Optimizing Drug Therapy in ECMO-Supported Critically Ill Adults: A Narrative Review and Clinical Guide
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Medication Selection
2.4. Data Extraction and Synthesis
2.5. Use of Generative Artificial Intelligence
2.6. Risk of Bias
2.7. Evidence Grading and Target Harmonization
3. Results
3.1. Analgesics
3.2. Anesthetics and Sedatives
3.3. Antimicrobials
3.4. Adrenergic Agents
3.5. Anticoagulants
3.6. Neuromuscular Blockers
3.7. Electrolytes
3.8. Study Selection
3.9. Methodological Quality
3.9.1. Evaluation Using the JBI Critical Appraisal Tool
3.9.2. Summary of Evidence Quality
3.10. Drugs with No ECMO Data
3.11. Guideline with Suggest Recommendations
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Definition |
| ACT | Activated Clotting Time |
| ARC | Augmented Renal Clearance |
| AUC | Area Under the Curve |
| BMI | Body Mass Index |
| BPS | Behavioral Pain Scale |
| CI | Cardiac Index/Continuous Infusion (specify in context) |
| CL | Clearance |
| CPOT | Critical-Care Pain Observation Tool |
| CRRT | Continuous Renal Replacement Therapy |
| ECMO | Extracorporeal Membrane Oxygenation |
| EI | Extended Infusion |
| FXa | Anti-factor Xa |
| HIT | Heparin-Induced Thrombocytopenia |
| ICU | Intensive Care Unit |
| INN | International Nonproprietary Name |
| IV | Intravenous |
| KDIGO | Kidney Disease Improving Global Outcomes |
| LD | Loading Dose |
| MAP | Mean Arterial Pressure |
| MDR | Multi-Drug-Resistant |
| MIC | Minimum Inhibitory Concentration |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| PK | Pharmacokinetics |
| PD | Pharmacodynamics |
| PopPK | Population Pharmacokinetics |
| PRIS | Propofol Infusion Syndrome |
| RASS | Richmond Agitation-Sedation Scale |
| SvO2 | Mixed Venous Oxygen Saturation |
| TDM | Therapeutic Drug Monitoring |
| UFH | Unfractionated Heparin |
| VA-ECMO | Veno-arterial ECMO |
| Vd | Volume of Distribution |
| VV-ECMO | Veno-venous ECMO |
| t½ | Elimination half-life |
Appendix A
| Date Base | Search Strategy | Filters Applied in the Datebase | Date of Last Searched |
|---|---|---|---|
| PubMed/MEDLINE | (“Extracorporeal Membrane Oxygenation” [Mesh] OR ECMO OR “Extracorporeal Life Support”) AND (“Intensive Care Units” [Mesh] OR “Critical Care” [Mesh] OR ICU OR “Intensive Care”) AND (“INN” [Mesh]) AND (“Pharmacokinetics” [Mesh] OR pharmacokinetics OR “Dose-Response Relationship, Drug” [Mesh] OR “Dose Titration” OR therapeutic monitoring) AND (“Adult” [Mesh] OR adult OR “young adult” [Mesh] OR “middle aged” [Mesh] OR “Aged” [Mesh]) “INN dose adjustment on ECMO” “INN pharmacokinetics on ECMO” | Clinical Study, Clinical Trial, Guideline, Meta-Analysis, Observational Study, Randomized Controlled Trial, Review, Systematic Review, in Adult: 19+ years, published in the Last 10 Years. | 11 May 2025 |
| EMBASE | (‘extracorporeal membrane oxygenation’/exp OR ECMO OR ‘extracorporeal life support’) AND (‘intensive care unit’/exp OR ICU OR ‘critical care’ OR ‘intensive care’) AND (‘INN’) AND (‘pharmacokinetics’/exp OR ‘pharmacodynamics’/exp OR ‘dose titration’/exp OR ‘therapeutic drug monitoring’/exp) “INN dose adjustment on ECMO” “INN pharmacokinetics on ECMO” | Articles, Review Articles and clinical trials published in the Last 10 Years | 11 May 2025 |
| Scopus | (“extracorporeal membrane oxygenation” OR ECMO OR “extracorporeal life support”) (“intensive care” OR ICU OR “critical care”) (“INN”) (“pharmacokinetics” OR “pharmacodynamics” OR “dose titration” OR “therapeutic monitoring”) (“adult” OR “patients over 18 years”) “INN dose adjustment on ECMO” “INN pharmacokinetics on ECMO” | Articles and Review Articles published in the Last 10 Years | 11 May 2025 |
| Cochrane Library | “INN” AND “ECMO” | Clinical Trials, Observational Studies, Systematic Reviews, and Meta-analyses published in the Last 10 Years. | 11 May 2025 |
| Sage Journals | “INN AND Dose Adjustment AND Pharmacokinetics AND Pharmacodynamics AND Extracorporeal Membrane Oxygenation AND Adults” | Research Articles and Review Articles published in the Last 10 Years | 11 May 2025 |
| ScienceDirect | “INN AND Dose Adjustment AND Pharmacokinetics AND Pharmacodynamics AND Extracorporeal Membrane Oxygenation AND Adults” | Research Articles, Review Articles and Practice Guidelines published in the Last 10 Years | 11 May 2025 |
| Taylor & Francis Online | “INN AND Dose Adjustment AND Pharmacokinetics AND Pharmacodynamics AND Extracorporeal Membrane Oxygenation AND Adults” | Articles published in the Last 10 Years | 11 May 2025 |
| SpringerLink | “INN AND Dose Adjustment AND Pharmacokinetics AND Pharmacodynamics AND Extracorporeal Membrane Oxygenation AND Adults” | Articles, Research Articles, Review Articles and Practice Guidelines published in the Last 10 Years | 11 May 2025 |
| Specialized clinical databases (Micromedex, DynaMed, UpToDate) | INN | N.A. | 11 May 2025 |
Appendix B

References
- Bartlett, R.H. The Story of ECMO. Anesthesiology 2024, 140, 578–584. [Google Scholar] [CrossRef]
- Govender, K.; Cabrales, P. Extracorporeal circulation impairs microcirculation perfusion and organ function. J. Appl. Physiol. 2022, 132, 794–810. [Google Scholar] [CrossRef]
- Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Life Support for Adults with Respiratory Failure and Related Indications: A Review. JAMA 2019, 322, 557. [Google Scholar] [CrossRef]
- Carroll, B.J.; Shah, R.V.; Murthy, V.; McCullough, S.A.; Reza, N.; Thomas, S.S.; Song, T.H.; Newton-Cheh, C.H.; Camuso, J.M.; MacGillivray, T.; et al. Clinical Features and Outcomes in Adults with Cardiogenic Shock Supported by Extracorporeal Membrane Oxygenation. Am. J. Cardiol. 2015, 116, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Kooda, K.; Igneri, L.A. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann. Pharmacother. 2023, 57, 706–726. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Creteur, J. The Critically Ill Patient. Critical Care Nephrology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–4.e1. [Google Scholar] [CrossRef]
- Kayambankadzanja, R.K.; Schell, C.O.; Wärnberg, M.G.; Tamras, T.; Mollazadegan, H.; Holmberg, M.; Alvesson, H.M.; Baker, T. Towards definitions of critical illness and critical care using concept analysis. BMJ Open 2022, 12, e060972. [Google Scholar] [CrossRef]
- Yalcin, N.; Sürmelioğlu, N.; Allegaert, K. Population pharmacokinetics in critically ill neonates and infants undergoing extracorporeal membrane oxygenation: A literature review. BMJ Paediatr. Open 2022, 6, e001512. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, 741.e9–741.e18. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Mahmood, M.; Estes, L.L.; Wilson, J.W.; Martin, N.J.; Marcus, J.E.; Mittal, A.; O’Connell, C.R.; Shah, A. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Crit. Care 2024, 28, 326. [Google Scholar] [CrossRef]
- Ochroch, J.; Usman, A.; Kiefer, J.; Pulton, D.; Shah, R.; Grosh, T.; Patel, S.; Vernick, W.; Gutsche, J.T.; Raiten, J. Reducing Opioid Use in Patients Undergoing Cardiac Surgery—Preoperative, Intraoperative, and Critical Care Strategies. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2155–2165. [Google Scholar] [CrossRef]
- Ren, X.; Ai, Y.; Zhang, L.; Zhao, C.; Li, L.; Ma, X. Sedation and analgesia requirements during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome patients. Perfusion 2023, 38, 313–319. [Google Scholar] [CrossRef]
- Shah, A.G.; Peahota, M.; Thoma, B.N.; Kraft, W.K. Medication Complications in Extracorporeal Membrane Oxygenation. Crit. Care Clin. 2017, 33, 897–920. [Google Scholar] [CrossRef]
- Meng, M.-L.; Bacchetta, M.D.; Spellman, J. Anesthetic management of the patient with extracorporeal membrane oxygenator support. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 227–236. [Google Scholar] [CrossRef]
- Dzierba, A.L.; Muir, J.; Dilawri, A.; Buckley, M.S. Optimizing pharmacotherapy regimens in adult patients receiving extracorporeal membrane oxygenation: A narrative review for clinical pharmacists. J. Am. Coll. Clin. Pharm. 2023, 6, 621–631. [Google Scholar] [CrossRef]
- Nigoghossian, C.D.; Dzierba, A.L.; Etheridge, J.; Roberts, R.; Muir, J.; Brodie, D.; Schumaker, G.; Bacchetta, M.; Ruthazer, R.; Devlin, J.W. Effect of Extracorporeal Membrane Oxygenation Use on Sedative Requirements in Patients with Severe Acute Respiratory Distress Syndrome. Pharmacotherapy 2016, 36, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Altshuler, D.; Lewis, T.C.; Merchan, C.; Smith, D.E.; Toy, B.; Zakhary, B.; Papadopoulos, J. Sedation Requirements in Patients on Venovenous or Venoarterial Extracorporeal Membrane Oxygenation. Ann. Pharmacother. 2020, 54, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Landolf, K.M.; Rivosecchi, R.M.; Goméz, H.; Sciortino, C.M.; Murray, H.N.; Padmanabhan, R.R.; Sanchez, P.G.; Harano, T.; Sappington, P.L. Comparison of Hydromorphone versus Fentanyl-based Sedation in Extracorporeal Membrane Oxygenation: A Propensity-Matched Analysis. Pharmacotherapy 2020, 40, 389–397. [Google Scholar] [CrossRef]
- Flanagan, T.; Mercer, K.; Johnson, P.N.; Miller, J.; Yousaf, F.S.; Fuller, J.A. Ketamine Use in Adult and Pediatric Patients Receiving Extracorporeal Membrane Oxygenation (ECMO): A Systematic Review. J. Pharm. Pract. 2024, 37, 985–994. [Google Scholar] [CrossRef]
- Ketamine—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/ketamine#GUID-03D42B8D-4002-40FC-98D6-D1D375256C84 (accessed on 17 April 2025).
