Next Article in Journal
HD-ZIP I Transcription Factor (PtHB13) Negatively Regulates Citrus Flowering through Binding to FLOWERING LOCUS C Promoter
Next Article in Special Issue
Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae
Previous Article in Journal
Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda)
Previous Article in Special Issue
The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities

1
Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 50000, Vietnam
2
School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Nghe An Province, Vietnam
3
Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
4
Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA
5
Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 50000, Vietnam
6
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
*
Authors to whom correspondence should be addressed.
Plants 2020, 9(1), 113; https://doi.org/10.3390/plants9010113
Submission received: 27 December 2019 / Revised: 13 January 2020 / Accepted: 14 January 2020 / Published: 16 January 2020

Abstract

:
There are around 140 species in the genus Callicarpa, with 23 species occurring in Vietnam. The Vietnamese Callicarpa species have been poorly studied. In this work, the leaf essential oils of C. bodinieri, C. candicans, C. formosana, C. longifolia, C. nudiflora, C. petelotii, C. rubella, and C. sinuata, have been obtained from plants growing in central Vietnam. The chemical compositions of the essential oils were determined using gas chromatography – mass spectrometry. Mosquito larvicidal activities of the essential oils were carried out against Aedes aegypti. All of the Callicarpa leaf essential oils showed larvicidal activity, but two samples of C. candicans were particularly active with 48-h LC50 values of 2.1 and 3.8 μg/mL. Callicarpa candicans essential oil should be considered as a potential alternative mosquito control agent.

1. Introduction

There are around 140 species of Callicarpa L. distributed in tropical and subtropical locations [1]. The genus has been placed in either the Verbenaceae or the Lamiaceae, but is currently placed in Lamiaceae [2,3]. Members of the genus have been used as fish poisons and in herbal medicine [1,2]. In this work, we present the essential oil compositions of several Callicarpa species growing wild in central Vietnam. In addition, some of the essential oils were screened for mosquito larvicidal activity.
Callicarpa bodinieri H. Lév. is native to western and central China [3], Vietnam, Laos, Cambodia, and Thailand [4]. The plant is used in traditional Chinese medicine to treat hematemesis (oral decoction of the leaves) and to treat wounds and bruises (fresh leaves externally) [5]. Flavonoids, sterols, triterpenoids [2], and diterpenoids [6] have been characterized in the leaves of C. bodinieri.
Callicarpa candicans (Burm. f.) Hochr. is native to southeast Asia, including China (Quangdong, Hainan), Burma, Cambodia, India, Laos, the Philippines, Thailand, and Vietnam [3]. The plant has been used as a fish poison in the Philippines [7], India [8], and Thailand [9]. In Vietnamese traditional medicine, the plant is used to prepare a tonic, to treat diseases of the liver and stomach, and externally to treat skin problems, pimples and ulcerations [10]. In Thailand, the stem bark of C. candicans is used to treat skin inflammation and swelling [11], while in the Philippines, the plant is taken to treat abdominal troubles [7], and sore throat and tonsillitis in the Mariana Islands [12]. In Vietnam, C. candicans is used as a tonic for postpartum care in women, to treat liver and abdominal pain, and as a diuretic [13]. Diterpenoids, triterpenoids, and flavonoids have been isolated from C. candicans [9,10].
Callicarpa formosana Rolfe is found in southeastern China (including Taiwan) [14], Japan, the Philippines [3], and Vietnam [15,16]. In China, C. formosana is used to treat scrofula (mycobacterial cervical lymphadenitis), and goiter [5], to stop bleeding [17], and to treat pyogenic infections [18]. Several sesquiterpenoids, diterpenoids, triterpenoids, iridoids, and flavonoids have been isolated and characterized from C. formosana [14].
Callicarpa longifolia Lam. Ranges from southern China through Malesia to Australia and from India through southeast Asia, including Vietnam [3,4,15,16,19,20,21]. Leaves of C. longifolia are used in China to treat wounds [2], while in Vietnam the plant is used to treat fever, diarrhea, abdominal pain, and as a tonic for postpartum women [13]. Kaurane diterpenoids and several flavonoids have been isolated from the leaves of C. longifolia [2,5].
Callicarpa nudiflora Hook. & Arn. is distributed from southern China through Southeast Asia as well as Burma, India, and Sri Lanka [3]. In Chinese traditional medicine, C. nudiflora is used for gastrointestinal bleeding, tuberculosis, upper respiratory tract infection, pneumonia, and bronchitis [5]. In Vietnam, the plant has been used traditionally for treating stomach bleeding and hepatitis [13]. The phytochemistry of C. nudiflora has been extensively studied. Terpenoids, including iridoids, diterpenoids, triterpenoids, as well as numerous flavonoids and phenylpropanoids have been isolated and identified in the plant [5].
Callicarpa petelotii Dop is endemic to Vietnam and recorded in the provinces of Lạng Sơn, Vĩnh Phúc, Hòa Bình, and Nghệ An [15,16]. There are no reports in the literature regarding ethnobotanical uses of the plant nor are there any phytochemical analyses reported.
Callicarpa rubella Lindl. ranges from southeastern China south through Burma, Thailand, Laos, and Vietnam [3]. In Vietnam, the fresh leaves are applied externally to treat scabies [13] or chewed to treat gum disease [22].
Callicarpa sinuata A.L. Budantzev & Phuong is endemic to Vietnam. It has been recorded in Quảng Bình province, (Vĩnh Linh: Do Linh), Sơn Trà peninsula (Đà Nãng City), and Gia Lai province [15,16]. There are no reports in the literature on the ethnobotany or phytochemistry of this species.
Mosquito-borne diseases have been a chronic menace to humans throughout history. Aedes aegypti (L.) (Diptera: Culicidae) is an important insect vector of arboviruses such as dengue [23], yellow fever [24], chikungunya [25], and Zika [26]. Dengue fever is widespread in Vietnam and epidemics are becoming more frequent [27]. Furthermore, chikungunya and Zika infections have recently been reported in Vietnam [28]. Culex quinquefasciatus Say (Diptera: Culicidae) is a vector of lymphatic filariasis [29] as well as several arboviruses such as West Nile virus and St. Louis encephalitis virus [30] and possibly Zika virus [31].
Insecticide resistance in Aedes and Culex mosquitoes has been growing throughout the world and may lead to an increase in the frequency of mosquito-borne diseases [32,33,34,35,36]. In addition to insecticide resistance, there is a chronic problem of the environmental impacts of synthetic insecticides [37,38], and there is a need for new and complementary methods for controlling insect vectors. Essential oils have shown promise as renewable and environmentally-safe alternatives to the use of synthetic insecticides [39,40,41,42,43]. As part of our continuing research on essential oils of aromatic plants from Vietnam and our search for natural mosquito control agents, we have collected and analyzed the essential oils from several species of Callicarpa growing wild in central Vietnam, and, depending on availability, the essential oils were screened for larvicidal activity against Ae. aegypti, and/or Cx. quinquefasciatus. The volatile components of C. candicans, C. longifolia, C. petelotii, and C. sinuata are reported for the first time. As far as we are aware, none of the Callicarpa essential oils presented in this work has been previously investigated in terms of mosquito larvicidal activity.

2. Results and Discussion

2.1. Essential Oil Compositions

2.1.1. Callicarpa bodinieri

The leaf essential oil of C. bodinieri was obtained from Ngoc Linh Nature Reserve, Quang Nam province. The essential oil composition is presented in Table 1. The major components in C. bodinieri leaf essential oil were caryophyllene oxide (9.8%), β-selinene (8.9%), limonene (8.0%), and α-copaene (5.4%). A total of 106 compounds were identified in the essential oil accounting for 96.2% of the composition with sesquiterpene hydrocarbons (34.2%) and oxygenated sesquiterpenoids (37.8%) making up the bulk of the composition. The volatiles, obtained by head-space solid-phase micro extraction, of C. bodinieri from China have been reported [44]. The main volatile compounds were eremophila-1(10),11-diene (30.1%), cadina-3,9-diene (15. 2%), and longifolene (5.7%), and therefore, very different from the composition of the leaf essential oil from Vietnam.

2.1.2. Callicarpa candicans

The leaf essential oils of C. candicans have been obtained from three different locations in Central Vietnam, Nghia Dan district (Nghe An province), Dai Loc district (Quang Nam province), and Hoa Vang district (Da Nang city). The C. candicans leaf essential oils were dominated by sesquiterpene hydrocarbons and oxygenated sesquiterpenes. (E)-Caryophyllene (19.0%, 7.1%, and 15.3%), β-selinene (6.2%, 5.7%, and 4.5%), caryophyllene oxide (2.9%, 13.4%, and 3.4%), and atractylone (37.7%, 4.2%, and 42.4%), respectively, for the samples from Nghia Dan, Dai Loc, and Hoa Vang, were the major components (Table 2). The stem bark essential oil, collected from Hoa Vang, was also rich in (E)-caryophyllene (7.8%), β-selinene (7.9%), caryophyllene oxide (11.1%), and atractylone (6.2%) (Table 3). As far as we are aware, there have been no previous reports on C. candicans essential oils.

2.1.3. Callicarpa formosana

The leaf essential oil of C. formosana from Vietnam was dominated by caryophyllene oxide (38.9%), β-bisabolene (18.6%), and (E)-caryophyllene (6.5%) (Table 4). The composition of the essential oil from Vietnam is notably different from that collected in Guangdong, China, which was composed largely of spathulenol (20.2%), (E)-caryophyllene (17.2%), germacrene D (8.1%), and β-eudesmol (5.5%) [45].

2.1.4. Callicarpa longifolia

Leaf essential oils of C. longifolia were obtained from Son Tra Peninsula (Da Nang City) and from Nghia Dan district (Nghe An province). Sesquiterpene hydrocarbons and oxygenated sesquiterpenoids dominated both essential oils (Table 5). There were, however, notable differences in the chemical profiles. For example, β-selinene was relatively abundant in the Nghia Dan sample (13.2%), but much less in the sample from Da Nang (3.2%). Conversely, trans-β-guaiene was abundant in the Da Nang sample (22.2%), but much lower in the Nghia Dan sample (0.4%). To our knowledge, there are no previous reports on the essential oil of C. longifolia.

2.1.5. Callicarpa nudiflora

Unlike the essential oils of other Callicarpa species in this investigation, the leaf essential oil of C. nudiflora was dominated by the monoterpenes α-pinene (8.1%) and β-pinene (34.2%). Caryophyllene oxide (20.1%) was also an abundant component (Table 6). The chemical composition of Vietnamese C. nudiflora is markedly different from the leaf essential oil from China [46]. The Chinese sample showed only small quantities of α- and β-pinene (0.1% and 1.6%, respectively) and caryophyllene oxide was not observed. Conversely, humulene epoxide II was abundant in the sample from China (17.3%), but relatively minor in the sample from Vietnam (0.5%). Bisabolene oxide was abundant in the Chinese essential oil (10.5%), but was not detected in the sample from Vietnam.

