities. J. Sci. Food Agric. 2023, 103, 6137–6149. [Google Scholar] [CrossRef] [PubMed]
- Bezari, S.; Adda, A.; Kherrour, S.; Zarrit, R. Artificial Neural Network Application for the Prediction of Global Solar Radiation Inside a Greenhouse. In Renewable Energy Resources and Conservation; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3–9. [Google Scholar]
- Alsafasfeh, Q.; Brown, W.; Saraereh, O.A. An Optimal Approach for PV Power Optimization Based on Neural Network. In Proceedings of the 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, NV, USA, 21–25 May 2023; IEEE: New York, NY, USA, 2023; pp. 1–8. [Google Scholar]
- Zanol, G.C.; Solis, J.; Bergstrand, K.-J. Intelligent Lighting Control System for Greenhouses with a High Proportion of Local Renewable Energy. In Proceedings of the EHC2024: International Symposium on Robotics, Mechanization and Smart Horticulture 1433, Bucharest, Romania, 12–16 May 2024; pp. 19–30. [Google Scholar]
- Karaağaç, M.O.; Ergün, A.; Ağbulut, Ü.; Gürel, A.E.; Ceylan, I. Experimental Analysis of CPV/T Solar Dryer with Nano-Enhanced PCM and Prediction of Drying Parameters Using ANN and SVM Algorithms. Sol. Energy 2021, 218, 57–67. [Google Scholar] [CrossRef]
- Harrou, F.; Sun, Y.; Taghezouit, B.; Dairi, A. Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting. Energies 2023, 16, 6731. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of Scientific Production on Organizational Innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Villagran, E.; Espitia, J.J.; Rodriguez, J.; Gomez, L.; Amado, G.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Akrami, M.; Gil, R. Use of Lighting Technology in Controlled and Semi-Controlled Agriculture in Greenhouses and Protected Agriculture Systems—Part 1: Scientific and Bibliometric Analysis. Sustainability 2025, 17, 1712. [Google Scholar] [CrossRef]
- Pandeya, S.; Gajurel, A.; Mishra, B.P.; Devkota, K.; Gyawali, B.R.; Upadhaya, S. Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability. Sustainability 2024, 16, 10247. [Google Scholar] [CrossRef]
- Kasinathan, S.; Ayyasamy, R. An Optimised Design Modelling of a Neural Network Based Greenhouse Management System Using Solar Energy and Rectifier Antenna. DYNA-Ing. E Ind. 2022, 97, 85–91. [Google Scholar]
- Liao, B.; Qi, Y.; Fu, W.; Kumar Soothar, M. Current Status and Future Trends in China’s Photovoltaic Agriculture Development. Sustainability 2025, 17, 8625. [Google Scholar] [CrossRef]
- Domenteanu, A.; Delcea, C.; Florescu, M.-S.; Gherai, D.S.; Bugnar, N.; Cotfas, L.-A. United in Green: A Bibliometric Exploration of Renewable Energy Communities. Electronics 2024, 13, 3312. [Google Scholar] [CrossRef]
- Mentel, G.; Lewandowska, A.; Berniak-Woźny, J.; Tarczyński, W. Green and Renewable Energy Innovations: A Comprehensive Bibliometric Analysis. Energies 2023, 16, 1428. [Google Scholar] [CrossRef]
- de la Cruz-Lovera, C.; Perea-Moreno, A.-J.; de la Cruz-Fernández, J.L.; Montoya, F.G.; Alcayde, A.; Manzano-Agugliaro, F. Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection. Energies 2019, 12, 2030. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Maghrabie, H.M.; Heikal, L.A.; Abdelkareem, M.A.; Rahman, S.M.A.; Shah, S.K.; Sayed, E.T. Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals. Energies 2022, 15, 9501. [Google Scholar] [CrossRef]