- Ketamine: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/ketamine-drug-information (accessed on 26 May 2025).
- Dreucean, D.; Harris, J.E.; Voore, P.; Donahue, K.R. Approach to Sedation and Analgesia in COVID-19 Patients on Venovenous Extracorporeal Membrane Oxygenation. Ann. Pharmacother. 2022, 56, 73–82. [Google Scholar] [CrossRef]
- Lamm, W.; Nagler, B.; Hermann, A.; Robak, O.; Schellongowski, P.; Buchtele, N.; Bojic, A.; Schmid, M.; Zauner, C.; Heinz, G.; et al. Propofol-based sedation does not negatively influence oxygenator running time compared to midazolam in patients with extracorporeal membrane oxygenation. Int. J. Artif. Organs 2019, 42, 233–240. [Google Scholar] [CrossRef]
- Ha, M.A.; Sieg, A.C. Evaluation of Altered Drug Pharmacokinetics in Critically Ill Adults Receiving Extracorporeal Membrane Oxygenation. Pharmacotherapy 2017, 37, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Timofte, I.; Terrin, M.; Barr, E.; Kim, J.; Rinaldi, J.; Ladikos, N.; Menaker, J.; Tabatabai, A.; Kon, Z.; Griffith, B.; et al. Adaptive periodic paralysis allows weaning deep sedation overcoming the drowning syndrome in ECMO patients bridged for lung transplantation: A case series. J. Crit. Care 2017, 42, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Diazepam—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/diazepam#GUID-92E83FD7-E214-4F12-899E-56BFBCF23686 (accessed on 19 April 2025).
- Diazepam: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/diazepam-drug-information (accessed on 26 May 2025).
- Schaller, A.M.; Feih, J.T.; Juul, J.J.; Rein, L.E.; Duewell, B.E.; Makker, H. A Retrospective Cohort Analysis of Analgosedation Requirements in COVID-19 Compared to Non-COVID-19 Extracorporeal Membrane Oxygenation Patients. J. Intensive Care Med. 2025, 40, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Touchard, C.; Aubry, A.; Eloy, P.; Bréchot, N.; Lebreton, G.; Franchineau, G.; Besset, S.; Hékimian, G.; Nieszkowska, A.; Leprince, P.; et al. Predictors of insufficient peak amikacin concentration in critically ill patients on extracorporeal membrane oxygenation. Crit. Care 2018, 22, 199. [Google Scholar] [CrossRef]
- Bouglé, A.; Dujardin, O.; Lepère, V.; Hamou, N.A.; Vidal, C.; Lebreton, G.; Salem, J.-E.; El-Helali, N.; Petijean, G.; Amour, J. PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth. Crit. Care Pain Med. 2019, 38, 493–497. [Google Scholar] [CrossRef]
- Ruiz-Ramos, J.; Gimeno, R.; Pérez, F.; Ramirez, P.; Villarreal, E.; Gordon, M.; Vicent, C.; Marqués, M.R.; Castellanos-Ortega, Á. Pharmacokinetics of Amikacin in Critical Care Patients on Extracorporeal Device. ASAIO J. 2018, 64, 686–688. [Google Scholar] [CrossRef]
- Pressiat, C.; Kudela, A.; De Roux, Q.; Khoudour, N.; Alessandri, C.; Haouache, H.; Vodovar, D.; Woerther, P.-L.; Hutin, A.; Ghaleh, B.; et al. Population Pharmacokinetics of Amikacin in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. Pharmaceutics 2022, 14, 289. [Google Scholar] [CrossRef]
- Duceppe, M.-A.; Kanji, S.; Do, A.T.; Ruo, N.; Cavayas, Y.A.; Albert, M.; Robert-Halabi, M.; Zavalkoff, S.; Dupont, P.; Samoukovic, G.; et al. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021, 81, 1307–1329. [Google Scholar] [CrossRef]
- Hanberg, P.; Öbrink-Hansen, K.; Thorsted, A.; Bue, M.; Tøttrup, M.; Friberg, L.E.; Hardlei, T.F.; Søballe, K.; Gjedsted, J. Population Pharmacokinetics of Meropenem in Plasma and Subcutis from Patients on Extracorporeal Membrane Oxygenation Treatment. Antimicrob. Agents Chemother. 2018, 62, e02390-17. [Google Scholar] [CrossRef]
- Kang, S.; Yang, S.; Hahn, J.; Jang, J.Y.; Min, K.L.; Wi, J.; Chang, M.J. Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling. J. Clin. Med. 2022, 11, 6621. [Google Scholar] [CrossRef]
- Gijsen, M.; Dreesen, E.; Annaert, P.; Nicolai, J.; Debaveye, Y.; Wauters, J.; Spriet, I. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients Are Not Affected by Extracorporeal Membrane Oxygenation: A Matched Cohort Analysis. Microorganisms 2021, 9, 1310. [Google Scholar] [CrossRef]
- Ewoldt, T.M.J.; Abdulla, A.; Rietdijk, W.J.R.; Muller, A.E.; de Winter, B.C.M.; Hunfeld, N.G.M.; Purmer, I.M.; van Vliet, P.; Wils, E.-J.; Haringman, J.; et al. Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: A multicentre randomised clinical trial. Intensive Care Med. 2022, 48, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, H.; Roberts, J.A.; Abdul-Aziz, M.H. Pharmacokinetics and Pharmacodynamics of Beta-Lactam Antibiotics in Critically Ill Patients. Farm. Hosp. 2022, 46, 182–190. [Google Scholar] [PubMed]
- Jendoubi, A.; Pressiat, C.; De Roux, Q.; Hulin, A.; Ghaleh, B.; Tissier, R.; Kohlhauer, M.; Mongardon, N. The impact of extracorporeal membrane oxygenation on antifungal pharmacokinetics: A systematic review. Int. J. Antimicrob. Agents 2024, 63, 107078. [Google Scholar] [CrossRef] [PubMed]
- Lyster, H.; Shekar, K.; Watt, K.; Reed, A.; Roberts, J.A.; Abdul-Aziz, M.-H. Antifungal Dosing in Critically Ill Patients on Extracorporeal Membrane Oxygenation. Clin. Pharmacokinet. 2023, 62, 931–942. [Google Scholar] [CrossRef]
- Amphotericin B—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/amphotericin-b (accessed on 1 May 2025).
- Amphotericin B Deoxycholate (Conventional): Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/amphotericin-b-deoxycholate-conventional-drug-information (accessed on 1 May 2025).
- Kriegl, L.; Hatzl, S.; Schilcher, G.; Zollner-Schwetz, I.; Boyer, J.; Geiger, C.; Hoenigl, M.; Krause, R. Antifungals in Patients with Extracorporeal Membrane Oxygenation: Clinical Implications. Open Forum Infect. Dis. 2024, 11, ofae270. [Google Scholar] [CrossRef]
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.M.; Juffermans, N.P.; Taccone, F.S.; Sousa, C.A.C.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, X.; Chen, W.; Li, M.; Gu, S.; Huang, L.; Zhan, Q.; Wang, C. Impact of extracorporeal membrane oxygenation on voriconazole plasma concentrations: A retrospective study. Front. Pharmacol. 2022, 13, 972585. [Google Scholar] [CrossRef]
- Ronda, M.; Llop-Talaveron, J.M.; Fuset, M.; Leiva, E.; Shaw, E.; Gumucio-Sanguino, V.D.; Diez, Y.; Colom, H.; Rigo-Bonnin, R.; Puig-Asensio, M.; et al. Voriconazole Pharmacokinetics in Critically Ill Patients and Extracorporeal Membrane Oxygenation Support: A Retrospective Comparative Case-Control Study. Antibiotics 2023, 12, 1100. [Google Scholar] [CrossRef]
- Hinze, C.A.; Fuge, J.; Grote-Koska, D.; Brand, K.; Slevogt, H.; Cornberg, M.; Simon, S.; Joean, O.; Welte, T.; Rademacher, J. Factors influencing voriconazole plasma level in intensive care patients. JAC-Antimicrob. Resist. 2024, 6, dlae045. [Google Scholar] [CrossRef]
- Shekar, K.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; et al. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am. J. Respir. Crit. Care Med. 2023, 207, 704–720. [Google Scholar] [CrossRef]
- Kovacevic, P.; Milakovic, D.; Kovacevic, T.; Barisic, V.; Dragic, S.; Zlojutro, B.; Miljkovic, B.; Vucicevic, K.; Rizwan, Z. Thrombocytopenia risks in ARDS COVID-19 patients treated with high-dose linezolid during vvECMO therapy: An observational study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7747–7756. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R. Pharmacokinetic variability and significance of therapeutic drug monitoring for broad-spectrum antimicrobials in critically ill patients. J. Pharm. Health Care Sci. 2025, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Linezolid—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/linezolid (accessed on 27 April 2025).
- Linezolid: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/linezolid-drug-information (accessed on 27 April 2025).