2.1.6. Callicarpa petelotii

Leaves of C. petelotii were collected from Tay Giang district, Quang Nam province, Vietnam. The leaf essential oil was dominated by the sesquiterpene hydrocarbons α-humulene (53.8%) and α-selinene (12.8%), in addition to humulene epoxide II (8.1%) (Table 7). There are no previous reports on the essential oil of C. petelotii.

2.1.7. Callicarpa rubella

The leaf essential oils of C. rubella were obtained from three different sites in central Vietnam, Nậm Giải Commune (Quế Phong district, Pu Hoat Nature Reserve, Nghe An province), Bach Ma National Park (Phu Loc district, Thua Thien Hue province), and Tay Giang district (Quang Nam province). The essential oil compositions showed very different profiles (Table 8). The leaf essential oil from Nam Giai was dominated by caryophyllene oxide (25.1%), cis-thujopsenol (8.8%), and corymbolone (5.6%); β-bisabolene (25.0%), germacrone (22.1%), and (E)-caryophyllene (7.1%) were the major components of the leaf essential oil from Bach Ma; and the essential oil from Tay Giang was rich in (E)-caryophyllene (18.0%) and α-cubebene (17.4%). The volatiles, obtained by head-space solid-phase microextraction (HS-SPME) techniques, of C. rubella from China showed α-cubebene (8.7%), palmitic acid (5.4%), epizonarene (4.8%), heptadecane (4.8%), and spathulenol (4.5%) as the major components [47]. Thus, there is wide variation in the chemical compositions of C. rubella leaf essential oils. In addition to geographical and climatic effects, genetic differences may be responsible for the wide variation in essential oil composition; the Missouri Botanical Garden lists 11 subordinate taxa for C. rubella [3]. The stem bark essential oil from Bach Ma National Park was similar in composition to the leaf essential oil from that collection site. The major components in the bark essential oil were germacrone (23.9%), β-bisabolene (17.9%), germacrene B (8.4%), and (E)-caryophyllene (7.3%) (Table 9).

2.1.8. Callicarpa sinuata

The leaf essential oil of C. sinuata from Son Tra Peninsula (Da Nang City) showed α-humulene (24.8%), α-copaene (12.6%), humulene epoxide II (6.7%), and spathulenol (5.9%) as the major components (Table 10). There have been no previous reports on the essential oil composition of C. sinuata.
With the exception of C. nudiflora, the Callicarpa leaf essential oils are dominated by sesquiterpene hydrocarbons and oxygenated sesquiterpenoids. Overall, the most abundant sesquiterpenes were (E)-caryophyllene and caryophyllene oxide and those compounds were found in all of the Callicarpa leaf essential oil samples. α-Humulene and β-selinene were also found in all of the leaf oil samples, while α-copaene, spathulenol, and humulene epoxide II were detected in 12 of the 13 leaf essential oils sampled. The furanoid sesquiterpenoid atractylone was only found in C. candicans.

2.2. Mosquito Larvicidal Activity

The 24-h and 48-h mosquito larvicidal activities of the Callicarpa leaf essential oil are summarized in Table 11 and Table 12. As far as we are aware, there have been no previous larvicidal investigations on these Callicarpa essential oils. Due to limited supply of some of the essential oils and limited supplies of mosquito larvae, not all essential oils could be screened against both mosquito species. Dias and Moraes have concluded that plant essential oils are considered larvicidal against Ae. aegypti if the LC50 values are less than 100 μg/mL [48]. Based on these guidelines, all of the Callicarpa essential oils showed good larvicidal activity. However, the leaf essential oils of C. candicans, from Nghia Dan district, Nghe An province and from Dai Loc district, Quang Nam province were particularly active with 48-h LC50 values of 3.8 and 2.1 μg/mL, respectively, against Ae. aegypti. The leaf essential oils of C. candicans were also effective larvicidal agents against Cx. quinquefasciatus.
The leaf essential oils of C. candicans were rich in (E)-caryophyllene, caryophyllene oxide, β-selinene and atractylone. Both (E)-caryophyllene and caryophyllene oxide have shown only weak larvicidal activity against Ae. aegypti [48]. However, atractylone may be contributing to the larvicidal activity; the compound has shown insecticidal [49] as well as acaricidal activity [50]. β-Selinene has also shown insecticidal activity [49]. In addition to the insecticidal properties of atractylone and β-selinene, there may be synergistic effects between these components and (E)-caryophyllene, caryophyllene oxide, or other minor components. Scalerandi and co-workers have shown that Musca domestica preferentially oxidize major essential oil components in a mixture while the components in lesser concentrations act as toxicants [51]. In addition, there were several unidentified components, particularly in the Dai Loc sample, that may be contributing to the larvicidal effects.
Interestingly, C. nudiflora leaf essential oil was rich in α- and β-pinene and caryophyllene oxide but was relatively inactive (24-h LC50 = 109 μg/mL) compared to the C. candicans leaf essential oils (24-h LC50 = 2.0 and 1.2 μg/mL) against Cx. quinquefasciatus. Consistent with these results, both α-pinene and β-pinene have shown relatively weak larvicidal activity against Cx. quinquefasciatus [52]. Likewise, the seed essential oil of Psoralea corylifolia, rich in caryophyllene oxide (40.8%), also showed relatively weak larvicidal activity against Cx. quinquefasciatus [53]. C. nudiflora leaf essential oil was also less active against Ae. aegypti larvae with a 24-h LC50 value of 37.5 μg/mL. There are conflicting results regarding the larvicidal activities of α- and β-pinene on Ae. aegypti. Lucia and co-workers reported LC50 values of 15.4 and 12.1 μg/mL for α- and β-pinene, respectively, against Ae. aegypti [54], while Waliwitiya and co-workers found the pinenes to be inactive (LC50 > 500 μg/mL) against the mosquito larvae [55]. Caryophyllene oxide is apparently only weakly larvicidal (LC50 = 125 μg/mL) on Ae. aegypti [39,56].
The leaf essential oil of C. longifolia from Nghia Dan, rich in (E)-caryophyllene (28.0%) and β-selinene (13.2%), showed larvicidal activity with 24-h LC50 of 37.4 μg/mL. (E)-Caryophyllene is relatively inactive with reported LC50 values of 93.7 [57] and 1202 μg/mL [56]. Notably, Piper humaytanum leaf essential oil, with 3.5% (E)-caryophyllene and 15.8% β-selinene, was weakly larvicidal (LC50 = 156 μg/mL) against Ae. aegypti [58].
The larvicidal activity of C. bodinieri leaf essential oil was the weakest of the Callicarpa species tested with a 24-h LC50 of 54 μg/mL. Limonene was one of the major components (8.0%), and this compound had shown larvicidal activity against Ae. aegypti of around 30 μg/mL [59]. Caryophyllene oxide, another major component (9.8%) is inactive against Ae. aegypti [39]. Although apparently not tested against mosquito larvae, β-selinene (8.9% in C. bodinieri leaf essential oil) is known to be insecticidal against Drosophila melanogaster adults [49].
The leaf essential oils of C. formosana, C. rubella (Nam Giai), C. rubella (Tay Giang), and C. sinuata showed comparable larvicidal activities with 24-h LC50 ranging from 24.2 to 31.9 μg/mL. However, the chemical compositions of the essential oils were very different.
In order to evaluate potential correlation between constituents and larvicidal activities, multivariate analyses (hierarchical cluster analysis, HCA, and principal component analysis, PCA, were undertaken. The hierarchical cluster analysis (Figure 1) showed four groupings. Group 1 is made up of the two C. candicans samples and represents a very larvicidal group (average 24-h LC50 and LC90 = 4.02 and 9.34 μg/mL). The major components in this group are atractylone (average 20.9%) and caryophyllene oxide (average 8.1%). Group 2 is a single sample, C. petelotii is somewhat active with 24-h LC50 and LC90 of 19.1 and 37.9 μg/mL and α-humulene, α-selinene, and humulene epoxide II as the major components. Group 3 (C. sinuata, C. formosana, and both C. rubella samples) had average 24-h larvicidal LC50 and LC90 of 27.7 and 50.9 μg/mL, respectively. The major component in group 3 is caryophyllene oxide with an average concentration of 17.1%. Group 4 is the least active group (24-h LC50 and LC90 = 43.0 and 73.0 μg/mL) and also has caryophyllene oxide as the major component (average = 12.0%) as well as (E)-caryophyllene (average = 10.6%).
The principal component analysis (Figure 2) does not reveal any clear associations between chemical components and larvicidal activity. (E)-Caryophyllene, caryophyllene oxide, and α-humulene were found in all of the samples and therefore correlate with the essential oil samples and not necessarily with the larvicidal activities. Apparently the synergistic and antagonistic interactions of the components in these essential oils are too subtle to be parsed out with so few data.

3. Materials and Methods

3.1. Plant Material

Plant material (leaves and/or stem bark) from Callicarpa species was collected from several locations in central Vietnam (Table 13). The plant material from several individuals from each site were combined in order to provide enough plant material for each species. The plants were identified by Dr. Do Ngoc Dai, and voucher specimens (Table 13) have been deposited in the School of Natural Science Education, Vinh University. The fresh plant materials (2.0 kg each) were shredded and hydrodistilled for 4 h using a Clevenger type apparatus (Witeg Labortechnik, Wertheim, Germany). The yields of essential oils are summarized in Table 13.

3.2. Gas Chromatography-Mass Spectrometry

Each of the Callicarpa essential oils was analyzed by GC-MS using a Shimadzu GCMS-QP2010 Ultra (Shimadzu Scientific Instruments, Columbia, MD, USA) operated in the electron impact (EI) mode (electron energy = 70 eV), scan range = 40–400 atomic mass units, scan rate = 3.0 scans/s, and GC-MS solution software. The GC column was a ZB-5 fused silica capillary column (Phenomenex, Torrance, CA, USA) (30 m length × 0.25 mm internal diameter) with a (5% phenyl)-polymethylsiloxane stationary phase and a film thickness of 0.25 μm. The carrier gas was helium with a column head pressure of 552 kPa and flow rate of 1.37 mL/min. Injector temperature was 250 °C and the ion source temperature was 200 °C. The GC oven temperature program was programmed for 50 °C initial temperature, temperature increased at a rate of 2 °C/min to 260 °C. A 5% w/v solution of the sample in CH2Cl2 was prepared and 0.1 μL was injected with a splitting mode (30:1). Identification of the oil components was based on their retention indices determined by reference to a homologous series of n-alkanes (C8-C40), and by comparison of their mass spectral fragmentation patterns with those reported in the databases [60,61,62,63]. The percentages of each component in the essential oils are reported as raw percentages based on total ion current without standardization.