- Sharma, B.; Kose, U.; Singh, V.P.; Kumar, A. Computational Intelligence, and Smart Technologies in Solar Thermal Systems: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2025; ISBN 104041267X. [Google Scholar]
- Ouazzani Chahidi, L.; Fossa, M.; Priarone, A.; Mechaqrane, A. Evaluation of Supervised Learning Models in Predicting Greenhouse Energy Demand and Production for Intelligent and Sustainable Operations. Energies 2021, 14, 6297. [Google Scholar] [CrossRef]
- Villagran, E.; Rocha, G.A.O.; Mojica, L.; Florez-Velazquez, J.; Aguilar, C.E.; Gomez, L.; Gomez, D.; Antolinez, E.; Numa, S. Scientific Analysis of Cut Flowers: A Review of the Main Technical Issues Developed. Ornam. Hortic. 2024, 30, e242699. [Google Scholar] [CrossRef]
- Shahbaz, M.; Dinçer, H.; Yüksel, S.; Jiao, Z. An Assessment of Circular Economy-Oriented Renewable Energy Projects via Artificial Intelligence Recommender Systems and a Hybrid Quantum Fuzzy Decision-Making Approach. Renew. Energy 2025, 244, 122673. [Google Scholar] [CrossRef]
- Ben Ali, N.; Han, B.B.; Patel, S.K.; Armghan, A.; Aliqab, K.; Alsharari, M. Graphene-Based Thin Wire K-Shaped Machine Learning Optimized Solar Thermal Absorber Design Using Cr-SiO2-Ag Materials. Ain Shams Eng. J. 2025, 16, 103262. [Google Scholar]
- Barzigar, A.; Mujumdar, A.S.; Hosseinalipour, S.M. Review of Seawater Greenhouses: Integrating Sustainable Agriculture into Green Building. Water Conserv. Sci. Eng. 2025, 10, 77. [Google Scholar] [CrossRef]
- Alturif, G.; Saleh, W.; El-Bary, A.A.; Osman, R.A. Towards Efficient IoT Communication for Smart Agriculture: A Deep Learning Framework. PLoS ONE 2024, 19, e0311601. [Google Scholar] [CrossRef] [PubMed]
- Solis, J.; Funaki, A.; Hysseiny, M.T. Challenges for Autonomous Monitoring Systems in Indoor Farming: From System Integration, Monitoring and Optimization of Energy Storage. In Proceedings of the International Workshop IFToMM for Sustainable Development Goals, Bilbao, Spain, 9–11 June 2025; Springer: Berlin/Heidelberg, Germany, 2025; pp. 284–292. [Google Scholar]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Espitia, J.J.; Velázquez, F.A.; Rodriguez, J.; Gomez, L.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Villagran, E. Solar Energy Applications in Protected Agriculture: A Technical and Bibliometric Review of Greenhouse Systems and Solar Technologies. Agronomy 2024, 14, 2791. [Google Scholar] [CrossRef]
- Venkateswaran, D.; Cho, Y. Efficient Solar Power Generation Forecasting for Greenhouses: A Hybrid Deep Learning Approach. Alex. Eng. J. 2024, 91, 222–236. [Google Scholar] [CrossRef]
- Solis, J.; Bergstrand, K.-J.; Egyna, D.; Andersson, I.M.; Nilsson, M.; Zanol, G.C.; Burman, S.-P. System Integration of an Intelligent Lighting Control System for Greenhouses with a High Proportion of Local Renewable Energy. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Mora-Frank, C.; Berrezueta, E. Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research. Water 2022, 14, 1082. [Google Scholar] [CrossRef]
- Hu, G.; You, F. Assessment of AI-Based Robust Model Predictive Control Application in Large-Scale Photovoltaic-Based Controlled Environment Agriculture for Urban Agriculture. IFAC-Pap. 2024, 58, 368–373. [Google Scholar] [CrossRef]