- Hahn, J.; Choi, J.H.; Chang, M.J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J. Clin. Pharm. Ther. 2017, 42, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, W.; Wang, Q.; Li, M.; Zhang, Z.; Cui, G.; Li, P.; Zhang, X.; Ma, Y.; Zhan, Q.; et al. Influence of venovenous extracorporeal membrane oxygenation on pharmacokinetics of vancomycin in lung transplant recipients. J. Clin. Pharm. Ther. 2020, 45, 1066–1075. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; Kim, H.-S.; et al. Population Pharmacokinetics of Vancomycin in Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation (an ASAP ECMO Study). Antimicrob. Agents Chemother. 2022, 66, e01377-21. [Google Scholar] [CrossRef]
- Ferre, A.; Giglio, A.; Zylbersztajn, B.; Valenzuela, R.; Jan, N.V.S.; Fajardo, C.; Reccius, A.; Dreyse, J.; Hasbun, P. Analysis of Vancomycin Dosage and Plasma Levels in Critically Ill Adult Patients Requiring Extracorporeal Membrane Oxygenation (ECMO). J. Intensive Care Med. 2024, 39, 909–915. [Google Scholar] [CrossRef]
- Park, S.J.; Yang, J.H.; Park, H.J.; In, Y.W.; Lee, Y.M.; Cho, Y.H.; Chung, C.R.; Park, C.-M.; Jeon, K.; Suh, G.Y. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation. PLoS ONE 2015, 10, e0141016. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, D.-H.; Kim, H.S. Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2021, 65, e02408-20. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Wang, W.-C.; Roan, J.-N.; Luo, C.-Y.; Chou, C.-H. Population Pharmacokinetics of Vancomycin in Intensive Care Patients with the Time-Varying Status of Temporary Mechanical Circulatory Support or Continuous Renal Replacement Therapy. Infect. Dis. Ther. 2024, 13, 2617–2635. [Google Scholar] [CrossRef]
- Marella, P.; Roberts, J.; Hay, K.; Shekar, K. Effectiveness of Vancomycin Dosing Guided by Therapeutic Drug Monitoring in Adult Patients Receiving Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2020, 64, e01179-20. [Google Scholar] [CrossRef]
- Distelmaier, K.; Wiedemann, D.; Lampichler, K.; Toth, D.; Galli, L.; Haberl, T.; Steinlechner, B.; Heinz, G.; Laufer, G.; Lang, I.M.; et al. Interdependence of VA-ECMO output, pulmonary congestion and outcome after cardiac surgery. Eur. J. Intern. Med. 2020, 81, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Torbic, H.; Hohlfelder, B.; Krishnan, S.; Tonelli, A.R. A Review of Pulmonary Arterial Hypertension Treatment in Extracorporeal Membrane Oxygenation: A Case Series of Adult Patients. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 10742484211069005. [Google Scholar] [CrossRef] [PubMed]
- Jacky, A.; Rudiger, A.; Krüger, B.; Wilhelm, M.J.; Paal, S.; Seifert, B.; Spahn, D.R.; Bettex, D. Comparison of Levosimendan and Milrinone for ECLS Weaning in Patients After Cardiac Surgery—A Retrospective Before-and-After Study. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2112–2119. [Google Scholar] [CrossRef]
- Garcia, S.I.; Seelhammer, T.G.; Saddoughi, S.A.; Finch, A.S.; Park, J.G.; Wieruszewski, P.M. Cumulative epinephrine dose during cardiac arrest and neurologic outcome after extracorporeal cardiopulmonary resuscitation. Am. J. Emerg. Med. 2024, 80, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Massart, N.; Mansour, A.; Ross, J.T.; Ecoffey, C.; Aninat, C.; Verhoye, J.; Launey, Y.; Tadie, J.; Auffret, V.; Flecher, E.; et al. Epinephrine administration in venoarterial extracorporeal membrane oxygenation patients is associated with mortality: A retrospective cohort study. ESC Heart Fail. 2021, 8, 2899–2906. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Cheng, Y.; Zhang, J.; Zhao, L. Factors Influencing Successful Weaning from Venoarterial Extracorporeal Membrane Oxygenation: A Systematic Review. J. Cardiothorac. Vasc. Anesth. 2024, 38, 2446–2458. [Google Scholar] [CrossRef]
- Vajter, J.; Volod, O. Anticoagulation Management During ECMO: Narrative Review. JHLT Open 2025, 8, 100216. [Google Scholar] [CrossRef]
- Feng, I.; Powley, T.R.; Yang, C.G.; Kurlansky, P.A.; Sutherland, L.D.; Hastie, J.M.; Kaku, Y.; Fried, J.A.; Takeda, K. Unfractionated heparin monitoring by anti-factor Xa versus activated partial thromboplastin time strategies during venoarterial extracorporeal life support. Perfusion 2024, 40, 1575–1584. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Z.; Han, X.; Song, K.; Xing, J. A Comparison of Activated Partial Thromboplastin Time and Activated Coagulation Time for Anticoagulation Monitoring during Extracorporeal Membrane Oxygenation Therapy. Hamostaseologie 2023, 43, 171–178. [Google Scholar] [CrossRef]
- Willems, A.; Roeleveld, P.P.; Labarinas, S.; Cyrus, J.W.; A Muszynski, J.; E Nellis, M.; Karam, O. Anti-Xa versus time-guided anticoagulation strategies in extracorporeal membrane oxygenation: A systematic review and meta-analysis. Perfusion 2021, 36, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.C.; Taylor, A.N.; Cato, A.W.; Patel, V.S.; Waller, J.L.; Wayne, N.B. Low Versus Standard Intensity Heparin Protocols in Adults Maintained on Extracorporeal Membrane Oxygenation: A Retrospective Cohort Study. J. Pharm. Pract. 2025, 38, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Lanoiselée, J.; Mourer, J.; Jungling, M.; Molliex, S.; Thellier, L.; Tabareau, J.; Jeanpierre, E.; Robin, E.; Susen, S.; Tavernier, B.; et al. Heparin Dosing Regimen Optimization in Veno-Arterial Extracorporeal Membrane Oxygenation: A Pharmacokinetic Analysis. Pharmaceutics 2024, 16, 770. [Google Scholar] [CrossRef] [PubMed]
- Wiegele, M.; Laxar, D.; Schaden, E.; Baierl, A.; Maleczek, M.; Knöbl, P.; Hermann, M.; Hermann, A.; Zauner, C.; Gratz, J. Subcutaneous Enoxaparin for Systemic Anticoagulation of COVID-19 Patients During Extracorporeal Life Support. Front. Med. 2022, 9, 879425. [Google Scholar] [CrossRef]
- Durila, M.; Vajter, J.; Garaj, M.; Berousek, J.; Lischke, R.; Hlavacek, M.; Vymazal, T. Intravenous enoxaparin guided by anti-Xa in venovenous extracorporeal membrane oxygenation: A retrospective, single-center study. Artif. Organs 2025, 49, 486–496. [Google Scholar] [CrossRef]
- Diaz, D.; Martinez, J.; Bushman, G.; Wolowich, W.R. Anticoagulation strategies in COVID-19 infected patients receiving ECMO support. J. Extra Corpor. Technol. 2023, 55, 121–129. [Google Scholar] [CrossRef]
- Pollak, U. Heparin-induced thrombocytopenia complicating extracorporeal membrane oxygenation support: Review of the literature and alternative anticoagulants. J. Thromb. Haemost. 2019, 17, 1608–1622. [Google Scholar] [CrossRef]
- Rocuronium—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/rocuronium (accessed on 10 May 2025).
- Rocuronium: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/rocuronium-drug-information (accessed on 10 May 2025).
- Bakdach, D.; Elajez, R.; Bakdach, A.R.; Awaisu, A.; De Pascale, G.; Ait Hssain, A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. J. Clin. Med. 2022, 11, 6898. [Google Scholar] [CrossRef]
- Roberts, J.A.; Bellomo, R.; Cotta, M.O.; Koch, B.C.P.; Lyster, H.; Ostermann, M.; Roger, C.; Shekar, K.; Watt, K.; Abdul-Aziz, M.H. Machines that help machines to help patients: Optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med. 2022, 48, 1338–1351. [Google Scholar] [CrossRef]
- Albanell-Fernández, M. Echinocandins Pharmacokinetics: A Comprehensive Review of Micafungin, Caspofungin, Anidulafungin, and Rezafungin Population Pharmacokinetic Models and Dose Optimization in Special Populations. Clin. Pharmacokinet. 2025, 64, 27–52. [Google Scholar] [CrossRef]
- Peitz, G.J.; Murry, D.J. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics 2023, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.X.; Peña, D.; Landau, J.; Nagpal, A.D. Venoarterial Extracorporeal Membrane Oxygenation in Adults with Septic Shock: Hope or Hype? Can. J. Cardiol. 2025, 41, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Browder, K.; Wanek, M.; Wang, L.; Hohlfelder, B. Opioid and sedative requirements in extracorporeal membrane oxygenation patients on hydromorphone versus fentanyl. Artif. Organs 2022, 46, 878–886. [Google Scholar] [CrossRef]
- Gratz, J.; Pausch, A.; Schaden, E.; Baierl, A.; Jaksch, P.; Erhart, F.; Hoetzenecker, K.; Wiegele, M. Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: A single center experience in 102 lung transplant patients. Artif. Organs 2020, 44, 638–646. [Google Scholar] [CrossRef]
- Seelhammer, T.G.; Bohman, J.K.; Schulte, P.J.; Hanson, A.C.; Aganga, D.O. Comparison of Bivalirudin Versus Heparin for Maintenance Systemic Anticoagulation During Adult and Pediatric Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021, 49, 1481–1492. [Google Scholar] [CrossRef]
- Barker, M.; Dixon, A.A.; Camporota, L.; Barrett, N.A.; Wan, R.Y.Y. Sedation with alfentanil versus fentanyl in patients receiving extracorporeal membrane oxygenation: Outcomes from a single-centre retrospective study. Perfusion 2020, 35, 104–109. [Google Scholar] [CrossRef]
- Taha, D.; Drop, J.G.; Wildschut, E.D.; De Hoog, M.; Van Ommen, C.H.; Reis Miranda, D.D. Evaluation of an aPTT guided versus a multimodal heparin monitoring approach in patients on extra corporeal membrane oxygenation: A retrospective cohort study. Perfusion 2025, 40, 557–567. [Google Scholar] [CrossRef]
- Curtiaud, A.; Petit, M.; Chommeloux, J.; de Chambrun, M.P.; Hekimian, G.; Schmidt, M.; Combes, A.; Luyt, C.-E. Ceftazidime/avibactam serum concentration in patients on ECMO. J. Antimicrob. Chemother. 2024, 79, 1182–1186. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Roberts, J.A. Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy. Curr. Infect. Dis. Rep. 2021, 23, 13. [Google Scholar] [CrossRef]
- Hahn, J.; Min, K.L.; Kang, S.; Yang, S.; Park, M.S.; Wi, J.; Chang, M.J. Population Pharmacokinetics and Dosing Optimization of Piperacillin-Tazobactam in Critically Ill Patients on Extracorporeal Membrane Oxygenation and the Influence of Concomitant Renal Replacement Therapy. Microbiol. Spectr. 2021, 9, e00633-21. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, H.S.; Park, S.; Kim, H.; Lee, S.H.; Lee, D.-H. Population pharmacokinetics of piperacillin/tazobactam in critically ill Korean patients and the effects of extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2022, 77, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Diehl, A.; Liu, X.; Cheng, V.; Corley, A.; Gilder, E.; Levkovich, B.; McGuinness, S.; Ordonez, J.; Parke, R.; et al. Population pharmacokinetics of caspofungin in critically ill patients receiving extracorporeal membrane oxygenation—An ASAP ECMO study. Antimicrob. Agents Chemother. 2025, 69, e01435-24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Z.; Liu, D.; Chen, W.; Cui, G.; Li, P.; Zhang, X.; Li, M.; Zhan, Q.; Wang, C. Population Pharmacokinetics of Caspofungin among Extracorporeal Membrane Oxygenation Patients during the Postoperative Period of Lung Transplantation. Antimicrob. Agents Chemother. 2020, 64, e00687-20. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, B.; Bruce, H.M.; Kershaw, G.; Cai, N.; Othman, J.; Gattas, D.; Robson, J.L.; Hayes, S.; Alicajic, H.; Hines, A.; et al. Hemostasis, coagulation and thrombin in venoarterial and venovenous extracorporeal membrane oxygenation: The HECTIC study. Sci. Rep. 2021, 11, 7975. [Google Scholar] [CrossRef]
- Wicky, P.-H.; Poiraud, J.; Alves, M.; Patrier, J.; D’humières, C.; Lê, M.; Kramer, L.; de Montmollin, É.; Massias, L.; Armand-Lefèvre, L.; et al. Cefiderocol Treatment for Severe Infections due to Difficult-to-Treat-Resistant Non-Fermentative Gram-Negative Bacilli in ICU Patients: A Case Series and Narrative Literature Review. Antibiotics 2023, 12, 991. [Google Scholar] [CrossRef]
- Donadello, K.; Antonucci, E.; Cristallini, S.; Roberts, J.A.; Beumier, M.; Scolletta, S.; Jacobs, F.; Rondelet, B.; de Backer, D.; Vincent, J.-L.; et al. β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case–control study. Int. J. Antimicrob. Agents 2015, 45, 278–282. [Google Scholar] [CrossRef]
- Wu, C.-C.; Shen, L.-J.; Hsu, L.-F.; Ko, W.-J.; Wu, F.-L.L. Pharmacokinetics of vancomycin in adults receiving extracorporeal membrane oxygenation. J. Formos. Med. Assoc. 2016, 115, 560–570. [Google Scholar] [CrossRef]
- Morphine: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/morphine-drug-information (accessed on 11 November 2024).