3.3. Mosquito Larvicidal Assay

Eggs of Ae. aegypti were purchased from Institute of Biotechnology, Vietnam Academy of Science and Technology, and maintained at the Laboratory of Department of Pharmacy of Duy Tan University, Da Nang, Vietnam. For the assay, aliquots of the essential oils of Callicarpa species, dissolved in DMSO (1% stock solution), was placed in a 500-mL beaker and added to water that contained 20 larvae (third and early fourth instar). With each experiment, a set of controls using DMSO was also run for comparison. Mortality was recorded after 24 h and again after 48 h of exposure during which no nutritional supplement was added. The experiments were carried out 25 ± 2 °C. Each test was conducted with four replicates with several concentrations (100, 50, 25, 12.5, 6.0, 3.0, 1.5, and 0.75 μg/mL). Larvicidal activity against Culex quinquefasciatus (The larvae were fed on Koi fish food: Adults were provided with a 10% sucrose solution and a 1-week-old chick for blood feeding.) were determined similarly with concentrations of 150, 100, 50, 25, 6.0, 3.0, 1.5, and 0.75 μg/mL. Permethrin was used as a positive control. The acute larvicidal effects on Ae. aegypti, and Cx. quinquefasciatus were recorded 24 h and 48 h after treatment. The data obtained were subjected to log-probit analysis [64] to obtain LC50 values, LC90 values, and 95% confidence limits using XLSTAT v. 2018.5 (Addinsoft, Paris, France).

3.4. Statistical Analysis

Mosquito larvicidal activities (LC50 and LC90) against Ae. aegypti and Cx. quinquefasciatus were determined by log-probit analysis using XLSTAT v. 2018.5 (Addinsoft, Paris, France). The more abundant chemical components of the Callicarpa essential oils were used in the multivariate analyses. The essential oil compositions were treated as operational taxonomic units (OTUs), and the concentrations (percentages) of 26 major essential oil components and the 24-h LC50 and LC90 larvicidal activity data were used to determine the associations between the Callicarpa essential oils using agglomerative hierarchical cluster (AHC) analysis using XLSTAT Premium, version 2018.5 (Addinsoft, Paris, France). Dissimilarity was determined using Euclidean distance, and clustering was defined using Ward’s method. For the principal component analysis (PCA), the 26 major components and the larvicidal data were taken as variables using a Pearson correlation matrix using XLSTAT Premium, version 2018.5 (Addinsoft, Paris, France). A total of 280 data (28 variables × 10 samples) were used for the PCA.

4. Conclusions

There are profound chemical variations in the leaf essential oils of Callicarpa species, both between species and within species. All of the Callicarpa leaf essential oils showed larvicidal activity against Ae. aegypti. However, C. candicans showed excellent mosquito larvicidal activity against Ae. aegypti as well as Cx. quinquefasciatus, which can be attributed to atractylone and/or to unidentified components. This essential oil, therefore, may represent a low-cost and environmentally friendly mosquito control agent. Nevertheless, although the larvicidal activities of Callicarpa leaf essential oils are promising, additional screening on non-target organisms is needed [41,42].

Author Contributions

Conceptualization, N.H.H.; methodology, N.H.H., P.S., and W.N.S.; software, P.S.; validation, N.H.H., P.S., and W.N.S.; formal analysis, P.S. and W.N.S.; investigation, L.T.H., N.T.C., N.T.H.T., N.A.D., and T.A.T.; resources, N.H.H.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, N.H.H., P.S., and W.N.S.; supervision, N.H.H.; project administration, N.H.H.; funding acquisition, N.H.H. All authors have read and agreed to the published version of the manuscript.

Funding

The authors thank the NAFOSTED (Vietnam) for financial support of this study through Project No. 106.03-2019.25.