- Tao, X.; Liu, L.; Hai, T.; Wang, J.; Cheng, P. Rooftop Greenhouse System Based on Photovoltaic and Internet of Things Research and Design. In Proceedings of the 4th International Conference on Laser, Optics, and Optoelectronic Technology (LOPET 2024), Chongqing, China, 17–19 May 2024; SPIE: Bellingham, DC, USA, 2024; Volume 13231, pp. 813–822. [Google Scholar]
- Fiesta, H.V.R.; Tria, L.A.R. A Machine Learning-Based Integrated Energy and Water Management System for a Greenhouse. In Proceedings of the TENCON 2024-2024 IEEE Region 10 Conference (TENCON), Singapore, 1–4 December 2024; IEEE: New York, NY, USA, 2024; pp. 1493–1498. [Google Scholar]
- Khani, N.; Manesh, M.H.K.; Onishi, V.C. Optimal 6E Design of an Integrated Solar Energy-Driven Polygeneration and CO2 Capture System: A Machine Learning Approach. Therm. Sci. Eng. Prog. 2023, 38, 101669. [Google Scholar] [CrossRef]
- Yu, R.; Wu, B.; Huang, X. Applied Research on Solar Water Saving Drip Irrigation System. In Proceedings of the 2024 5th International Conference on Computers and Artificial Intelligence Technology (CAIT), Hangzhou, China, 20–22 December 2024; IEEE: New York, NY, USA, 2024; pp. 384–387. [Google Scholar]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Vergel, S.J.N.; Arias, L.G.; Giraldo, Y.R.; Villagran, E. La Técnica Del Cultivo Sin Suelo y Su Contribución Al Mejoramiento Tecnológico de La Agricultura Bajo Cubierta: Un Análisis Bibliométrico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 7053–7074. [Google Scholar]
- Zhou, X.; Li, M.; Zhang, Y.; Wang, Y.; Li, G.; Zhang, Y.; Guan, X.; Xing, T. Research on Residual Heat Prediction and Energy Management Control of Photovoltaic Greenhouse Based on Data-Driven Method. Sol. Energy 2025, 302, 114046. [Google Scholar] [CrossRef]
- Yao, H.; Liang, J.; Wang, Y.; Li, M.; Fan, F.; Ma, X.; Xiao, X. The Influence of Photovoltaic Modules on the Greenhouse Micro-Environment-A Review. Renew. Sustain. Energy Rev. 2025, 210, 115214. [Google Scholar] [CrossRef]
- Marucci, A.; Cappuccini, A. Dynamic Photovoltaic Greenhouse: Energy Efficiency in Clear Sky Conditions. Appl. Energy 2016, 170, 362–376. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Ming, L. Influences of Greenhouse-Integrated Semi-Transparent Photovoltaics on Microclimate and Lettuce Growth. Int. J. Agric. Biol. Eng. 2017, 10, 11–22. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Yin, F. The Integration of Semi-Transparent Photovoltaics on Greenhouse Roof for Energy and Plant Production. Renew. Energy 2018, 121, 377–388. [Google Scholar] [CrossRef]
- Yano, A.; Cossu, M. Energy Sustainable Greenhouse Crop Cultivation Using Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2019, 109, 116–137. [Google Scholar] [CrossRef]
- Li, Z.; Yano, A.; Yoshioka, H. Feasibility Study of a Blind-Type Photovoltaic Roof-Shade System Designed for Simultaneous Production of Crops and Electricity in a Greenhouse. Appl. Energy 2020, 279, 115853. [Google Scholar] [CrossRef]
- Teitel, M.; Ozer, S.; Vitoshkin, H. CFD Analysis of Irradiance and Its Distribution in a Photovoltaic Greenhouse. Agriculture 2025, 15, 1867. [Google Scholar] [CrossRef]
- La Notte, L.; Giordano, L.; Calabrò, E.; Bedini, R.; Colla, G.; Puglisi, G.; Reale, A. Hybrid and Organic Photovoltaics for Greenhouse Applications. Appl. Energy 2020, 278, 115582. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Katsikogiannis, O.A.; Ziar, H.; Isabella, O. Integration of Bifacial Photovoltaics in Agrivoltaic Systems: A Synergistic Design Approach. Appl. Energy 2022, 309, 118475. [Google Scholar] [CrossRef]