- Fentanyl: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/fentanyl-drug-information (accessed on 15 May 2025).
- Micromedex® (Electronic Version). Micromedex® (Electronic Version). Ketamine Hydrochloride: Drug Monograph. Greenwood Village (CO): IBM Corporation. Available online: https://www.micromedexsolutions.com/ (accessed on 17 April 2025).
- Micromedex® (Electronic Version). Micromedex® (Electronic Version). Propofol: Drug Monograph. Greenwood Village (CO): IBM Corporation. Available online: https://www.micromedexsolutions.com/ (accessed on 18 April 2025).
- Propofol—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/propofol#GUID-90662F81-10CE-4078-975F-6BE74A45E314__CITE27 (accessed on 18 April 2025).
- Midazolam Hydrochloride—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/midazolam-hydrochloride#GUID-A38DF5DC-F52E-4239-9BA9-63A5F2D1A443 (accessed on 19 April 2025).
- Amikacin—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/amikacin#GUID-B5DAEC1F-0F93-4ED4-865D-B36C7D79692D (accessed on 22 April 2025).
- Micromedex® (Electronic Version). Amikacin Sulfate: Drug Monograph. Greenwood Village (CO): IBM Corporation. Available online: https://www.micromedexsolutions.com/ (accessed on 22 April 2025).
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef]
- Sherwin, J.; Heath, T.; Watt, K. Pharmacokinetics and Dosing of Anti-infective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature. Clin. Ther. 2016, 38, 1976–1994. [Google Scholar] [CrossRef]
- Micromedex® (Electronic Version). Ertapenem Sodium: Drug Monograph. Greenwood Village (CO): IBM Corporation. Available online: https://www.micromedexsolutions.com/ (accessed on 26 April 2025).
- Ertapenem—DynaMed, n.d. Available online: https://www.dynamed.com/drug-monograph/ertapenem#GUID-9DD6A5DF-192E-4EA0-9D84-4C136B11DE92 (accessed on 26 April 2025).
- Ertapenem: Drug Information—UpToDate, n.d. Available online: https://www.uptodate.com/contents/ertapenem-drug-information (accessed on 26 April 2025).
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; Kim, H.-S.; et al. Population Pharmacokinetics of Piperacillin and Tazobactam in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation: An ASAP ECMO Study. Antimicrob. Agents Chemother. 2021, 65, e01438-21. [Google Scholar] [CrossRef]
- Fillâtre, P.; Lemaitre, F.; Nesseler, N.; Schmidt, M.; Besset, S.; Launey, Y.; Maamar, A.; Daufresne, P.; Flecher, E.; Le Tulzo, Y.; et al. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: A case–control study. J. Antimicrob. Chemother. 2021, 76, 1242–1249. [Google Scholar] [CrossRef]
- Novy, E.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Gilder, E.; Levkovich, B.J.; McGuinness, S.; et al. Population pharmacokinetics of fluconazole in critically ill patients receiving extracorporeal membrane oxygenation and continuous renal replacement therapy: An ASAP ECMO study. Antimicrob. Agents Chemother. 2024, 68, e01201-23. [Google Scholar] [CrossRef]
- Prakash, S.; Wiersema, U.F.; Bihari, S.; Roxby, D. Discordance between ROTEM® clotting time and conventional tests during unfractionated heparin–based anticoagulation in intensive care patients on extracorporeal membrane oxygenation. Anaesth. Intensive Care 2016, 44, 85–92. [Google Scholar] [CrossRef]
- Micromedex® (Electronic Version). Rocuronium Bromide: Drug Monograph. Greenwood Village (CO): IBM Corporation. Available online: https://www.micromedexsolutions.com/ (accessed on 10 May 2025).




| Item | Review Question Clearly and Explicitly | Appropriate Inclusion Criteria | Appropriate Search Strategy | Adequate Sources and Resources | Appropriate Criteria for Appraising Studies | ≥2 Reviewers | Methods to Minimize Errors in Data Extraction | Appropriate Methods Used to Combine Studies | Likelihood of Publication Bias Assessed | Recommendations for Policy and/or Practice Supported by the Reported Data | Appropriate Specific Directives for New Research |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Flanagan et al., 2024 [19] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Duceppe et al., 2021 [33] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | Yes |
| Jendoubi et al., 2024 [39] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | Yes |
| Zhao et al., 2024 [66] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | Yes |
| Willems et al., 2021 [70] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes |
| Item | Credible or Appropriate Source | Relationship Between the Text and Its Context Explained | Logical Sequence | Arrive at Similar Conclusions to Those Drawn by the Narrator | The Conclusions Flow From the Narrative | This Account to Be a Narrative |
|---|---|---|---|---|---|---|
| Patel 2023 [5] | Yes | Yes | Yes | Yes | Yes | Yes |
| Ochroch 2021 [11] | Yes | Yes | Yes | Yes | Yes | Yes |
| Shah 2017 [13] | Yes | Yes | Yes | Yes | Yes | Yes |
| Meng 2017 [14] | Yes | Yes | Yes | Yes | Yes | Yes |
| Dzierba 2023 [15] | Yes | Yes | Yes | Yes | Yes | Yes |
| Dreucean 2022 [22] | Yes | Yes | Yes | Yes | Yes | Yes |
| Ha & Sieg 2017 [24] | Yes | Yes | Yes | Yes | Yes | Yes |
| Sulaiman 2022 [38] | Yes | Yes | Yes | Yes | Yes | Yes |
| Lyster 2023 [40] | Yes | Yes | Yes | Yes | Yes | Yes |
| Tanaka 2025 [50] | Yes | Yes | Yes | Yes | Yes | Yes |
| Hahn 2017 [53] | Yes | Yes | Yes | Yes | Yes | Yes |
| Vajter & Volod 2025 [67] | Yes | Yes | Yes | Yes | Yes | Yes |
| Pollak 2019 [76] | Yes | Yes | Yes | Yes | Yes | Yes |
| Bakdach 2022 [79] | Yes | Yes | Yes | Yes | Yes | Yes |
| Roberts 2022 [80] | Yes | Yes | Yes | Yes | Yes | Yes |
| Albanell-Fernández 2025 [81] | Yes | Yes | Yes | Yes | Yes | Yes |
| Peitz & Murry 2023 [82] | Yes | Yes | Yes | Yes | Yes | Yes |
| Bellmann 2017 [83] | Yes | Yes | Yes | Yes | Yes | Yes |
| Vo 2025 [84] | Yes | Yes | Yes | Yes | Yes | Yes |
| Item | Two Groups Similar and Recruited from the Same Population | Measured Similarly to Assign People to Both Groups | Exposure Measured in a Valid and Reliable Way | Identified Confounding Factors | Strategies to Deal with Confounding Factors | Groups/Participants Free of the Outcome at the Start of the Study | Measured Outcomes in a Valid and Reliable Way | Follow Up Time Reported and Sufficient to Be Long Enough for Outcomes | Follow Up Complete, and if not, Were the Reasons to Loss to Follow Up Described and Explored | Strategies to Address Incomplete Follow Up | Appropriate Statistical Analysis |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Nigoghossian 2016 [16] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Landolf 2020 [18] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Lamm 2019 [23] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Schaller 2025 [28] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Cheng 2022 [55] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Ferre 2024 [56] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Park 2015 [57] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Jung 2021 [58] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Distelmaier 2020 [61] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Jacky 2018 [63] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Massart 2021 [65] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Feng 2024 [68] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Robinson 2025 [71] | Yes | Yes | Unclear | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Wiegele 2022 [73] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Diaz 2023 [75] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Browder 2022 [85] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Gratz 2020 [86] | Yes | Yes | Yes | Unclear | Yes | Yes | Unclear | Yes | Yes | NA | Yes |
| Seelhammer 2021 [87] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Barker 2020 [88] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Taha 2025 [89] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | NA | Yes |
| Item | Clearly Defined Criteria for Inclusion | Study Subjects and the Setting Described in Detail | Exposure Measured in a Valid and Reliable Way | Objective, Standard Criteria Used for Measurement of the Condition | Identified Confounding Factors | Stated Strategies to Deal with Confounding Factors | Outcomes Measured in a Valid and Reliable Way | Appropriate Statistical Analysis |
|---|---|---|---|---|---|---|---|---|
| Ren 2021 [12] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Patel 2020 [17] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Touchard 2018 [29] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Bouglé 2019 [30] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Ruiz-Ramos 2018 [31] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Pressiat 2022 [32] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Hanberg 2018 [34] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Kang 2022 [35] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Gijsen 2021 [36] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Shekar 2023 [48] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Liu 2020 [54] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Lanoiselée 2024 [72] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Durila 2025 [74] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Curtiaud 2024 [90] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Cheng 2021 [91] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Hahn 2021 [92] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Kim 2022 [93] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Abdul-Aziz 2025 [94] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Wang 2020 [95] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Cartwright 2021 [96] | Yes | Yes | Yes | Yes | Yes | NA | Yes | Yes |