Acknowledgments

P.S. and W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mabberley, D.J. Mabberley’s Plant-Book, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
  2. Jones, W.P.; Kinghorn, A.D. Biologically active natural products of the genus Callicarpa. Curr. Bioact. Compd. 2008, 4, 15–32. [Google Scholar] [CrossRef]
  3. Missouri Botanical Garden Tropicos. Available online: www.tropicos.org (accessed on 21 December 2019).
  4. Leeratiwong, C.; Chantaranothai, P.; Paton, A.J. A synopsis of the genus Callicarpa L. (Lamiaceae) in Thailand. Thai For. Bull. 2009, 37, 36–58. [Google Scholar]
  5. Tu, Y.; Sun, L.; Guo, M.; Chen, W. The medicinal uses of Callicarpa L. in traditional Chinese medicine: An ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 2013, 146, 465–481. [Google Scholar] [CrossRef]
  6. Gao, J.B.; Yang, S.J.; Yan, Z.R.; Zhang, X.J.; Pu, D.B.; Wang, L.X.; Li, X.L.; Zhang, R.H.; Xiao, W.L. Isolation, characterization, and structure-activity relationship analysis of abietane diterpenoids from Callicarpa bodinieri as spleen tyrosine kinase inhibitors. J. Nat. Prod. 2018, 81, 998–1006. [Google Scholar] [CrossRef]
  7. Buot, I.E. An ethnobotanical study of the plant biodiversity of Mt. Mayon, Bicol Peninsula, Albay, Philippines. J. Nat. Stud. 2009, 8, 1–10. [Google Scholar]
  8. Jawale, C.S. Piscicidal plants of India. Trends Fish. Res. 2018, 7, 33–45. [Google Scholar]
  9. Muensaen, S.; Ruangwises, N.; Jarikasem, S.; Sithisarn, P. Isolation, structure elucidation and quantitative analysis of callicarpone and oleanolic acid in the leaves of Callicarpa candicans collected from different provinces in Thailand. Agric. Nat. Resour. 2019, 53, 251–259. [Google Scholar]
  10. Lê, V.T.T.; Lâm, Đ.T.; Ính, C.T.; Long, P.Q.; Thạch, T.Đ.; Vân, N.T.H.; Minh, P.T.H. Triterpenoid và flavonoid từ dịch chiết etyl axetat của cây N àng nàng (Callicarpa candicans (Burm. f.) Hochr.) Ở V iệt Nam. Vietnam J. Chem. 2018, 56, 341–345. [Google Scholar]
  11. Chusri, S.; Chaicoch, N.; Thongza-ard, W.; Limsuwan, S.; Voravuthikunchai, S.P. In Vitro antibacterial activity of ethanol extracts of nine herbal formulas and its plant components used for skin infections in Southern Thailand. J. Med. Plants Res. 2012, 6, 5616–5623. [Google Scholar]
  12. Nandwani, D.; Calvo, J.A.; Tenorio, J.; Calvo, F.; Manglona, L. Medicinal plants and traditional knowledge in the Northern Mariana Islands. J. Appl. Biosci. 2008, 8, 323–330. [Google Scholar]
  13. Vo, V.C. The Dictionary of Medicinal Plants of Vietnam 1; Medical Publishing House: Hanoi, Vietnam, 2012. [Google Scholar]
  14. Dan, Y.; Qian, Z.; Liu, Y.; Zhou, G.; Peng, Y.; Xiao, P. New collection of crude drugs in Chinese pharmacopoeia 2010 I. Callicarpa Linn. and related items. Chin. Herb. Med. 2010, 2, 272–288. [Google Scholar]
  15. Ho, P.-H. An Illustrated Flora of Vietnam, Vol. 3; Youth Publishing House: Ho Chi Minh City, Vietnam, 2000. [Google Scholar]
  16. Phuông, V.X. Flora of Vietnam, Volume 6—Verbenaceae; Science & Technics Publishing House: Hanoi, Vietnam, 2007. [Google Scholar]
  17. Au, D.T.; Wu, J.; Jiang, Z.; Chen, H.; Lu, G.; Zhao, Z. Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. J. Ethnopharmacol. 2008, 117, 41–50. [Google Scholar] [CrossRef] [PubMed]
  18. Zheng, X.; Xing, F. Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J. Ethnopharmacol. 2009, 124, 197–210. [Google Scholar] [CrossRef] [PubMed]
  19. Bramley, G.L.C. Distribution patterns in Malesian Callicarpa (Lamiaceae). Garden Bull. Singap. 2011, 63, 287–298. [Google Scholar]
  20. Bramley, G.L.C. The genus Callicarpa (Lamiaceae) in the Philippines. Kew Bull. 2013, 68, 369–418. [Google Scholar] [CrossRef]
  21. Munir, A.A. A taxonomic revision of the genus Callicarpa L. (Verbenaceae) in Australia. J. Adel. Bot. Gardens 1982, 6, 5–39. [Google Scholar]
  22. Lee, C.; Kim, S.-Y.; Eum, S.; Paik, J.-H.; Bach, T.T.; Darshetkar, A.M.; Choudhary, R.K.; Hai, D.V.; Quang, B.H.; Thanh, N.T.; et al. Ethnobotanical study on medicinal plants used by local Van Kieu ethnic people of Bac Huong Hoa nature reserve, Vietnam. J. Ethnopharmacol. 2019, 231, 283–294. [Google Scholar] [CrossRef]
  23. Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [Green Version]
  24. Barrett, A.D.T.; Higgs, S. Yellow fever: A disease that has yet to be conquered. Annu. Rev. Entomol. 2007, 52, 209–229. [Google Scholar] [CrossRef] [Green Version]
  25. Dhimal, M.; Gautam, I.; Joshi, H.D.; Hara, R.B.O. Risk factors for the presence of Chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Negl. Trop. Dis. 2015, 9, e0003545. [Google Scholar] [CrossRef]
  26. Benelli, G.; Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 2016, 115, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
  27. Quyen, D.; Le, N.T.; Van Anh, C.T.; Nguyen, N.B.; Van Hoang, D.; Montgomery, J.L.; Kutcher, S.C.; Le, N.H.; Hien, N.T.; Kien, D.T.H.; et al. Epidemiological, serological, and virological features of dengue in Nha Trang City, Vietnam. Am. J. Trop. Med. Hyg. 2018, 98, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Quyen, N.T.H.; Kien, D.T.H.; Rabaa, M.; Tuan, N.M.; Vi, T.T.; Hung, N.T.; Tuan, H.M.; Van Tram, T.; Le Da Ha, N.; Quang, H.K.; et al. Chikungunya and Zika virus cases detected against a backdrop of endemic dengue transmission in Vietnam. Am. J. Trop. Med. Hyg. 2017, 97, 146–150. [Google Scholar] [CrossRef] [PubMed]
  29. Albuquerque, C.M.R.; Cavalcanti, V.M.S.; Melo, M.A.V.; Verçosa, P.; Regis, L.N.; Hurd, H. Bloodmeal microfilariae density and the uptake and establishment of Wuchereria bancrofti infections in Culex quinquefasciatus and Aedes aegypti. Mem. Inst. Oswaldo Cruz 1999, 94, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Turell, M.J. Members of the Culex pipiens complex as vectors of viruses. J. Am. Mosq. Control Assoc. 2012, 28, 123–127. [Google Scholar] [CrossRef] [PubMed]
  31. Van den Hurk, A.F.; Hall-Mendelin, S.; Jansen, C.C.; Higgs, S. Zika virus and Culex quinquefasciatus mosquitoes: A tenuous link. Lancet Infect. Dis. 2017, 17, 1014–1016. [Google Scholar] [CrossRef] [Green Version]
  32. Vontas, J.; Kioulos, E.; Pavlidi, N.; Morou, E.; della Torre, A.; Ranson, H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic. Biochem. Physiol. 2012, 104, 126–131. [Google Scholar] [CrossRef]
  33. Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
  34. Smith, L.B.; Kasai, S.; Scott, J.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic. Biochem. Physiol. 2016, 133, 1–12. [Google Scholar] [CrossRef] [PubMed]
  35. Yadouléton, A.; Badirou, K.; Agbanrin, R.; Jöst, H.; Attolou, R.; Srinivasan, R.; Padonou, G.; Akogbéto, M. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasites Vectors 2015, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Lopes, R.P.; Lima, J.B.P.; Martins, A.J. Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: A review. Parasites Vectors 2019, 12, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Kamrin, M.A. Pesticide Profiles: Toxicity, Environmental Impact, and Fate; CRC Press: Boca Raton, FL, USA, 1997; ISBN 0-56670-190-2. [Google Scholar]
  38. Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
  39. Silva, W.J.; Dória, G.A.A.; Maia, R.T.; Nunes, R.S.; Carvalho, G.A.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
  40. Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
  41. Masetti, A. The potential use of essential oils against mosquito larvae: A short review. Bull. Insectol. 2016, 69, 307–310. [Google Scholar]
  42. Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
  43. Ntalli, N.; Koliopoulos, G.; Giatropoulos, A.; Menkissoglu-Spiroudi, U. Plant secondary metabolites against arthropods of medical importance. Phytochem. Rev. 2019, 18, 1255–1275. [Google Scholar] [CrossRef]
  44. Su, X.; Zhu, S. Analysis of volatile compounds from Callicarpa bodinieri purple pearl. J. Jingmen Tech. Coll. 2008, 23, 7–10. [Google Scholar]
  45. Lin, C.Z.; Zhu, C.C.; Zhang, C.X.; Zhao, Z.X.; He, W.J.; Li, J.K.; Chai, L.; Deng, J.W.; Wei, Y.L. Chemical constituents and antioxidant activity of the essential oils from the leaves of Callicarpa formosana Rolfe. J. Trop. Subtrop. Bot. 2009, 17, 401–405. [Google Scholar]
  46. Liang, J.; Han, F.; Wang, Z.; Yan, Y.; Mo, F. Chemical composition of the essential oil from leaves of Callicarpa nudiflora. Chem. Nat. Compd. 2009, 45, 267–268. [Google Scholar]
  47. Zhang, W.; Zhang, J.; Kang, W. Volatiles of Callicarpa rubella. Chem. Nat. Compd. 2017, 53, 976–977. [Google Scholar] [CrossRef]
  48. Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicide: Review. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef] [PubMed]
  49. Chu, S.S.; Jiang, G.H.; Liu, Z.L. Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Manag. Sci. 2011, 67, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
  50. Kim, H.-K.; Yun, Y.-K.; Ahn, Y.-J. Toxicity of atractylon and atractylenolide III identified in Atractylodes ovata rhizome to Dermatophagoides farinae and Dermatophagoides pteronyssinus. J. Agric. Food Chem. 2007, 55, 6027–6031. [Google Scholar] [CrossRef]
  51. Scalerandi, E.; Flores, G.A.; Palacio, M.; Defagó, M.T.; Carpinella, M.C.; Valladares, G.; Bertoni, A.; Palacios, S.M. Understanding synergistic toxicity of terpenes as insecticides: Contribution of metabolic detoxification in Musca domestica. Front. Plant Sci. 2018, 9, 1579. [Google Scholar] [CrossRef] [Green Version]