- Jafarzadeh, F.; Castriotta, L.A.; Legrand, M.; Ory, D.; Cacovich, S.; Skafi, Z.; Barichello, J.; De Rossi, F.; Di Giacomo, F.; Di Carlo, A. Flexible, Transparent, and Bifacial Perovskite Solar Cells and Modules Using the Wide-Band Gap FAPbBr3 Perovskite Absorber. ACS Appl. Mater. Interfaces 2024, 16, 17607–17616. [Google Scholar] [CrossRef]
- Maraveas, C.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Uijterwaal, J.F. Smart and Solar Greenhouse Covers: Recent Developments and Future Perspectives. Front. Energy Res. 2021, 9, 783587. [Google Scholar] [CrossRef]
- Bularka, S.; Vajda, M.; Ilies, E.; Ricman, R.; Marinca, M.; Miclau, M.; Gontean, A.; Ursu, D. Photovoltaic Tiles for the Wavelength-Selective Greenhouse: Exploring Yellow and Green Dye-Sensitized Solar Cells in Outdoor Conditions. Appl. Sci. 2024, 14, 1957. [Google Scholar] [CrossRef]
- Vavra, L.; Novak, T.; Valicek, P.; Gono, R. The Potential Savings in Power Consumption of Greenhouse Lighting Caused by the Transition from High-Pressure Sodium Lamps to White LED. In Proceedings of the International Scientific Symposium on Electrical Power Engineering, Stará Lesná, Slovakia, 11–13 September 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 212–221. [Google Scholar]
- Bouarroudj, K.; Babaa, F.; Touil, A. IoT-Based Monitoring and Control for Optimized Plant Growth in Smart Greenhouses Using Soil and Hydroponic Systems. Internet Things 2025, 33, 101710. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.; Xiao, Y.; Dong, W.; Fairbank, M.; Lu, B. An Iterative Optimization and Learning-Based IoT System for Energy Management of Connected Buildings. IEEE Internet Things J. 2022, 9, 21246–21259. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Khushaim, M. Environmental Monitoring of a Smart Greenhouse Powered by a Photovoltaic Cooling System. J. Taibah Univ. Sci. 2023, 17, 2207775. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.V.; Kedam, N.; Patel, A.; Kate, T.R.; Rathnayake, U. A Comprehensive Review on Smart and Sustainable Agriculture Using IoT Technologies. Smart Agric. Technol. 2024, 8, 100487. [Google Scholar] [CrossRef]
- Manoharan, S.; Lean, C.P.; Li, C.; Yuan, K.F.; Kiat, N.P.; Khan, M.R.B. IoT-Enabled Greenhouse Systems: Optimizing Plant Growth and Efficiency. Malays. J. Sci. Adv. Technol. 2024, 4, 169–179. [Google Scholar] [CrossRef]
- Al-Naemi, S.; Al-Otoom, A. Smart Sustainable Greenhouses Utilizing Microcontroller and IOT in the GCC Countries; Energy Requirements & Economical Analyses Study for a Concept Model in the State of Qatar. Results Eng. 2023, 17, 100889. [Google Scholar] [CrossRef]
- Touhami, A.; Bourouis, A.; Touhami, N.; Touhami, S.; Benahmed, T.; Benahmed, K. A System for Monitoring Hydroponic Plants in Greenhouse Using WSN, IoT and RnE. In Proceedings of the International Conference on Artificial Intelligence in Renewable Energetic Systems, Mostaganem, Algeria, 22–24 November 2025; Springer: Berlin/Heidelberg, Germany, 2023; pp. 48–58. [Google Scholar]
- Maraveas, C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Hoque, A.; Roy, S.; Padhiary, M.; Prasad, G.; Swain, B.; Saikia, P.; Saha, D. Integrating Remote Sensing and AI in Smart Greenhouse Solar Dryers: Enhancing Efficiency, Traceability, and Sustainability in the Drying of Fruits and Spices. J. Agric. Food Res. 2025, 23, 102310. [Google Scholar] [CrossRef]