| Item | Clear Inclusion Criteria | Condition Measured in a Standard, Reliable Way for All Participants | Valid Methods Used for Identification of the Condition for all Participants | Consecutive Inclusion of Participants | Complete Inclusion of Participants | Clear Reporting of the Demographics of the Participants | Clear Reporting of Clinical Information of the Participants | Clearly Reported Outcomes or Follow Up Results | Clear Reporting of the Presenting Site(s)/Clinic(s) Demographic Information | Appropriate Statistical Analysis |
|---|---|---|---|---|---|---|---|---|---|---|
| Timofte 2017 [25] | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes | Yes | Yes | NA |
| Torbic 2022 [62] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | NA |
| Wicky 2023 [97] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Item | Comparable Groups | Cases and Controls Matched Appropriately | Same Criteria Used for Identification of Cases and Controls | Exposure Measured in a Standard, Valid and Reliable Way | Exposure Measured in the Same Way for Cases and Controls | Identified Confounding Factors | Stated Strategies to Deal with Confounding Factors | Outcomes Assessed in a Standard, Valid and Reliable Way for Cases and Controls | Exposure Period of Interest Long Enough to Be Meaningful | Appropriate Statistical Analysis |
|---|---|---|---|---|---|---|---|---|---|---|
| Ronda 2023 [46] | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Donadello 2015 [98] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Wu 2016 [99] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Drug | Standardized PK/PD Target | Evidence Grade |
|---|---|---|
| Morphine | Clinical effect (RASS) | C |
| I Fentanyl | Clinical effect (RASS) | C |
| Ketamine | Clinical effect (RASS) | D |
| Propofol | Clinical effect (RASS) | C–D |
| Diazepam | Clinical effect (RASS) | D |
| Midazolam | Clinical effect (RASS) | C |
| Amikacin | Cmax/MIC 8–10 (practical Cmax ≥ 60–80 mg/L, Cmin < 5 mg/L) | B |
| Cefotaxime | %fT > MIC 50–100% | C–D |
| Ceftazidime | %fT > MIC 100% (CI 6 g/day when needed) | C |
| Meropenem | %fT > MIC 100% (or 100% fT > 4 × MIC severe); prefer extended/continuous | B |
| Ertapenem | %fT > MIC ≥ 50–100% | D |
| Linezolid | Cmin 2–7 mg/L (AUC/MIC ≥80) | C |
| Vancomycin | AUC24/MIC 400–600 (AUC-guided preferred) | B |
| Piperacillin–Tazobactam | %fT > MIC ≥ 50–100% (or %fT > 4 × MIC severe); favor 4 h or continuous infusions | B |
| Tigecycline | AUC/MIC (no universal bedside threshold) | C |
| Amphotericin B | Clinical response/safety (no validated PK target) | C–D |
| Liposomal Amphotericin B | Clinical response/safety | C |
| Caspofungin | AUC/MIC (no validated clinical cut-off) | B- |
| Fluconazole | Cmin 10–15 mg/L (or AUC/MIC ≥100) | B- |
| Voriconazole | Cmin 2–5 mg/L | B- |
| Epinephrine | Clinical hemodynamic goals | B |
| Dobutamine | Clinical hemodynamic goals | C–D |
| Norepinephrine | Clinical hemodynamic goals | C |
| Unfractionated Heparin (UFH) | Anti-Xa 0.3–0.7 IU/mL (preferred), aPTT 50–90 s, ACT 180–220 s | B |
| Enoxaparin (SC or IV CI) | SC: peak anti-Xa 0.3–0.5 IU/mL; IV CI: anti-Xa 0.4–0.6 IU/mL | C/C+ |
| Rocuronium | Clinical neuromuscular depth (TOF/EMG) | C–D |
| INN (Drug) | Dosage Recommendations | PK/PD Considerations | Therapeutic Drug Monitoring | Alternatives (If Needed) | Clinical Indications & Precautions |
|---|---|---|---|---|---|
| Morphine | -IV Bolus: 2–4 mg every 1–2 h -Continuous infusion: 2–30 mg/h, titrated according to clinical response and TDM [13,100]. | -Moderate protein binding and low lipophilicity making morphine less susceptible to ECMO-related sequestration compared to other opioids [5,14]. -ECMO has minimal circuit effect; Vd/CL/AUC/t½ mostly reflect organ dysfunction in critical illness [13,14,22]. | -Monitor using CPOT < 3 or BPS < 5 and light sedation (RASS −2 to 0); targets from general ICU practice, not ECMO-specific [14]. -Adjust for renal/hepatic dysfunction and clinical response [12,13,22]. | Ketamine, dexmedetomidine, IV acetaminophen, IV lidocaine [11]. | -Commonly used for analgesia and sedation as part of multimodal therapy [11]. -Histamine release may cause profound hypotension; caution in hemodynamically unstable patients [5]. |
| Fentanyl | -Intermittent IV Bolus: 0.35–0.5 μg/kg every 30–60 min [13]. -Continuous infusion: 0.7–10 μg/kg/h (typically initiated at 25–100 μg/h [17,101]. -Possibly dose escalation ≥2000 μg/day often required due to ECMO sequestration [16]. | ECMO adsorption early → ↑ apparent Vd, variable AUC; later accumulation driven by organ dysfunction, subsequent variability mainly from critical illness and organ failure [5,15]. | CPOT < 3, BPS < 5 and RASS −2 to 0; thresholds from general ICU practice; reassess daily for opioid-sparing strategies and de-escalation [15,22]. | Consider less lipophilic opioids like hydromorphone or analgesic adjuncts such as ketamine, dexmedetomidine, IV lidocaine, or IV acetaminophen [5,15,18,85]. | Requires careful dose titration to balance analgesic efficacy with risks of sedation, opioid tolerance, and side effects [17]. |
| Ketamine | -IV bolus: 0.1–0.5 mg/kg (up to 1–4.5 mg/kg for severe agitation) [5,13,19,21]. -Continuous infusion: 0.05–2.5 mg/kg/h (commonly 0.5–2 mg/kg/h), titrated to achieve defined sedation targets (e.g., RASS) [5,13,15,19,22]. | -Moderate lipophilicity, low protein binding, and increased volume of distribution suggest possible ECMO-related sequestration, but significant clinical impact unlikely [5,19,20,102]. -Limited ECMO data, ↑ apparent Vd; dosing variability and Vd/CL changes more related to critical illness than ECMO-specific effects [5,19,20,102]. | Titrate to RASS −2 to 0; general ICU target; no ECMO-specific numeric PK goals; monitor for psychomimetic effects and hemodynamic changes [13,15,22]. | Dexmedetomidine, opioids, IV acetaminophen, or lidocaine as adjuncts within a multimodal analgesia sedation strategy [5,19]. | -Recommended as part of a multimodal therapy [5,13,15,19,22]. -Higher initial doses or continuous infusion may be required in ECMO patients, with special attention in critically ill patients due to increased volume of distribution and potential ECMO sequestration [5,13,15,19,22]. |
| Propofol | -IV bolus: 5 μg/kg/min IV for 5 min [13]. -Continuous infusion: 5–50 μg/kg/min IV, titrated based on clinical sedation targets (RASS: typically −1 to −2) [12,13]. -Avoid prolonged high-dose infusion (>50 μg/kg/min) to minimize risks such as PRIS and hypertriglyceridemia [22]. | -High lipophilicity and extensive protein binding result in significant adsorption, especially notable early during ECMO therapy [14,22,103,104]. -ECMO adsorption early → ↑ Vd; CL/AUC affected by hemodynamics/organ failure; t½ may lengthen with prolonged use [14,22,103,104]. -Despite sequestration, minimal impact observed clinically on ECMO oxygenator life and no significant changes reported in triglycerides, free hemoglobin, fibrinogen, or platelet levels even with prolonged use [23]. | -Target RASS −2 to 0; check serum triglycerides at baseline and every 48–72 h (every 24–48 h if >4 mg/kg/h or >72 h infusion); discontinue if >400–500 mg/dL or signs of propofol infusion syndrome; general ICU thresholds, daily reassessment for de-escalation [22]. -Individual dose titration critical to optimize therapeutic effect while minimizing adverse outcomes [13,14]. | Midazolam, dexmedetomidine, ketamine, or opioids like hydromorphone as adjuncts or alternatives within multimodal sedation strategies, especially if high propofol doses become necessary or clinically problematic [85]. | -Preferred agent for short-term sedation in critically ill ECMO patients. Caution due to potential negative inotropic and chronotropic effects [17]. -Carefully titrate according to sedation and hemodynamic goals, ECMO sequestration often necessitates higher than typical ICU doses [22,103,104]. |
| Diazepam | -IV intermittent bolus: 5–10 mg administered 15–30 min before neuromuscular blockade [25]. -Total daily doses ranging from 170 to 260 mg/day reported for agitation control, amnesia, and hemodynamic optimization [25]. -Routine or prolonged use not recommended in ECMO patients [22]. | High PB + lipophilicity → ECMO adsorption/↑ Vd and prolonged t½; CL limited by hepatic function → accumulation, pose significant risk for accumulation and sequestration in ECMO circuits [22]. | Aim RASS −2 to −3; monitor for delayed awakening/accumulation; general ICU bedside targets; consider switch to shorter-acting agents if excessive effect observed [22,25]. | Prefer alternative agents with lower sequestration risk and shorter half-life, such as midazolam, dexmedetomidine [22]. | -Diazepam’s use in ECMO is generally discouraged due to pharmacokinetic properties that significantly increase accumulation risk [22,25]. -Use cautiously in short-term situations requiring rapid sedation or amnesia before neuromuscular blockade, closely monitoring for sedation-related complications [22,25]. |