  52. Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
  53. Dua, V.K.; Kumar, A.; Pandey, A.C.; Kumar, S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn. (Fabaceae) against Culex quinquefasciatus Say, 1823. Parasites Vectors 2013, 6, 30. [Google Scholar] [CrossRef] [Green Version]
  54. Lucia, A.; Gonzalez Audino, P.; Seccacini, E.; Licastro, S.; Zerba, E.; Masuh, H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2007, 23, 299–303. [Google Scholar] [CrossRef]
  55. Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef]
  56. Cheng, S.S.; Liu, J.Y.; Tsai, K.H.; Chen, W.J.; Chang, S.T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
  57. Perumalsamy, H.; Kim, N.-J.; Ahn, Y.-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J. Med. Entomol. 2009, 46, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
  58. De Morais, S.M.; Facundo, V.A.; Bertini, L.M.; Cavalcanti, E.S.B.; dos Anjos Júnior, J.F.; Ferreira, S.A.; de Brito, E.S.; Neto, M.A. Chemical composition and larvicidal activity of essential oils from Piper species. Biochem. Syst. Ecol. 2007, 35, 670–675. [Google Scholar] [CrossRef]
  59. Santos, S.R.L.; Melo, M.A.; Cardoso, A.V.; Santos, R.L.C.; de Sousa, D.P.; Cavalcanti, S.C.H. Structure-activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 2011, 84, 150–153. [Google Scholar] [CrossRef] [PubMed]
  60. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
  61. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
  62. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
  63. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, Alabama, 2015. [Google Scholar]
  64. Finney, D. Probit Analysis, Reissue ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0521135900. [Google Scholar]
Figure 1. Agglomerative hierarchical cluster analysis based on the major components of the Callicarpa essential oils from central Vietnam along with larvicidal activities (LC50 and LC90) against Aedes aegypti.
Figure 1. Agglomerative hierarchical cluster analysis based on the major components of the Callicarpa essential oils from central Vietnam along with larvicidal activities (LC50 and LC90) against Aedes aegypti.
Plants 09 00113 g001
Figure 2. Principal component biplot of PC1 and PC2 scores and loadings indicating the correlation of chemical components of Callicarpa essential oils from central Vietnam and Aedes aegypti larvicidal activity.
Figure 2. Principal component biplot of PC1 and PC2 scores and loadings indicating the correlation of chemical components of Callicarpa essential oils from central Vietnam and Aedes aegypti larvicidal activity.
Plants 09 00113 g002
Table 1. Chemical composition of Callicarpa bodinieri leaf essential oil from Ngoc Linh Nature Reserve, Vietnam.
Table 1. Chemical composition of Callicarpa bodinieri leaf essential oil from Ngoc Linh Nature Reserve, Vietnam.
RI aRI bCompound%
923924α-Thujenetr c
930932α-Pinene1.5
945945α-Fenchenetr
947946Camphene0.1
970969Sabinenetr
975974β-Pinene1.7
9779741-Octen-3-oltr
983979Octan-3-onetr
984984p-Menth-3-enetr
986988Myrcene0.5
1002998Octanal0.3
10221024p-Cymene0.2
10271024Limonene8.0
103010261,8-Cineole0.1
106810631-Octanol0.2
10891082m-Cymenene0.1
10981095Linalool0.3
11031100Nonanal2.3
11201119trans-p-Mentha-2,8-dien-1-ol0.1
11251122α-Campholenal0.1
11311132cis-Limonene oxide0.2
11351133cis-p-Mentha-2,8-dien-1-ol0.1
11351137trans-Limonene oxide0.1
11371135Nopinonetr
11391135trans-Pinocarveol0.1
11831178Naphthalene0.5
11861187trans-p-Mentha-1(7),8-dien-2-ol0.2
11941195Myrtenal0.3
12041201Decanal0.3
12171215trans-Carveol0.2
12421239Carvone0.2
12601260Dec-(2E)-enal0.1
12651267Nonanoic acid0.4
12811287Bornyl acetate0.1
12861287Dihydroedulan IA0.3
12911294Dihydroedulan IIA0.3
12951298(Z)-Theaspirane0.2
13001300Tridecane0.1
13051305Undecanal0.1
13081310(Z)-Patchenoltr
13121314(E)-Theaspirane0.1
13441345α-Cubebene0.1
134916711-Tetradecanol0.1
13661373α-Ylangene0.4
13731374α-Copaene 5.4
13811387β-Bourbonene0.1
13861389β-Elemene 0.9
14151419β-Ylangene 0.4
14161417β-Caryophyllene 1.0
14241430γ-Maaliene0.3
14271431β-Gurjunene (= Calarene)2.3
14361439Aromadendrene2.3
14421447Selina-5,11-diene0.2
14491455Valerena-4,7(11)-diene0.8
14521452α-Humulene 0.6
14571458allo-Aromadendrene1.8
14701475Selina-4,11-diene0.2
14721478γ-Muurolene2.7
14761483α-Amorphene0.2
14781479ar-Curcumene0.1
14861489β-Selinene 8.9
14891495γ-Amorphene0.1
14931498α-Selinene 0.9
14951500α-Muurolene0.6
15041505β-Bisabolene0.2
15101513γ-Cadinene1.0
15121514Cubebol0.1
15151522δ-Cadinene0.2
15171521trans-Calamenene0.5
15181528cis-Calamenene0.7
15381544α-Calacorene0.6
15581561(E)-Nerolidol0.6
15591564β-Calacorene 0.8
15671566Maaliol0.5
15671567Palustrol0.6
15741577Spathulenol2.3
15791582Caryophyllene oxide9.8
15831590Globulol3.8
15851590β-Copaen-4α-ol 1.3
15901594Salvial-4(14)-en-1-one0.6
15911592Viridiflorol2.2
15941595Cubeban-11-ol0.7
15991598Dehydroxy-iso-calamendiol0.4
16011602Ledol0.7
16041600Rosifoliol0.5
16071608Humulene epoxide II2.6
161216181,10-di-epi-Cubenol0.5
16231630Muurola-4,10(14)-dien-1β-ol1.7
162516271-epi-Cubenol0.6
16311642Caryophylla-4(12),8(13)-dien-5α-ol0.5
16341644Caryophylla-4(12),8(13)-dien-5β-ol0.4
16391638τ-Cadinol 0.5
16411640τ-Muurolol 0.6
16441644α-Muurolol (= δ-Cadinol)0.5
16531652α-Cadinol 0.9
16551651Pogostol2.5
16601668ar-Turmerone0.5
16621668trans-Calamenen-10-ol0.3
1668166814-Hydroxy-9-epi-(E)-caryophyllene 0.4
16701675Cadalene0.6
16821685Germacra-4(15),5,10(14)-trien-1α-ol0.3
18061816Callicarpenal0.4
18371841Phytone1.5
19551958Palmitic acid0.7
21032109(E)-Phytol1.8
27002700Heptacosane 0.6
Monoterpene hydrocarbons12.1
Oxygenated monoterpenoids2.1
Sesquiterpene hydrocarbons34.2
Oxygenated sesquiterpenoids37.8
Diterpenoids3.3
Others6.6
Total identified96.2
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%).
Table 2. Chemical compositions of Callicarpa candicans leaf essential oils from Vietnam.
Table 2. Chemical compositions of Callicarpa candicans leaf essential oils from Vietnam.
RI aRI bCompound%
Nghia Dan Dai LocHoa Vang
8738632,3-Dimethyl-cyclohexa-1,3-diene---tr c---
930932α-Pinene---tr---
975974β-Pinene---0.1---
9779741-Octen-3-ol0.30.10.1
9839793-Octanone0.2tr0.1
9969883-Octanol---trtr
10241024p-Cymene---0.4tr
10271024Limonene---0.1---
103010261,8-Cineole---tr---
10681067cis-Linalool oxide (furanoid)---tr---
10831086Terpinolene---tr---
10841084trans-Linalool oxide (furanoid)---tr---
108910872-Nonanone0.10.10.1
10991095Linalool0.61.40.4
11821178Naphthalene---0.3---
11911190Methyl salicylate---0.10.1
12871287Dihydroedulan IA0.10.20.1
129112932-Undecanone0.20.10.3
12951310(Z)-Theaspirane---tr---
13121314(E)-Theaspirane---tr---
13351335δ-Elemene0.21.10.1
13351330(Z)-Jasmone---0.1---
13441346α-Terpinyl acetate---0.1---
13661373α-Ylangene---0.1---
13761374α-Copaene0.10.1---
13761383(E)-β-Damascenone---tr---
13811383cis-β-Elemene------0.1
13881390trans-β-Elemene 0.91.51.7
14011408(Z)-Caryophyllene---0.1---
14101411Thymohydroquinone dimethyl ether---0.1---
14191417(E)-Caryophyllene19.07.115.3
14281434γ-Elemene 3.20.52.3
14371439Aromadendrene0.20.20.1
14511454(E)-β-Farnesene------0.1
14551452α-Humulene 2.41.21.9
14591458allo-Aromadendrene0.20.10.1
14701475Selina-4,11-diene---0.2---
14741476β-Chamigrene0.10.10.1
14751478γ-Muurolene0.30.1---
14781483α-Amorphene0.30.30.2
14801487(E)-β-Ionone---0.7---
14811484Germacrene D0.9---0.5
14841487Aristolochene0.1------
14881489β-Selinene 6.25.74.5
14931499Curzerene2.20.85.3
14951498α-Selinene ---1.01.7
14961500Bicyclogermacrene3.0------
14981500α-Muurolene 0.2------
15041505(E,E)-α-Farnesene 0.7---0.4
15131513γ-Cadinene0.3------
15181522δ-Cadinene 0.4---0.1
151915207-epi-α-Selinene0.1---0.1
15331528Zonarene0.1------
15341540Selina-4(15),7(11)-diene1.51.80.9
15411545Selina-3,7(11)-diene0.50.90.2
15461548α-Elemol---0.40.1
15561559Germacrene B6.10.15.1
15571561(E)-Nerolidol ---0.3---
15761577Spathulenol0.72.11.0
15811582Caryophyllene oxide2.913.43.4
15831590Globulol---0.1---
15931594Salvial-4(14)-en-1-one0.1------
15981601trans-β-Elemenone 0.1------
16091608Humulene epoxide II0.31.60.4
16271629iso-Spathulenol 0.10.30.1
16301642Caryophylla-4(12),8(13)-dien-5α-ol---0.4---
16361644Caryophylla-4(12),8(13)-dien-5β-ol1.21.11.3
16431644α-Muurolol (= Torreyol)0.1------
16471642Selina-3,11-dien-6α-ol------tr
16551649β-Eudesmol1.93.61.9
16621657Atractylone37.74.242.4
16661666Intermedeol0.1------
1668166814-Hydroxy-9-epi-(E)-caryophyllene0.22.50.4
16931693Germacrone0.3---0.2
16961700Eudesm-7(11)-en-4-ol------tr
1711---Unidentified d0.21.10.4
17131713Longifolol------0.1
173617341(10),11-Eremophiladien-9-one0.5------
173917468α,11-Elemodiol------0.1
1768---Unidentified e---1.00.3
17991796(E)-Isovalencenol------0.1
1858---Unidentified f0.610.91.8
1919---Unidentified g---1.0---
1936---Unidentified h---1.0---
19941994Manoyl oxide0.93.3---
19981997Kaur-15-ene0.1------
2005---Unidentified i0.53.60.9
2055---Unidentified j0.36.60.8
2091---Unidentified k---8.51.0
21052109(E)-Phytol------0.8
Monoterpene hydrocarbons0.00.60.0
Oxygenated monoterpenoids0.61.60.4
Sesquiterpene hydrocarbons49.022.640.7
Oxygenated sesquiterpenoids46.029.951.5
Diterpenoids1.03.30.8
Others0.81.50.8
Total Identified97.359.794.2