- Iqbal, S.; Hasan, S.M.; Ayaz, Y.; Din, E.U.; Waqas, A.; Sajid, M. Condition Monitoring of Photovoltaic Panels through Electrical Impedance Spectroscopy and Machine Learning Focusing on Temperature, Dust and Microcracks. IEEE Access 2025, 13, 53039–53052. [Google Scholar] [CrossRef]
- Choubey, P.; Sinhmar, H.; Tiwari, S. A Review on Machine Learning Assisted Solar Drying System with Phase Change Material. J. Energy Storage 2025, 119, 116403. [Google Scholar] [CrossRef]
- Saeidirad, M.H.; Gandomzadeh, D.; Sabeghi, Y.; Khorramdel, S.; Rohani, A.; Einafshar, S.; Saeidirad, Y. Evaluating the Effect of Drying Factors on Secondary Metabolites of Saffron Using TOPSIS and Meta-Analysis. J. Food Meas. Charact. 2025, 1–14. [Google Scholar] [CrossRef]
- Venkatesan, S.; Cho, Y. Multi-Timeframe Forecasting Using Deep Learning Models for Solar Energy Efficiency in Smart Agriculture. Energies 2024, 17, 4322, Erratum in Energies 2024, 17, 5136. [Google Scholar] [CrossRef]
- Beniuga, C.R.; Pingescu, B.A.; Beniuga, O.C.; Dragomir, A.; Astanei, D.-G.; Burlica, R. Photovoltaic Panel System with Optical Dispersion of Solar Light for Greenhouse Agricultural Applications. AgriEngineering 2025, 7, 125. [Google Scholar] [CrossRef]
- Kujawa, A.; Hanrieder, N.; Wilbert, S.; Fernández Solas, Á.; González Rodríguez, S.; Alonso-García, M.d.C.; Polo, J.; Carballo, J.A.; López-Díaz, G.; Cornaro, C. A Ray-Tracing-Based Irradiance Model for Agrivoltaic Greenhouses: Development and Application. Agronomy 2025, 15, 665. [Google Scholar] [CrossRef]
- Hasan, Y.; Lubitz, W.D. A Sustainable Agri-Photovoltaic Greenhouse for Lettuce Production in Qatar. Energies 2024, 17, 4937. [Google Scholar] [CrossRef]
- Nagarsheth, S.; Agbossou, K.; Henao, N.; Bendouma, M. The Advancements in Agricultural Greenhouse Technologies: An Energy Management Perspective. Sustainability 2025, 17, 3407. [Google Scholar] [CrossRef]
- Jamshidi, F.; Ghiasi, M.; Mehrandezh, M.; Wang, Z.; Paranjape, R. Optimizing Energy Consumption in Agricultural Greenhouses: A Smart Energy Management Approach. Smart Cities 2024, 7, 859–879. [Google Scholar] [CrossRef]
- Nikolić, D.; Jovanović, S.; Jurišević, N.; Nikolić, N.; Radulović, J.; Velemir Radović, M.; Grujić, I. Sustainable Design in Agriculture—Energy Optimization of Solar Greenhouses with Renewable Energy Technologies. Energies 2025, 18, 416. [Google Scholar] [CrossRef]
- Padilla, J.; Toledo, C.; López-Vicente, R.; Montoya, R.; Navarro, J.-R.; Abad, J.; Urbina, A. Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials. Energies 2021, 14, 438. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, J.; Ma, Y. Advances in 3D Simulation Technology for Solar Greenhouse Systems: A Review. Renew. Sustain. Energy Rev. 2026, 226, 116387. [Google Scholar] [CrossRef]
- Steren, A.; Slater, Y.; Rubin, O.D.; Fleischer, A.; Kan, I. Toward Sustainable Practices in Photovoltaic and Agricultural Greenhouse Systems: An Ecosystem Services Framework. Energy Econ. 2025, 144, 108364. [Google Scholar] [CrossRef]
- Özdemir, Ö.E.; Bretzel, T.; Gfüllner, L.; Gorjian, S.; Katircioglu, Y.; Dur, B.; Trommsdorff, M. Design, Simulation, and Experimental Evaluation of an Agrivoltaic Greenhouse in Turkey. Results Eng. 2025, 26, 105278. [Google Scholar] [CrossRef]











| N° | Title (Reference) | Key Contribution (Academic Summary) |