| Midazolam | -IV loading dose: 0.01–0.05 mg/kg. -Continuous infusion: 1–7 mg/h (0.02–0.1 mg/kg/h, adjusted by weight), titrated based on clinical sedation targets (RASS) [5,13]. -Reported median daily dose of 280 mg/day (IQR: 209–384 mg/day) or equivalent during periods of deep sedation in ECMO patients [12,16]. | -ECMO-specific early sequestration; critical-illness factors (hepatic dysfunction, accumulation) dominate later PK. [5,22]. -ECMO adsorption early → ↑ Vd; later accumulation (active metabolites) if hepatic dysfunction; AUC ↑, t½ ↑; CL ↓ variably. -Potential accumulation of active metabolites, especially in hepatic dysfunction [22,24]. | Aim for RASS −2 to −3; general ICU targets; monitor for accumulation (delayed awakening, prolonged ventilation, burst suppression if EEG available), along with regular assessment of hepatic and renal function [5,13,105]. | Dexmedetomidine, ketamine, or non-benzodiazepine sedatives recommended as alternatives, particularly in hepatic impairment or when metabolite accumulation is a concern [22,24]. | -Widely used for deep sedation in ECMO-supported patients, but dosing requirements are highly variable due to ECMO circuit sequestration and critical illness-related pharmacokinetics [12,13,16]. -Individualized TDM essential to optimize sedation and minimize adverse effects [12,13,16]. |
| Amikacin | -Standard dosing: 25–30 mg/kg IV as a single daily dose infused over 30 min [13,29,33,106]. -Renal function based adjustments: KDIGO 0 (normal renal function): up to 40 mg/kg IV. KDIGO 3 (severe acute kidney injury): 25 mg/kg IV [32]. -BMI and fluid balance-based adjustments: BMI ≥ 22 kg/m2 with negative fluid balance: 25 mg/kg. BMI ≥ 22 kg/m2 with positive fluid balance: ≥30 mg/kg [29]. -Maintenance dose (if trough <5 mg/L at 24 h): 15–20 mg/kg IV every 24 h [106,107]. | Hydrophilic antibiotic, low protein binding. ECMO effect negligible; ↑ Vd from fluid shifts → low peaks; CL driven by ARC/AKI; AUC variable; t½ depends on renal function [5,33]. | Recommended therapeutic drug monitoring (TDM) with target plasma levels: Cmax/MIC 8–10 (Cmax 60–80 mg/L; Cmin < 5 mg/L at 24 h); general ICU PK/PD target; ECMO studies confirm underexposure but keep same goals. Monitor closely due to significant variability from fluid balance, renal function, patient weight, and severity of critical illness [13,29,30,31,32]. | * | Primary indication: severe MDR Gram-negative bacterial infections. ECMO does not independently necessitate dose adjustment, but dosing variability is high due to patient-specific factors [29,30,31,32,33]. |
| Cefotaxime | -Standard daily dose: Standard dosing: 2 g IV q6–8 h over 30 min. Extended infusion (3–4 h) can be used in severe infection [30]. -Median effective daily dose reported: 7 g/day (IQR: 6–8 g/day), effectively achieving therapeutic plasma concentrations (CT50 ≥ 4 mg/L, Cmin ≥1 mg/L) without requiring ECMO-specific adjustments [30]. | -β-lactam antibiotic with time-dependent efficacy (CT50 ≥ 4 mg/L and Cmin ≥ 1 mg/L) [30,33]. -Median CT50 observed: 64.7 mg/L; median Cmin: 28.6 mg/L [30,33]. -Minimal ECMO effect; Vd/CL changes reflect sepsis/ARC/CRRT; AUC/t½ illness-driven. [30,33]. | -Routine therapeutic drug monitoring (TDM) recommended, ≥50–100% fT > MIC (operational Cmin ≈1 mg/L, CT50 ≥ 4 mg/L); general ICU PK/PD threshold; adjustments are renal/CRRT-driven; no ECMO-specific dose changes required [30,33]. -Monitor renal function and clinical response regularly; adjustments primarily based on patient-specific factors [33]. | * | -Suitable for empirical or targeted antibiotic therapy in critically ill ECMO patients, with no specific ECMO-related dosing adjustments generally necessary [30,33]. -Individualized dose adjustments guided by renal function and TDM recommended due to variability in critical illness [30,33]. |
| Ceftazidime | -Standard dose (continuous infusion): Standard dosing: 2 g IV q8 h over 30 min. Extended infusion (3–4 h) or continuous infusion: LD 2 g IV, then 6 g/24 h (4 g/day if moderate renal impairment or continuous renal replacement therapy) [33,108]. -Ceftazidime/Avibactam (2.5 g IV q8h infused over 2 h, with renal adjustments): Clcr 30–50 mL/min: 1.25 g q8 h Clcr 16–30 mL/min: 0.94 g q12 h Clcr 6–15 mL/min or dialysis: 0.94 g q24 h [79,90]. | -Minimal ECMO effect; Vd/CL shaped by renal status/CRRT; avibactam shows subexposure in ARC (AUC ↓); PK variability largely from renal function/CRRT. [5,79,108]. -Maintains therapeutic concentrations (>16 mg/L, ≥4 times the EUCAST breakpoint); general ICU PK goal; ECMO reports frequent sub exposure [79,90]. | -Monitor plasma concentrations and clinical response, especially renal function [33,90]. -TDM recommended in prolonged therapy or significant renal impairment; adjustments are renal/CRRT-driven; ECMO effect minimal. [33,90]. | * | -Empirical or targeted therapy for infections in critically ill ECMO patients [33,90]. -Dose adjustments primarily guided by renal function rather than ECMO itself [33,90]. -Continuous or extended infusion preferred to maintain concentrations above MIC for optimal pharmacodynamic efficacy [33,90]. |
| Meropenem | -Standard dosing: Standard dosing: 1 g IV q8h over 30 min. [36]. Extended infusion (preferred): 1–2 g IV q8 h over 4 h [34,35]. -Continuous infusion: LD 2 g IV, then 3–6 g/24 h [34,35]. | -Hydrophilic, low protein binding, minimal ECMO sequestration [5,35,36]. -ECMO rarely alters CL; mild ↑ Vd early; AUC/t½ largely illness-driven [5,35,36]. -Pharmacokinetic variability largely attributed to critical illness severity, renal function, patient weight, fluid balance, and concurrent renal replacement [5,35,36]. | -TDM and individualized dose adjustments guided by plasma 100% fT > MIC (100% fT > 4 × MIC for severe infection); general ICU target; ECMO PopPK supports same goals; adjustments are renal/CRRT-driven [30,35,36,91,98]. -Increased likelihood of subtherapeutic concentrations in severe infections, patients on CRRT, or resistant pathogens [30,35,36,91,98]. | Alternative carbapenems (e.g., imipenem-cilastatin), cefepime, piperacillin-tazobactam, or β-lactam/β-lactamase inhibitor combinations, considering pathogen susceptibility profile [35]. | -Indicated for severe infections, especially with multi-drug-resistant pathogens [35,36,109]. -ECMO alone does not necessitate dosing adjustments; extended or continuous infusions strongly recommended [35,36,109]. -Close monitoring and individualized dose adjustments critical, primarily influenced by renal function and critical illness status [35,36,109]. |
| Ertapenem | -No ECMO-specific PK data available. Standard dosing in critically ill patients typically recommended: 1 g IV q24 h over 30 min [5]. -Consider prolonged or continuous infusion strategies in patients receiving RRT [5]. -ECMO-specific dosing adjustments have not been clearly defined in the literature [5]. | No ECMO-specific data about PK; dose adjustment should follow critical-illness principles, in practice renal/CRRT/illness drive Vd/CL/AUC/t½ [5]. | -Regular clinical monitoring recommended. Adjustments follow renal/CRRT principles. -%fT > MIC ≥ 50–100% (extrapolated); target from general ICU; no ECMO-specific threshold [5]. | Alternative carbapenems such as meropenem or imipenem-cilastatin for broader spectrum coverage, especially in severe infections or patients with ECMO-supported critical illness [5]. | -Limited evidence available specifically for ECMO patients; use cautiously with consideration for renal replacement therapy [110,111,112]. -Adjust dosing strategies (prolonged or continuous infusion) primarily based on clinical condition and renal function, considering potential theoretical risk of ECMO sequestration [110,111,112]. |
| Linezolid | -Standard dose: 600 mg IV q12 h over 30–60 min if MIC ≤ 1 mg/L [13,33,109]. -Higher dosing: Consider 600 mg IV q8h or continuous infusion: 1800 mg/24 h for pathogens with MIC > 1 mg/L [49,50,108]. | ↑ Vd (inflammation) with variable AUC/CL → frequent underexposure; ECMO adds variability but no consistent shift [49,50,108]. | -Frequent TDM recommended with plasma concentration target between 2 and 7 mg/L to maintain therapeutic effectiveness and minimize toxicity risks, particularly thrombocytopenia; general ICU target; ECMO shows inconsistent exposures but no new window. [48,49,50,108]. -Individualize dosing based on measured concentrations and clinical response due to significant variability among ECMO patients [48,49,50,108]. | Vancomycin or daptomycin (depending on clinical indication), or alternative agents based on susceptibility profiles and patient-specific factors [13,33,109]. | -Indicated for severe Gram-positive bacterial infections. Due to high pharmacokinetic variability, ECMO patients frequently require individualized dosing beyond standard recommendations [48,49,50,108]. -Risk of subtherapeutic exposure and thrombocytopenia necessitates rigorous monitoring and possible dose increases, particularly for pathogens with MIC > 1 mg/L [48,49,50,108]. |
| Vancomycin | -Loading dose: 25 mg/kg IV [53,54,55,99]. -Maintenance dose: 12.5–20 mg/kg IV q12 h [53,54,55,99]. -Alternative regimens [53,54,55,99]: 500 mg IV q8 h (lung transplant prophylaxis). 400 mg IV q8 h (if MIC ≤ 0.5 μg/mL). 600 mg IV q8 h (if MIC ≤ 1 μg/mL). -Renal-based adjustments [53,54,55,99]: Creatinine < 1 mg/dL: 1 g IV q8 h. Creatinine > 1 mg/dL: 1 g IV q12 h. Standard daily dose: 2 g/day divided q12 h. | -Minimal ECMO circuit sequestration risk [5,33]. -Vd/CL ≈ on vs. off ECMO; AUC variability high from renal function/CRRT; t½ variable. -Significant interindividual variability related primarily to critical illness, renal function, and renal replacement therapy rather than ECMO itself [30,59,60]. | Regular monitoring of serum vancomycin trough levels recommended. AUC24/MIC 400–600 (surrogate trough 15–20 µg/mL if AUC unavailable); general ICU target; multiple ECMO PopPK confirm same goal [48,56,57,58,99]. | * | -Broadly used for Gram-positive infections, particularly MRSA infections [53,56,57,58,99]. -Higher loading and maintenance doses, as well as continuous or prolonged infusion, recommended to achieve optimal AUC/MIC, especially if renal replacement therapy is used [53,56,57,58,99]. -Careful therapeutic monitoring required due to variability and potential nephrotoxicity risks [53,56,57,58,99]. |