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%). d MS: 220(41%), 205(20%), 202(30%), 187(30%), 162(92%), 158(33%), 149(63%), 147(61%), 121(79%), 119(84%), 107(79%), 105(73%), 97(49%), 93(61%), 91(71%), 79(48%), 77(38%), 67(53%), 55(49%), 43(100%), 41(62%). e MS: 220(64%), 202(9%), 177(100%), 159(77%), 135(49%), 123(74%), 107(83%), 93(64%), 81(58%), 67(53%), 55(55%), 43(55%), 41(65%). f MS: 233(16%), 232(100%), 204(19%), 189(21%), 161(29%), 148(31%), 147(38%), 135(32%), 134(33%), 133(44%), 121(34%), 108(48%), 105(37%), 93(53%), 91(51%), 79(44%), 77(33%), 67(22%), 55(24%), 53(23%), 41(34%). g MS: 236(12%), 222(4%), 203(4%), 193(25%), 175(25%), 161(9%), 149(22%), 147(48%), 133(14%), 121(13%), 119(13%), 107(19%), 105(26%), 93(24%), 91(27%), 79(22%), 67(17%), 55(15%), 43(100%), 41(22%). h MS: 290(23%), 165(6%), 151(100%), 138(12%), 123(25%), 109(24%), 95(17%), 81(26%), 69(35%), 55(23%), 43(14%), 41(20%). i MS: 230(70%), 215(100%), 201(44%), 187(30%), 174(33%), 160(31%), 159(34%), 145(27%), 131(27%), 117(20%), 115(18%), 105(27%), 91(50%), 79(28%), 77(32%), 53(31%), 41(27%). j MS: 233(17%), 232(100%), 217(29%), 204(15%), 189(12%), 187(12%), 176(13%), 161(19%), 148(16%), 147(23%), 133(26%), 122(51%), 121(45%), 107(52%), 105(42%), 93(63%), 91(59%), 79(57%), 77(39%), 67(29%), 55(27%), 53(36%), 41(45%). k MS: 248(4%), 230(8%), 220(16%), 205(16%), 191(15%), 175(18%), 159(14%), 147(100%), 133(16%), 121(42%), 119(33%), 107(28%), 105(40%), 93(35%), 91(45%), 79(41%), 67(24%), 55(21%), 53(24%), 41(35%).
Table 3. Chemical composition of Callicarpa candicans stem bark essential oil from Hoa Vang, Vietnam.
Table 3. Chemical composition of Callicarpa candicans stem bark essential oil from Hoa Vang, Vietnam.
RI aRI bCompound%
9789741-Octen-3-ol1.4
9969883-Octanol0.4
10991095Linalool0.6
11911190Methyl salicylate0.9
13351336Bicycloelemene1.6
13501356Eugenol0.4
13891389β-Elemene 0.6
14191417β-Caryophyllene 7.8
14291434γ-Elemene 1.1
14551452α-Humulene 1.4
14781483α-Amorphene0.2
14831476β-Chamigrene 1.5
14871496Indipone0.8
14891489β-Selinene 7.9
14931498Curzerene0.6
14961498α-Selinene2.0
151915207-epi-α-Selinene0.6
15371528Zonarene2.6
15411545Selina-3,7(11)-diene1.1
15591559Germacrene B1.6
15601561(E)-Nerolidol 0.5
15761577Spathulenol1.5
15821582Caryophyllene oxide11.1
16091608Humulene epoxide II1.3
1617---Unidentified c1.2
16361644Caryophylla-4(12),8(13)-dien-5β-ol1.2
16471642Selina-3,11-dien-6α-ol0.4
16541652α-Eudesmol 5.3
16591657Atractylone6.2
1670166814-Hydroxy-9-epi-(E)-caryophyllene1.4
16921693Germacrone0.3
1711---Unidentified d1.2
17301728iso-Longifolol0.8
173517341(10),11-Eremophiladien-9-one1.2
1770---Unidentified e1.1
1858---Unidentified f4.1
1985---Unidentified g2.2
198519871-Eicosene2.2
19931994Manoyl oxide6.2
19971997Kaur-15-ene0.4
2006---Unidentified h2.9
2054---Unidentified i2.9
2089---Unidentified j5.1
21062109(E)-Phytol0.3
Monoterpene hydrocarbons0.0
Oxygenated monoterpenoids0.6
Sesquiterpene hydrocarbons30.7
Oxygenated sesquiterpenoids31.8
Diterpenoids6.9
Others3.1
Total Identified73.1
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c MS: 207(45%), 204(53%), 189(54%), 161(39%), 147(32%), 137(30%), 135(68%), 133(31%), 123(41%), 109(47%), 95(53%), 93(50%), 81(100%), 71(60%), 67(43%), 55(45%), 43(97%), 41(37%). d MS: 220(49%), 205(29%), 202(48%), 187(40%), 162(100%), 159(41%), 149(53%), 147(58%), 131(37%), 121(77%), 119(85%), 107(68%), 105(68%), 97(47%), 93(57%), 91(62%), 79(40%), 77(31%), 67(43%), 55(46%), 43(79%), 41(48%). e MS: 220(46%), 202(9%), 187(10%), 177(100%), 159(50%), 138(27%), 135(37%), 123(58%), 107(57%), 95(36%), 93(40%), 91(37%), 81(35%), 79(29%), 67(19%), 55(29%), 43(30%), 41(29%). f MS: 233(17%), 232(100%), 217(8%), 204(22%), 189(24%), 176(17%), 161(26%), 148(26%), 147(27%), 135(27%), 134(30%), 133(38%), 122(26%), 121(30%), 108(40%), 105(30%), 93(47%), 91(41%), 79(35%), 77(25%), 67(17%), 55(19%), 53(17%), 41(24%). g MS: 236(2%), 221(3%), 218(5%), 203(7%), 182(24%), 179(27%), 162(19%), 161(28%), 143(45%), 234(30%), 125(60%), 123(64%), 121(43%), 109(55%), 107(39%), 97(53%), 95(63%), 93(47%), 81(70%), 79(37%), 71(40%), 69(69%), 67(40%), 55(100%), 43(87%), 41(70%). h MS: 230(70%), 215(100%), 201(49%), 187(31%), 174(33%), 160(25%), 159(27%), 145(21%), 131(27%), 117(15%), 105(19%), 91(36%), 79(21%), 77(23%), 55(14%), 53(23%), 41(18%). i MS: 233(18%), 232(100%), 217(31%), 204(18%), 190(14%), 187(14%), 176(13%), 161(15%), 148(14%), 147(21%), 133(21%), 122(49%), 121(38%), 107(44%), 105(34%), 93(55%), 91(46%), 79(43%), 77(28%), 67(23%), 55(22%), 53(29%), 41(30%). j MS: 342(1%), 248(4%), 230(27%), 220(21%), 215(35%), 205(20%), 203(19%), 191(18%), 175(24%), 159(22%), 147(100%), 133(20%), 131(19%), 121(45%), 119(36%), 105(48%), 91(50%), 79(43%), 77(30%), 67(26%), 55(25%), 53(29%), 43(17%), 41(35%).
Table 4. Chemical composition of Callicarpa formosana leaf essential oil from Ngoc Linh Nature Reserve, Vietnam.
Table 4. Chemical composition of Callicarpa formosana leaf essential oil from Ngoc Linh Nature Reserve, Vietnam.
RI aRI bCompound%
930932α-Pinene0.6
975974β-Pinene0.3
10221024p-Cymene0.1
10261024Limonene0.1
10971095Linalool0.1
11031100Nonanal0.1
11821187(3Z)-Hexenyl butyrate0.1
11881195Hexyl butyrate0.1
11921197(2E)-Hexenyl butyrate0.1
12271221(3Z)-Hexenyl 2-methylbutyrate0.1
12321236Hexyl 2-methylbutyratetr c
12341235(2E)-Hexenyl 2-methylbutyrate0.1
12851287Dihydroedulan IA0.2
12901294Dihydroedulan IIA0.1
12951298(Z)-Theaspirane0.3
13111314(E)-Theaspirane0.3
13721374α-Copaene 0.1
13851389β-Elemene 0.2
13981402α-Funebrene0.1
14001408(Z)-Caryophyllene0.1
14121410α-Cedrenetr
14161417(E)-Caryophyllene6.5
14261430β-Copaenetr
14301428Dictamnoltr
14431453Geranyl acetone0.1
14481454(E)-β-Farnesene0.2
14521452α-Humulene 0.6
14711478γ-Muurolene0.1
14771479ar-Curcumene0.6
14841491Eremophilene0.1
14851489β-Selinene0.1
14911498α-Selinene0.2
14941500α-Muurolene0.1
15031505β-Bisabolene18.6
15091511Sesquicineole0.3
15171521trans-Calamenene0.2
15191521β-Sesquiphellandrene0.1
15391542cis-Sesquisabinene hydrate 0.2
1547---Unidentified d2.1
15501555cis-7-epi-Sesquisabinene hydrate 0.3
15561561(E)-Nerolidol0.5
15791582Caryophyllene oxide38.9
1603---Unidentified e1.8
16061608Humulene epoxide II1.5
1616---Unidentified f1.1
162416271-epi-Cubenol0.2
16291642Caryophylla-4(12),8(13)-dien-5α-ol0.6
16331644Caryophylla-4(12),8(13)-dien-5β-ol1.1
16431644α-Muurolol (= δ-Cadinol)1.0
1652165614-Hydroxy-9-epi-(Z)-caryophyllene0.5
16541651Pogostol0.9
16591668ar-Turmerone0.3
1667166814-Hydroxy-9-epi-(E)-caryophyllene1.1
167616789-Tetradecyn-1-ol0.4
16811683epi-α-Bisabolol 0.8
16831685α-Bisabolol 1.8
1722---Unidentified g1.4
1809---Unidentified h1.3
18301836Neophytadiene0.2
18351841Phytone0.8
19391947iso-Phytol0.1
16521958Palmitic acid0.2
21012109(E)-Phytol3.5
2131---Unidentified i1.7
Monoterpene hydrocarbons1.0
Oxygenated monoterpenoids0.1
Sesquiterpene hydrocarbons28.0
Oxygenated sesquiterpenoids50.5
Diterpenoids4.7
Others1.5
Total Identified85.9
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%). d MS: 205(5%), 187(5%), 176(7%), 163(9%), 149(12%), 138(23%), 120(22%), 109(28%), 107(37%), 106(91%), 93(50%), 91(68%), 79(100%), 69(33%), 67(32%), 55(30%), 43(61%), 41(65%). e MS: 205(11%), 187(10%), 159(34%), 148(16%), 131(19%), 121(32%), 119(39%), 105(41%), 93(68%), 91(43%), 81(34%), 79(52%), 69(34%), 67(34%), 59(35%), 43(100%), 41(44%). f MS: 202(6%), 187(4%), 159(26%), 134(67%), 132(25%), 121(30%), 119(63%), 105(50%), 93(63%), 91(53%), 79(100%), 67(45%), 59(39%), 43(31%). g MS: 218(3%), 203(3%), 175(13%), 148(36%), 135(25%), 121(18%), 109(45%), 69(100%), 41(77%). h MS: 220(5%), 105(8%), 202(10%), 187(12%), 179(33%), 161(35%), 127(74%), 123(90%), 109(100%), 95(66%), 93(47%), 81(93%), 69(68%), 55(94%), 43(85%), 41(85%). i MS: 281(0.5%), 263(1%), 179(1%), 163(3%), 149(8%), 140(8%), 121(9%), 111(20%), 109(10%), 97(28%), 95(17%), 84(100%), 71(25%), 69(25%), 57(28%), 55(28%), 43(40%), 41(27%).
Table 5. Chemical compositions of Callicarpa longifolia leaf essential oils from Vietnam.
Table 5. Chemical compositions of Callicarpa longifolia leaf essential oils from Vietnam.
RI aRI bCompound%
Da NangNghia Dan
931932α-Pinene0.40.1
10071008δ-3-Carene---tr c
10221024p-Cymene---tr
10281024Limonene0.50.1
10331032(Z)-β-Ocimene---tr
10431044(E)-β-Ocimene---tr
10971095Linalool---1.0
11011104Hotrienol---tr
11031100Nonanal---tr
11051110Octen-3-yl acetate---tr
111011134,8-Dimethylnona-1,3,7-triene---tr
111611183-Octyl acetate---tr
11901190Methyl salicylate---0.9
11921197(2E)-Hexenyl butyrate---tr
11931186α-Terpineol---0.1
12211227Nerol ---tr
12341226(2E)-Hexenyl 2-methylbutyrate---tr
12471249Geraniol---0.1
12901287Dihydroedulan IIA---0.1
12951294(Z)-Theaspirane---0.2
13111298(E)-Theaspirane---0.2
13301334Bicycloelemene0.20.4
13331335δ-Elemene0.12.7
13491352Tricyclosantalal A---0.2
13741374α-Copaene 0.40.6
13751383(E)-β-Damascenone---0.2
13871389β-Elemene 0.50.4
14011408(Z)-Caryophyllene---0.1
14031409α-Gurjunene---0.2
14071415β-Maaliene 0.7---
14091411cis-α-Bergamotene---0.1
14181417(E)-Caryophyllene11.828.0
14271434γ-Elemene 0.61.3
14291432trans-α-Bergamotene---0.5
14311438α-Maaliene---0.1
14361439Aromadendrene0.20.5
143814426,9-Guaiadiene---0.5
14471445Myltayl-4(12)-ene0.7---
14491457Sesquisabinene---0.3
14521454(E)-β-Farnesene1.6---