|---|---|---|
| 1 | IoT-based monitoring and control for optimized plant growth in smart greenhouses using soil and hydroponic systems [84]. | This study demonstrates the functional integration of IoT sensors, actuators, and a PV system with MPPT, enabling autonomous control of microclimate and water management. The hybrid soil–hydroponic PV-powered greenhouse provides strong empirical evidence of energy self-sufficiency and intelligent climate regulation in protected systems. |
| 2 | A comprehensive review on smart and sustainable agriculture using IoT technologies [87]. | This systematic review synthesizes the state of the art in the convergence of IoT, machine learning, and renewable energy, emphasizing how these technologies enable predictive, resilient, and low-carbon agricultural systems. It provides a rigorous conceptual foundation for understanding the digital transition toward agro-energetic sustainability. |
| 3 | IoT-enabled Greenhouse Systems: Optimizing Plant Growth and Energy Use [88]. | The work analyzes IoT architectures for microclimate management using adaptive control algorithms, reporting improvements in energy consumption and stability of critical variables (temperature, humidity, radiation). The study demonstrates that distributed sensing and real-time analytics are essential pillars for energy-optimized protected agriculture. |
| 4 | Smart sustainable greenhouses utilizing microcontroller and IOT in the GCC countries; energy requirements y economical analyses study for a concept model in the state of Qatar [89]. | This paper experimentally validates that IoT-PV greenhouses can operate with high levels of energy self-sufficiency while maintaining climatic parameters within agronomic ranges. It confirms that solar energy integration, combined with automated control, reduces operational costs and enhances resilience to climatic variability. |
| 5 | Environmental monitoring of a smart greenhouse powered by a photovoltaic system [86]. | The study evaluates an environmental monitoring system integrated into a fully autonomous PV array, demonstrating stable energy supply and continuous data acquisition. The key contribution lies in validating the compatibility of advanced monitoring with stand-alone photovoltaic operation, particularly relevant in regions with limited infrastructure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagran, E.; Espitia, J.J.; Velázquez, F.A.; Sarmiento, A.; Velandia, D.A.S.; Rodriguez, J. Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances. Technologies 2025, 13, 574. https://doi.org/10.3390/technologies13120574
Villagran E, Espitia JJ, Velázquez FA, Sarmiento A, Velandia DAS, Rodriguez J. Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances. Technologies. 2025; 13(12):574. https://doi.org/10.3390/technologies13120574
Chicago/Turabian StyleVillagran, Edwin, John Javier Espitia, Fabián Andrés Velázquez, Andres Sarmiento, Diego Alejandro Salinas Velandia, and Jader Rodriguez. 2025. "Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances" Technologies 13, no. 12: 574. https://doi.org/10.3390/technologies13120574
APA StyleVillagran, E., Espitia, J. J., Velázquez, F. A., Sarmiento, A., Velandia, D. A. S., & Rodriguez, J. (2025). Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances. Technologies, 13(12), 574. https://doi.org/10.3390/technologies13120574