| Piperacillin-Tazobactam | -Extended infusion (preferred) dosing strategies based on renal function [30,92,113,114]: CrCl > 40 mL/min: 4.5 g IV q6 h over 4 h. CrCl 20–40 mL/min or continuous renal replacement therapy (CRRT): 4.5 g IV q8 h over 4 h. CrCl < 20 mL/min: 4.5 g IV q12 h over 4 h. -Consider higher loading doses and continuous infusion for severe infections, pathogens with elevated MIC values, or adequate renal function [93,98]. | -Hydrophilic antibiotic, with low ECMO-related pharmacokinetic alterations [30,92,113,114]. -ECMO has small/no consistent effect; CL/Vd driven by renal function/CRRT; AUC/t½ illness-dependent. -Pharmacokinetic variability mainly influenced by patient-specific factors such as renal function, critical illness severity, and presence of renal replacement therapy rather than ECMO itself [30,92,113,114]. | -Frequent TDM recommended, targeting plasma concentrations ≥ 64 mg/L for at least 50–100% of dosing; general ICU PK/PD target; ECMO adds variability [30,92,98,113,114]. -Rigorous monitoring is advised to prevent subtherapeutic or toxic exposure [30,92,98,113,114]. | Meropenem, cefepime, carbapenems, or alternative β-lactam/β-lactamase inhibitor combinations based on susceptibility profiles, renal function, and clinical scenario [92,113,114]. | -Choice for broad-spectrum coverage in ECMO-supported critically ill patients [30,92,98,113,114]. -Extended or continuous infusions strongly recommended [30,92,98,113,114]. -No ECMO-specific dosing adjustments generally required, but individual dosing should be guided by therapeutic monitoring, patient renal function, MIC values, and clinical response [30,92,98,113,114]. |
| Tigecycline | -Standard dosing: LD 100 mg IV, then 50 mg IV q12 h over 30–60 min [5,13,97,109]. -Consider potential dose adjustment or monitoring for therapeutic effectiveness in critically ill ECMO patients due to theoretical ECMO circuit sequestration risk [5,109]. | ECMO effect uncertain; exposure variability reflects illness/hepatic function; AUC changes inconsistent [5,109]. | -Regular therapeutic and plasma concentration monitoring recommended to ensure therapeutic efficacy, particularly due to theoretical ECMO sequestration risk and high interindividual variability among critically ill patients [5,109]. -Software-assisted dosing and pharmacokinetic modeling tools strongly recommended [80]. | Cefiderocol, colistin, or carbapenems as alternative antimicrobials for multi-drug-resistant Gram-negative bacterial infections [13,97]. | -Indicated for severe infections including ventilator-associated pneumonia caused by Gram-negative bacilli and Staphylococcus epidermidis [5,13,97,109]. -Limited evidence specifically in ECMO; standard dosing appears effective, but careful therapeutic monitoring and individualized dosing strategies are advised due to potential pharmacokinetic variability [5,13,97,109]. |
| Amphotericin B | Standard dose: 1 mg/kg/day IV [5,40,109]. No ECMO-specific dose adjustments generally required. | Minimal ECMO circuit effect; Vd/CL/AUC similar to non-ECMO; t½ unchanged [5,39,40,109]. | Monitoring focuses on clinical efficacy and safety (renal function, electrolytes) [5,39,40,109]. | * | -Indicated primarily for invasive fungal infections such as aspergillosis [5,39,40,109]. -Standard dosing is effective in ECMO-supported critically ill patients; no significant pharmacokinetic alterations requiring dose adjustment [5,39,40,109]. |
| Liposomal Amphotericin B | -Standard dosing: 3–5 mg/kg/day IV, titrated upwards as needed (5–10 mg/kg/day) especially in aspergillosis and mucormycosis [5,39,40]. -Consider doubling doses if therapeutic response inadequate [39]. | Circuit adsorption possible → AUC variability ↑, Vd apparent variable; CL not consistently ECMO-changed [5,39,40,43]. | -Frequent plasma concentration monitoring recommended due to significant interindividual pharmacokinetic variability. -No serum PK target; monitor efficacy and renal/electrolyte safety; general ICU thresholds; ECMO may add adsorption. | Echinocandins (e.g., caspofungin), azoles (e.g., posaconazole, voriconazole) depending on susceptibility and clinical scenario [5,40,43]. | Indicated for severe invasive fungal infections (aspergillosis, mucormycosis). ECMO therapy significantly influences pharmacokinetics, often requiring higher-than-standard dosing [5,39,40,43]. |
| Caspofungin | -Standard dose: Loading dose: 70 mg IV once daily. Maintenance: 50–70 mg IV daily [5,48,81,82,94,95]. -Higher dosing (e.g., 100 mg/day) may be required in patients with high lean body mass (>80 kg) or infections caused by less susceptible organisms (e.g., Candida parapsilosis) [94,95]. | ECMO-specific effect negligible; variability chiefly by body weight/severity/severity of illness; AUC stable [48,92]. | -Target concentrations suggested [39]: Cmax: ~11.95 μg/mL. Cmin: ~3.73 μg/mL; thresholds from general antifungal literature. -Titrate dosing individually based on clinical response, patient weight, renal/hepatic function, and MIC of the causative organism [5,48,53,94]. | Anidulafungin, micafungin, or amphotericin B formulations depending on pathogen susceptibility, patient-specific conditions, and response to caspofungin therapy [5,40]. | -Indicated primarily for invasive candidiasis in critically ill patients undergoing ECMO [5,48,53,94]. -Standard dosing is usually sufficient; higher dosing may be required due to interindividual variability and critical illness severity. ECMO itself does not generally require dosing adjustments [5,48,53,94]. |
| Fluconazole | -Standard dose: Loading dose 12 mg/kg IV, maintenance 6 mg/kg/day IV if MIC ≤ 1 mg/L [39,83,115]. -Intensified dose: Loading dose 18 mg/kg IV, maintenance 6 mg/kg/day if MIC 1–2 mg/L [115]. -High-intensity dose: Loading dose 18 mg/kg IV, followed by maintenance 12 mg/kg/day or 6 mg/kg every 12 h if MIC ≥ 2 mg/L [115]. -Alternative fixed daily dosing: 400–800 mg/day for MIC ≤ 1 mg/L infections (e.g., Candida albicans) [48]. | ECMO effect minimal; AUC/CL governed by renal function (±CRRT); Vd ↑ modestly; t½ renal-dependent; may necessitate higher loading doses especially for pathogens with higher MIC values (≥2 mg/L) [39,82,83]. | -Target trough 10–15 mg/L (or AUC/MIC ≥ 100 if available). Check levels especially in CRRT or high MIC isolates; escalate dose or shorten interval if <10 mg/L; general ICU target [82]. -Individualized monitoring and dose titration according to clinical response advised [82]. | Voriconazole, caspofungin, liposomal amphotericin B, or echinocandins depending on antifungal susceptibility profile, clinical scenario, and patient-specific considerations [39,83]. | -Effective in ECMO-supported patients with minimal sequestration risk, but dosing adjustments (primarily higher loading doses) may be required due to increased volume of distribution in ECMO therapy or renal replacement therapy [39,48,82,83]. -Standard dosing generally adequate if MIC ≤1 mg/L, but individualized therapeutic monitoring strongly recommended [39,48,82,83]. |
| Voriconazole | -IV dosing: Loading dose 6 mg/kg every 12 h (first 24 h), maintenance dose 4 mg/kg every 12 h [39,53,83]. -PO dosing: Loading dose 400 mg every 12 h (first 24 h), maintenance dose 200 mg every 12 h [47]. -Due to significant variability, maintenance dose often increased to ≥ 6 mg/kg every 12 h, and up to 12 mg/kg every 12 h in subtherapeutic (<2 mg/L) cases [39,44,45,46,53,83]. | Substantial sequestration in ECMO circuits, causing significant interpatient pharmacokinetic variability and subtherapeutic concentrations at standard dosing, possible subexposure (AUC ↓, troughs < 2 mg/L); Vd ↑; CL variable; t½ variable [39,53,83]. | -Target trough (Cmin) 2–5 mg/L; general ICU therapeutic window; ECMO confirms frequent subexposure [40,47,48,109]. -Stepwise escalation in ECMO: 1. Confirm adequate loading (6 mg/kg IV q12h × 2 doses). 2. If trough < 2 mg/L on standard maintenance (4 mg/kg IV q12h), increase maintenance by 25–50% (e.g., 5–6 mg/kg q12h) and recheck level after 4–5 doses. 3. If still subtherapeutic (<2 mg/L) despite escalated dosing, consider switching: liposomal amphotericin B if broad mold coverage required, or an echinocandin (e.g., caspofungin) in case of intolerance or resistant Candida. | Alternative antifungals: Liposomal amphotericin B, isavuconazole, posaconazole, or echinocandins (caspofungin, anidulafungin), depending on pathogen susceptibility, renal/hepatic function, and ECMO-related pharmacokinetic considerations [13,40,48]. | Standard antifungal agent for invasive aspergillosis or other fungal infections in critically ill ECMO-supported patients. Significant variability and ECMO sequestration often necessitate increased dosing and individualized therapeutic drug monitoring. [13,39,40,48,83,92,109]. |