14541452α-Humulene 1.91.6
14581458allo-Aromadendrene1.40.8
14721478γ-Muurolene---0.2
14731475γ-Gurjunene ---0.6
14791484Germacrene D0.30.2
14831488δ-Selinene ---0.7
14841476β-Chamigrene4.0---
14881489β-Selinene3.213.2
14891491Eremophilene4.3---
14921500Bicyclogermacrene---5.9
14941496Valencene1.4---
14941500α-Muurolene---0.2
15001502trans-β-Guaiene22.20.4
15101505β-Bisabolene1.20.3
15041507Eremophila-1(10),8,11-triene0.3---
15111513γ-Cadinene0.20.2
151015086-epi-Shyobunone0.3---
15161522δ-Cadinene 0.40.2
152015207-epi-α-Selinene3.5---
15351540Selina-4(15),7(11)-diene0.20.3
15381544α-Calacorene---0.2
15571559Germacrene B1.32.1
15571561(E)-Nerolidol---0.1
15701567Palustrol0.9---
15761577Spathulenol1.15.3
15811582Caryophyllene oxide1.76.1
15841590Globulol0.20.2
15931592Viridiflorol0.30.2
15981596trans-β-Elemenone 0.6---
16051602Ledol2.4---
1606---Unidentified d2.5---
16101608Humulene epoxide II0.3---
1616---Unidentified e0.22.7
16231624Selina-6-en-4β-ol ---0.4
16271629iso-Spathulenol 0.24.2
16291642Caryophylla-4(12),8(13)-dien-5α-ol---0.6
16321637Dehydroxycalamendiol0.7---
16341644Caryophylla-4(12),8(13)-dien-5β-ol---0.2
16521649β-Eudesmol ---0.9
16551652α-Cadinol 0.7---
16621658Selin-11-en-4α-ol8.07.4
1668---Unidentified f1.4---
1670---Unidentified g1.2---
16791685Germacra-4(15),5,10(14)-trien-1α-ol---0.4
16851685α-Bisabolol 0.8---
16861690(Z)-trans-α-Bergamotol---0.5
16931693Germacrone2.7---
17041706(E)-trans-α-Bergamotol---0.3
17111715Pentadecanal---0.3
17231729Isobicyclogermacrenal0.7---
173817341(10),11-Eremophiladien-9-one6.7---
17471744Isocalamenediol0.5---
17651766β-Costol ---0.4
17681773α-Costol---0.4
17771786trans-Isovalencenol 0.2---
18861891(E)-Hexadecantrienal ---0.2
20452046Kaur-16-ene0.3---
21012109(E)-Phytol---0.5
Monoterpene hydrocarbons0.90.1
Oxygenated monoterpenoids0.01.2
Sesquiterpene hydrocarbons63.062.9
Oxygenated sesquiterpenoids29.427.8
Diterpenoids0.30.5
Others0.02.3
Total identified93.594.8
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%). d MS: 220(10%), 205(20%), 178(21%), 177 (47%), 153(19%), 140(30%), 135(20%), 121(17%), 107(47%), 97(100%), 93(44%), 81(73%), 79(65%), 69(57%), 67(31%), 55(56%), 41(53%). e MS: 222(3%), 207(38%), 204(42%), 189(40%), 161(33%), 147(25%), 137(27%), 135(55%), 133(25%), 121(28%), 109(42%), 107(35%), 105(26%), 95(47%), 93(41%), 81(94%), 71(54%), 67(41%), 55(41%), 43(100%), 41(39%). f MS: 220(16%), 205(96%), 202(20%), 187(35%), 177(35%), 163(40%), 159(100%), 151(50%), 149(40%), 145(57%), 131(52%), 121(59%), 119(88%), 109(55%), 107(81%), 105(85%), 93(98%), 91(90%), 79(70%), 67(69%), 55(73%), 41(73%). g MS: 220(3%), 205(64%), 189(33%), 177(21%), 162(29%), 147(100%), 138(40%), 133(66%), 119(45%), 109(44%), 107(50%), 105(64%), 93(73%), 91(79%), 79(71%), 67(54%), 55(60%), 41(57%).
Table 6. Chemical composition of Callicarpa nudiflora leaf essential oil from Son Tra Peninsula, Da Nang City, Vietnam.
Table 6. Chemical composition of Callicarpa nudiflora leaf essential oil from Son Tra Peninsula, Da Nang City, Vietnam.
RI aRI bCompound%
920921Tricyclenetr c
923924α-Thujene0.4
931932α-Pinene8.1
945945α-Fenchenetr
947946Camphene0.5
951953Thuja-2,4(10)-dienetr
970969Sabinene0.6
977974β-Pinene34.2
983979Octan-3-onetr
989988Myrcene0.2
988988Dehydro-1,8-cineoletr
9959883-Octanoltr
10231024p-Cymene2.3
10271024Limonene1.0
10291025β-Phellandrene0.1
103010261,8-Cineole1.1
10331032(Z)-β-Ocimene0.1
10981099α-Pinene oxide0.4
11171114endo-Fenchol0.2
11231118cis-p-Menth-2-en-1-ol0.1
11251122α-Campholenal0.3
11371135Nopinone0.5
11391135trans-Pinocarveol2.0
11411136trans-p-Menth-2-en-1-oltr
11441140trans-Verbenol0.1
11531145Camphene hydrate0.1
11561154Sabina ketone0.1
11591158trans-Pinocamphonetr
11601160Pinocarvone0.3
11701165Borneol0.2
11791174Terpinen-4-ol1.0
11851183Cryptonetr
11861179p-Cymen-8-ol0.2
11871182cis-Pinocarveoltr
11941195Myrtenal6.8
12171215trans-Carveol0.1
12731266trans-Ascaridol glycol0.1
12741269Perilla aldehyde0.1
12761277Phellandral0.1
12811287Bornyl acetate0.1
12961295Thujyl acetate0.2
12971294Perilla alcohol0.4
1304---Unidentified d1.0
13201324Myrtenyl acetate0.1
13731374α-Copaene 0.3
13761383(E)-β-Damascenonetr
13861389β-Elemene tr
14171417(E)-Caryophyllene2.9
14361439Aromadendrene0.4
14521452α-Humulene 0.2
14571458allo-Aromadendrene1.4
14841491Eremophilene0.2
14861489β-Selinene 0.1
14881496Viridiflorene0.1
15101513γ-Cadinene0.1
15751577Spathulenol2.9
15811582Caryophyllene oxide20.1
15831590Globulol0.2
16071608Humulene epoxide II0.5
16311642Caryophylla-4(12),8(13)-dien-5α-ol0.4
16341644Caryophylla-4(12),8(13)-dien-5β-ol1.7
1653165614-Hydroxy-9-epi-(Z)-caryophyllene 0.8
1668166814-Hydroxy-9-epi-(E)-caryophyllene 0.5
167716789-Tetradecyn-1-ol0.1
19891987Manoyl oxide0.3
21032106(E)-Phytol0.4
Monoterpene hydrocarbons47.5
Oxygenated monoterpenoids14.6
Sesquiterpene hydrocarbons5.7
Oxygenated sesquiterpenoids27.1
Diterpenoids0.7
Others0.1
Total identified95.8
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%). d MS: 135(10%), 119(12%), 107(18%), 93(36%), 92(51%), 91(45%), 79(45%), 69(100%), 55(30%), 53(31%), 43(27%), 41(78%).
Table 7. Chemical composition of Callicarpa petelotii leaf essential oil from Tay Giang District, Quang Nam province, Vietnam.
Table 7. Chemical composition of Callicarpa petelotii leaf essential oil from Tay Giang District, Quang Nam province, Vietnam.
RI aRI bCompound%
921924α-Thujenetr c
9279322-Methyl-5-isopropenylfurantr
929932α-Pinene0.4
945946Camphenetr
972969Sabinene0.1
973974β-Pinene0.4
9759741-Octen-3-oltr
981979Octan-3-onetr
984988Myrcene0.1
9859842-Pentylfurantr
9939883-Octanoltr
10031002α-Phellandrene0.5
10051008δ-3-Carenetr
10131014α-Terpinenetr
10201024p-Cymene0.5
10251024Limonene0.4
10261025β-Phellandrene 1.5
10311032(Z)-β-Ocimene0.9
10411044(E)-β-Ocimene0.1
10531054γ-Terpinenetr
10811086Terpinolenetr
10951095Linalool0.4
10991104Hotrienol0.1
11011100Nonanaltr
110911134,8-Dimethylnona-1,3,7-trienetr
11241128allo-Ocimenetr
11411139(E)-Tagetonetr
11831183Cryptonetr
11881190Methyl salicylate0.4
11911186α-Terpineol0.1
12461249Geranioltr
12741277Phellandraltr
12791287Bornyl acetatetr
12831287Dihydroedulan IAtr
12881294Dihydroedulan IIAtr
12931299(Z)-Theaspiranetr
13091303(E)-Theaspiranetr
13291335δ-Elemenetr
13411345α-Cubebenetr
13631369Cyclosativenetr
13701374α-Copaene 0.1
13731383(E)-β-Damascenonetr
13781387β-Bourbonene 0.1
138213907-epi-Sesquithujenetr
13831389β-Elemene 0.4
14081407Longifolenetr
14131417(E)-Caryophyllene2.7
14241430β-Copaene 0.1
14291437α-Guaienetr
14431447iso-Germacrene Dtr
14471454(E)-β-Farnesenetr
14521452α-Humulene 53.8
14561456Nootkatenetr
14671476Selina-4,11-diene0.1
14691478γ-Muurolenetr
14751484Germacrene D0.5
14831489β-Selinene 4.0
14911498α-Selinene 12.8
15111518δ-Cadinene 0.1
15711577Spathulenol0.1
15751582Caryophyllene oxide2.0
15871590cis-β-Elemenone0.3
15921592Humulene epoxide I1.1
16041608Humulene epoxide II8.1
16261642Caryophylla-4(12),8(13)-dien-5α-ol1.5
16311644Caryophylla-4(12),8(13)-dien-5β-ol0.5
16481649β-Eudesmol0.3
16521658Selin-11-en-4α-ol1.3
1664165614-Hydroxy-9-epi-(Z)-caryophyllene 0.1
16751685Germacra-4(15),5,10(14)-trien-1α-ol0.7
16791668epi-Zizanone0.3
17081715Pentadecanal0.1
20122026(E,E)-Geranyl linalool0.3
Monoterpene hydrocarbons4.8
Oxygenated monoterpenoids0.5
Sesquiterpene hydrocarbons74.7
Oxygenated sesquiterpenoids16.3
Diterpenoids0.3
Others0.5
Total identified97.0
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%).
Table 8. Chemical compositions of Callicarpa rubella leaf essential oils from Vietnam.
Table 8. Chemical compositions of Callicarpa rubella leaf essential oils from Vietnam.
RI aRI bCompound%
Nam GiaiBach MaTay Giang
923924α-Thujene---0.1tr c
930932α-Pinene0.10.51.1
946946Camphene------tr
971969Sabinene---0.10.1
975974β-Pinene0.32.41.7
9779741-Octen-3-ol0.40.1tr
9829793-Octanone0.2---tr
986988Myrcene---0.10.2
9879842-Pentylfuran------tr
9959883-Octanol0.40.1tr
10051002α-Phellandrene---0.33.0
10071008δ-3-Carene---0.3tr
10151014α-Terpinene------tr
10221024p-Cymenetr0.71.0
10271024Limonene0.10.40.8
10281025β-Phellandrene ---0.92.6
103010261,8-cineole---0.1---
10331032(Z)-β-Ocimene ------0.1
10431044(E)-β-Ocimene ------tr
10551054γ-Terpinene------tr
10671067cis-Linalool oxide (furanoid)0.2------
10831086Terpinolene---0.10.1
10841084trans-Linalool oxide (furanoid)0.2------
10981095Linalool1.40.1tr
11041100Nonanal---0.1tr
11231118cis-p-Menth-2-en-1-ol---tr---
11371134Benzeneacetonitrile0.1------
11391135trans-Pinocarveol0.1tr---
11411136trans-p-Menth-2-en-1-ol---tr---
11611160Pinocarvone---tr---
11701165Borneol---tr---
11791174Terpinen-4-ol---0.1tr
11851183Cryptone---0.2---
11851184(3Z)-Hexenyl butyrate0.2------
11891191Hexyl butyratetr------
11911190Methyl salicylate0.2---tr
11921193(2E)-Hexenyl butyrate0.1------
11931195Myrtenal0.1------
11941186α-Terpineol---0.30.1
12011202cis-Sabinol---0.1---
122112222-Hydroxycineole---0.1---
12851287Dihydroedulan IA0.1---tr
12901294Dihydroedulan IIA0.1---tr
12951299(Z)-Theaspirane------0.1
13121303(E)-Theaspirane------tr
131813183-Hydroxycineole---0.3---
13281334Bicycloelemene---0.20.3
13321335δ-Elemene---0.20.2
13441345α-Cubebene0.10.417.4
13501356Eugenol------0.1
13661373α-Ylangene0.1---tr
13721374α-Copaene0.40.14.6
13771383(E)-β-Damascenone------tr
13801382β-Bourbonene 3.20.14.1
13831385α-Bourbonene 0.3------