| Epinephrine | -General recommendation: Use minimal effective doses (0.5–1 μg/kg/min), titrated based on clear perfusion targets (SvO2 >60%, lactate < 6 mmol/L, cardiac index >2.2 L/min/m2) [66,84]. -ECPR-specific: Limit cumulative dose to ≤3 mg total to improve neurological outcomes and hospital survival. Avoid cumulative doses > 3 mg due to increased risk of adverse effects [64]. | -No consistent ECMO effect on Vd/CL/AUC/t½; dose–response reflects illness severity; observational harm signal likely confounding by indication [60,61,62,94]. -Increased myocardial oxygen consumption, hyperlactatemia, splanchnic vasoconstriction, immunosuppressive effects, and potential microvascular cerebral ischemia at higher cumulative doses [64,65,66,84]. -Prioritize goal-directed endpoints (e.g., MAP ≥ 65 mmHg, CI > 2.2 L/min/m2, lactate down-trending, adequate SvO2) to minimize dose escalation; reserve primarily as rescue agent [64,65,66,84]. | Rigorous monitoring of hemodynamic parameters (MAP, cardiac index, SvO2), lactate levels, and clinical response. Individualized titration critical to minimize risks; general ICU practice; ECMO has no numeric PK goal [66,84]. | -Prefer alternative agents such as inodilators (dobutamine, milrinone, levosimendan) or norepinephrine for maintaining hemodynamic stability [65,66,84]. -Epinephrine recommended primarily as rescue therapy in refractory shock or cardiac arrest situations [65,66,84]. | -Strongly discourage routine use due to association with increased mortality and significant adverse effects [64,65,66,84]. -Recommended as second-line or rescue therapy under careful monitoring. Strict adherence to minimal effective dosing and defined perfusion targets necessary to optimize patient outcomes [64,65,66,84]. |
| Dobutamine | Avoid doses >5 μg/kg/min once mean arterial pressure (MAP) ≥ 65 mmHg is achieved, as higher doses provide no additional therapeutic benefit [66]. | -PK changes driven by patient’s cardiac function and illness severity, not ECMO [66]. -Use the lowest effective dose and titrate to goal-directed endpoints (CI > 2.2 L/min/m2, MAP ≥ 65 mmHg, evidence of adequate perfusion), considering inodilator alternatives when appropriate to avoid unnecessary up-titration [66]. -Catecholamine-based inotrope; prolonged or excessive use may increase the risk of arrhythmias and cardiomyopathy, especially at doses above 5 μg/kg/min after hemodynamic stabilization [66]. | -Monitor MAP (≥65 mmHg), cardiac index (>2.2 L/min/m2), and mixed venous oxygen saturation (SvO2 > 60%); general ICU practice; no ECMO PK threshold [66]. -Regularly assess cardiac rhythm and function to promptly detect arrhythmias or signs of cardiotoxicity [66]. | Inodilators such as milrinone or levosimendan preferred due to superior safety profile and beneficial effects on myocardial contractility and perfusion [66]. | -Dobutamine is suitable for short-term hemodynamic stabilization [66]. -Limit dosing and duration to avoid adverse cardiac effects. Alternative inodilators are preferred in stable patients to minimize risk of cardiotoxicity and arrhythmias [66]. |
| Norepinephrine | -Standard dosing: 0.03–0.30 μg/kg/min. Typical max: 0.22–0.30 μg/kg/min [61,63]. -Moderate-high dosing: (0.5–1 μg/kg/min, up to 100 μg/min) reported in severe hypotension or septic cardiomyopathy, titrated carefully according to clinical response [62,84]. | -No significant ECMO-related pharmacokinetic changes or sequestration risk were observed [61,62,63,84]. -Dose variability primarily driven by critical illness severity, sepsis, myocardial dysfunction, vasoplegia, so emphasize goal-directed endpoints (MAP ≥ 65 mmHg, CI > 2.2 L/min/m2, lactate/SvO2 targets) rather than escalating for ECMO needs [61,62,63,84]. | -Regular monitoring recommended, titrating to clear hemodynamic targets: MAP ≥ 65 mmHg, cardiac index > 2.2 L/min/m2, SvO2 > 60%, lactate levels < 6 mmol/L, and clinical response; general ICU target [62,84]. -ECMO flow rate impacts cardiac overload and pulmonary congestion, emphasizing careful ECMO flow management [61]. | Epinephrine (as rescue), vasopressin, or inodilators such as levosimendan, milrinone, or dobutamine for cardiac support or hemodynamic stabilization in specific clinical scenarios [63]. | -First-line vasopressor for refractory hypotension and septic cardiomyopathy in critically ill ECMO patients [61,62,63,84]. -Dosage and titration guided by hemodynamic response and perfusion goals. High-dose norepinephrine should be carefully justified due to associated risks and severity of clinical condition, rather than ECMO-specific pharmacokinetics [61,62,63,84]. |
| Unfractionated Heparin (UFH) ¤ | -IV bolus at cannulation: 50–100 IU/kg, followed by continuous infusion 10–21 IU/kg/h adjusted to therapeutic goals [13,66,67]. -Typical ECMO dosages: ECMO-VA: ~9.59 IU/kg/h (approx. 8500 IU/day). ECMO-VV: ~13.64 IU/kg/h (approx. 28,800 IU/day) [96]. | -High molecular weight (~3000–30,000 Da) and hydrophilic nature limit significant ECMO circuit sequestration [5]. -Pharmacokinetics largely influenced by critical illness severity, renal function, body weight, inflammation, and concurrent renal replacement therapy (CRRT) rather than ECMO itself [69,116]. | -ECMO practice specific monitoring ranges: aPTT: 50–90 s Anti-Factor Xa (FXa): 0.3–0.7 IU/mL (preferred due to lower variability) ACT: 140–220 s [13,66,67]. -Multimodal monitoring (FXa combined with viscoelastic testing ROTEM/TEG) strongly recommended for precise dosing adjustments [13,66,67]. | -Bivalirudin (0.1–0.15 mg/kg/h IV infusion) or Argatroban (0.1–0.5 mg/kg/min IV infusion) recommended alternatives in patients developing heparin-induced thrombocytopenia (HIT), especially with hepatic or renal impairment respectively [13,66,67]. -Low molecular weight heparin (LMWH; enoxaparin 0.5 mg/kg twice daily SC) as viable alternative in selected patients [86]. | -Anticoagulation standard of care in ECMO-supported patients. -Dose individualization and rigorous therapeutic monitoring crucial due to high interindividual pharmacokinetic variability. Limit dosing to the lowest effective anticoagulation level to balance thrombotic and hemorrhagic risks. Special caution and monitoring for HIT recommended [13,66,67,68,69]. |
| Enoxaparin | -Prophylactic dosing: 0.5 mg/kg SC twice daily (8000 IU/day divided into two doses of 4000 IU every 12 h), target peak FXa levels: 0.3–0.5 IU/mL [73]. -IV continuous infusion: Loading dose 0.5 mg/kg IV prior to cannulation, followed by continuous infusion at 1 μg/kg/min (≈10 IU/kg/min), target FXa: 0.4–0.6 IU/mL [74]. | No clear ECMO-specific effect. Effective anticoagulant with stable and predictable pharmacodynamic profile in critically ill ECMO patients [5,73,74]. | -Therapeutic monitoring via anti-FXa levels strongly recommended in ECMO practice (target peak: 0.3–0.6 IU/mL) [67,73,74]. -Prefer FXa monitoring over aPTT or ACT for more precise dosing and minimizing bleeding risk [67,73,74]. | * | -Preferred anticoagulant in ECMO patients contraindicated for UFH or requiring simpler administration [67,73,74]. -Demonstrates lower incidence of thromboembolic and bleeding events compared to UFH. IV continuous infusion guided by FXa monitoring considered safe and effective but requires further clinical evidence [67,73,74]. |
| Rocuronium | Standard neuromuscular blockade dosing (No ECMO-specific adjustments available) [77,78,117]. | -Potential early circuit adsorption (↑ Vd); later accumulation reflects hepatic dysfunction; CL ↓ if liver failure; t½ may ↑ [22]. -Rocuronium has potential ECMO-related adsorption risk due to high lipophilicity [22]. | Monitor clinical response closely, particularly neuromuscular function and hepatic status. No specific ECMO-related TDM available. | Cisatracurium preferred due to lower lipophilicity, rapid onset of action, and metabolism independent of hepatic and renal pathways [22]. | Valid neuromuscular blocker in ECMO-supported patients, but risk of active metabolite accumulation in hepatic impairment limits its optimal use [22]. |
| Drug | logP | Protein Binding (%) | ECMO Effect on Plasma Concentrations (Clinical Adult Data) |
|---|---|---|---|
| Midazolam | 3.3 | 95–97% | Higher dose requirements; lower plasma concentrations vs. expected. No % quantified in adult cohorts [12,88]. |
| Fentanyl | 4.0 | 80–85% | Increased early dose requirements; lower levels reported. No % quantified in adult cohorts [16,18,85]. |
| Propofol | 3.8 | >95% | Increased dose needs; lower concentrations observed. No % quantified in adult cohorts [5,14]. |
| Voriconazole | 2.6 | >95% | Subtherapeutic troughs (<2 mg/L) in ~30–50% of ECMO patients [44,45,46,47]. |
| Posaconazole | 3.0 | >98% | Subtherapeutic levels frequent; ~40% below prophylaxis target in ECMO patients [39]. |
| Fluconazole | 0.5 | 10–12% | Stable exposures; no significant reduction in ECMO vs. non-ECMO [115]. |
| Meropenem | –0.2 | <2% | Comparable PK on/off ECMO; no significant loss observed [36,91]. |
| Amikacin | –5.6 | <5% | Subtherapeutic peaks frequent with standard LD; ECMO not independent predictor. No % quantified [29,32,48]. |
| Vancomycin | –3.1 | 30–55% | No consistent ECMO effect; AUC variability renal/CRRT-driven [54,55,58]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Romero, A.; Chaverri-Fernandez, J.M.; Chaves-Fernández, F.; Zavaleta-Monestel, E. Optimizing Drug Therapy in ECMO-Supported Critically Ill Adults: A Narrative Review and Clinical Guide. Pharmacy 2025, 13, 151. https://doi.org/10.3390/pharmacy13060151
Rocha-Romero A, Chaverri-Fernandez JM, Chaves-Fernández F, Zavaleta-Monestel E. Optimizing Drug Therapy in ECMO-Supported Critically Ill Adults: A Narrative Review and Clinical Guide. Pharmacy. 2025; 13(6):151. https://doi.org/10.3390/pharmacy13060151
Chicago/Turabian StyleRocha-Romero, Abraham, Jose Miguel Chaverri-Fernandez, Fianesy Chaves-Fernández, and Esteban Zavaleta-Monestel. 2025. "Optimizing Drug Therapy in ECMO-Supported Critically Ill Adults: A Narrative Review and Clinical Guide" Pharmacy 13, no. 6: 151. https://doi.org/10.3390/pharmacy13060151
APA StyleRocha-Romero, A., Chaverri-Fernandez, J. M., Chaves-Fernández, F., & Zavaleta-Monestel, E. (2025). Optimizing Drug Therapy in ECMO-Supported Critically Ill Adults: A Narrative Review and Clinical Guide. Pharmacy, 13(6), 151. https://doi.org/10.3390/pharmacy13060151