13841387β-Cubebene ------4.3
13861389β-Elemene 0.51.30.5
14001408(Z)-Caryophyllene------0.1
14031409α-Gurjunene------0.1
14141419β-Ylangene0.3------
14171417(E)-Caryophyllene0.37.118.0
14261430β-Copaene0.3---0.7
14261427γ-Elemene ---2.5---
14301432trans-α-Bergamotene---0.1---
14311437α-Guaiene 2.8---3.0
14351439Aromadendrene0.1---0.3
14411447iso-Germacrene D0.2---0.3
14451448cis-Murrola-3,5-diene ------0.6
14491454(E)-β-Farnesene---0.50.1
14521452α-Humulene0.10.92.0
14561458allo-Aromadendrene------0.2
14591465cis-Muurola-4(14),5-diene------0.1
14651461cis-Cadina-1(6),4-diene------0.2
14661473Drima-7,9(11)-diene0.1------
14681475trans-Cadina-1(6),4-diene------0.8
14711478γ-Muurolene0.5---0.5
14761475γ-Gurjunene 0.2---0.4
14781479ar-Curcumene---0.7---
14781484Germacrene D------4.2
14861489β-Selinene 1.60.90.8
14881495γ-Amorphene------1.2
14921500Bicyclogermacrene------4.6
14931498α-Selinene---0.7---
14951500α-Muurolene---0.10.9
1495---Unidentified d2.7------
14981509α-Bulnesene 1.7---1.8
15001505(E,E)-α-Farnesene------0.1
15051505β-Bisabolene 0.725.00.1
15101513γ-Cadinene---0.10.3
15121514Cubebol---0.51.0
15151518δ-Cadinene ---0.24.6
15191521trans-Calamenene---0.20.4
15201528Zonarene------0.2
15211521β-Sesquiphellandrene---0.5---
15291533trans-Cadina-1,4-diene ------0.4
15341540Selina-4(15),7(11)-diene---0.5---
15391545Selina-3,7(11)-diene---0.3---
15451548α-Elemol ---0.2---
15561559Germacrene B---4.60.1
1564---Unidentified e3.2------
1568---Unidentified f7.2------
15741577Spathulenol3.90.22.7
15791582Caryophyllene oxide25.13.02.7
1581---Unidentified g1.7---0.3
15901590cis-β-Elemenone---0.4---
15951596trans-β-Elemenone---4.2---
16071608Humulene epoxide II3.80.40.2
16251629iso-Spathulenol ---0.6---
162516271-epi-Cubenol------0.8
16341644Caryophylla-4(12),8(13)-dien-5β-ol------0.2
16401645Cubenol------0.5
16411640τ-Muurolol------0.1
16441644α-Muurolol (= δ-Cadinol)------0.3
16531652α-Cadinol---0.40.2
16551651Pogostol1.6---0.2
1661---Unidentified h---2.2---
1668166814-Hydroxy-9-epi-(E)-caryophyllene 1.2---0.1
1677---Unidentified i1.1------
16841685α-Bisabolol---0.2---
16911693Germacrone---22.1---
16981704cis-Thujopsenol 8.8------
1709---Unidentified j---1.8---
1715---Unidentified k2.1------
1766---Unidentified l1.8------
1768---Unidentified m---1.0---
1792---Unidentified n4.0------
1802---Unidentified o2.5------
18091806Nootkatone1.6------
1815---Unidentified p---1.8---
1834---Unidentified q---3.0---
1849---Unidentified r1.6------
18851884Corymbolone5.6------
20492055Abietatriene---1.30.1
Monoterpene hydrocarbons0.55.910.5
Oxygenated monoterpenoids2.01.20.1
Sesquiterpene hydrocarbons13.547.178.5
Oxygenated sesquiterpenoids45.932.39.0
Diterpenoids5.61.30.1
Others1.80.20.1
Total identified69.288.098.3
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%). d MS: 202(24%), 189(12%), 187(14%), 159(28%), 147(66%), 145(53%), 134(30%), 133(31%), 131(35%), 121(37%), 119(59%), 107(68%), 105(99%), 93(92%), 91(79%), 81(100%), 80(69%), 79(74%), 77(42%), 67(35%), 55(40%), 41(55%). e MS: 220(3%), 205(13%), 187(18%), 162(34%), 147(27%), 145(30%), 135(35%), 121(67%), 107(85%), 95(74%), 93(77%), 81(81%), 79(67%), 69(68%), 67(82%), 55(87%)41(100%). f MS: 220(0.5%), 205(4%), 187(12%), 177(6%), 162(9%), 149(9%), 147(20%), 145(13%), 123(26%), 122(24%), 111(44%), 107(78%), 95(42%), 93(42%), 83(40%), 81(58%), 79(38%), 67(47%), 55(43%), 43(100%), 41(49%). g MS: 220(3%), 205(4%), 202(12%), 187(24%), 159(25%), 146(29%), 145(23%), 133(22%), 131(20%), 123(18%), 121(19%0, 119(18%), 109(18%), 107(27%), 105(28%), 95(29%), 93(35%), 91(30%), 81(35%), 79(36%), 69(27%), 55(32%), 43(100%), 41(33%). h MS: 218(4%), 203(5%), 175(14%), 136(68%), 135(68%), 121(25%), 107(100%), 91(29%), 79(22%), 67(50%), 53(18%), 41(28%). i MS: 218(7%), 203(8%), 175(12%), 161(17%), 160(18%), 147(22%), 145(15%), 135(28%), 134(29%), 121(32%), 119(33%), 109(42%), 107(35%), 105(33%), 95(59%), 93(41%), 81(34%), 79(30%), 69(30%), 67(37%),55(29%), 53(19%), 43(100%), 41(43%). j MS: 220(35%), 205(17%), 202(27%), 187(27%), 162(88%), 159(32%), 149(55%), 147(57%), 145(30%), 131(30%), 121(71%), 119(79%), 107(66%), 105(68%), 97(43%), 93(57%), 91(67%), 43(100%), 41(63%). k MS: 218(2%), 200(3%), 185(5%), 160(13%), 145(9%), 121(25%), 120(27%), 98(22%), 97(23%), 83(100%), 67(18%), 55(34%), 43(96%), 41(25%). l MS: 220(1%), 205(4%), 179(10%), 161(4%), 147(10%), 137(10%), 133(14%), 121(17%), 119(20%), 108(32%), 95(35%), 93(53%), 91(42%), 81(34%), 79(61%), 69(32%), 67(38%), 55(45%), 43(100%), 41(58%). m MS: 220(62%), 202(11%), 187(15%), 177(100%), 159(74%), 135(49%), 123(75%), 107(76%), 93(64%), 91(52%), 81(61%), 67(54%), 55(57%), 43(62%), 41(68%). n MS: 234(8%), 219(30%), 216(8%), 201(8%), 191(12%), 177(15%), 176(13%), 163(14%), 159(16%), 152(21%), 137(16%), 133(16%), 111(27%), 105(20%), 91(25%), 79(19%), 77(17%), 67(17%), 55(17%), 43(100%), 41(26%). o MS: 234(1%), 216(16%), 188(8%), 177(9%), 173(8%), 163(10%), 161(14%), 159(13%), 133(22%), 111(26%), 105(24%), 95(47%), 91(23%), 81(23%), 79(24%), 77(20%), 67(22%), 55(18%), 43(100%), 41(28%). p MS: 234(2%), 219(4%), 201(5%), 191(5%), 177(7%), 167(12%), 149(34%), 135(51%), 121(50%), 107(100%), 93(35%), 91(37%), 79(34%), 68(36%), 67(58%), 55(34%), 43(53%), 41(60%). q MS: 167(40%), 121(32%), 68(100%), 67(58%), 43(33%), 41(39%). r MS: 236(5%), 221(8%), 218(8%), 193(15%), 180(26%), 167(30%), 149(22%), 147(18%), 136(65%), 123(74%), 110(97%), 97(84%), 69(83%), 55(80%), 43(80%), 41(100%).
Table 9. Chemical composition of Callicarpa rubella stem bark essential oil from Bach Ma National Park, Vietnam.
Table 9. Chemical composition of Callicarpa rubella stem bark essential oil from Bach Ma National Park, Vietnam.
RI aRI bCompound%
933932α-Pinene0.4
949946Camphene0.1
972969Sabinene0.1
978974β-Pinene2.7
989988Myrcene0.1
10071002α-Phellandrene0.3
10091008δ-3-Carene1.5
10251024p-Cymene0.6
10291024Limonene0.4
10311025β-Phellandrene0.7
10851086Terpinolene0.1
11001095Linalool0.1
11961186α-Terpineol0.1
13331334Bicycloelemene0.1
13471345α-Cubebene0.7
13761374α-Copaene0.2
13821389β-Elemene0.1
13881387β-Cubebene0.3
13891389β-Elemene2.0
14201417(E)-Caryophyllene7.3
14291427γ-Elemene4.8
14521457Sesquisabinene0.3
14561452α-Humulene1.0
14601458allo-Aromadendrene0.1
14721475trans-Cadina-1(6),4-diene0.2
14811479ar-Curcumene2.2
14891489β-Selinene0.6
14921493trans-Muurola-4(14),5-diene0.2
14961498α-Selinene1.0
14981500α-Muurolene0.3
15051501Aciphyllene0.3
15081505β-Bisabolene17.9
15131513γ-Cadinene0.3
15151514Cubebol0.3
15181518δ-Cadinene0.5
15211521trans-Calamenene0.2
15241521β-Sesquiphellandrene 0.6
15371528Zonarene0.6
15421545Selina-3,7(11)-diene0.5
15481548Elemol0.3
15591559Germacrene B8.4
15771577Spathulenol0.2
15821582Caryophyllene oxide1.9
15931590cis-β-Elemenone0.4
15941592Viridiflorol0.4
15981596trans-β-Elemenone 3.8
16071608β-Atlantol0.2
16101608Humulene epoxide II0.1
16281629iso-Spathulenol0.5
16321630γ-Eudesmol0.1
16431645Cubenol0.3
16471644α-Muurolol (=δ-Cadinol)0.2
16551652α-Cadinol 0.7
16581658Selin-11-en-4α-ol0.1
1664---Unidentified c1.6
16871685α-Bisabolol 0.4
16941693Germacrone23.9
2015200913-epi-Manool oxide0.2
20532055Abietatriene1.1
Monoterpene hydrocarbons7.1
Oxygenated monoterpenoids0.9
Sesquiterpene hydrocarbons50.7
Oxygenated sesquiterpenoids36.1
Diterpenoids1.3
Others0.0
Total identified93.0
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c MS: 218(5%), 203(7%), 185(5%), 175(18%), 161(4%), 147(10%), 136(77%), 135(78%), 121(33%), 107(100%), 91(29%), 79(21%), 67(44%), 55(11%), 53(17%), 41(24%).
Table 10. Chemical composition of Callicarpa sinuata leaf essential oil from Son Tra Peninsula, Da Nang City, Vietnam.
Table 10. Chemical composition of Callicarpa sinuata leaf essential oil from Son Tra Peninsula, Da Nang City, Vietnam.
RI aRI bCompound%
930932α-Pinene0.1
969969Sabinene0.1
975974β-Pinenetr c
9769741-Octen-3-oltr
10061008δ-3-Carenetr
10221024p-Cymene0.1
10261024Limonene0.1
103010261,8-Cineoletr
11031100Nonanal0.1
12951299(Z)-Theaspirane0.1
13111303(E)-Theaspirane 0.1
13281334Bicycloelemene0.1
13311335δ-Elemene0.3
13431345α-Cubebene 2.0
13651373α-Ylangene0.1
13721374α-Copaene 12.6
13781383cis-β-Elemene0.2
13801382β-Bourbonene 0.3
13841387β-Cubebene 1.8
13851389trans-β-Elemene 3.1
14161417(E)-Caryophyllene 3.8
14261430β-Copaene 0.4
14311437α-Guaiene 0.2
14351439Aromadendrene0.5
14481455Valerena-4,7(11)-diene0.4
14531452α-Humulene 24.8
14561458allo-Aromadendrene0.4
146614734,5-di-epi-Aristolochene0.4
14691476Selina-4,11-diene0.2
14711478γ-Muurolene1.3
14751483α-Amorphene 0.2
14771484Germacrene D2.6
14841491Eremophilene0.3
14851489β-Selinene1.8
14881493trans-Muurola-4(14),5-diene 0.3
14921500Bicyclogermacrene4.0
14941500α-Muurolene0.5
15091513γ-Cadinene0.6
15111514Cubebol0.4
15141518δ-Cadinene 2.3
15171521trans-Calamenene0.4
15381544α-Calcorene0.9
15561561(E)-Nerolidol 0.3
15581564β-Calacorene0.4
15731577Spathulenol5.9
15781582Caryophyllene oxide1.9
15821590Globulol0.4
15901592Viridiflorol0.5
15921600Guaiol0.2
15951592Humulene epoxide I0.6
16061608Humulene epoxide II6.7
162416271-epi-Cubenol 0.7
16281629iso-Spathulenol2.4
16391638τ-Cadinol0.3
16401640τ-Muurolol0.3
16511652α-Eudesmol 2.3
16551658Selin-11-en-4α-ol0.7
16591668ar-Turmerone0.2
166116629-Methoxycalamenene0.5
16691675Cadalene0.2
17341740Mint sulfide1.2
18361841Phytone0.2
20482055Abietatriene0.1
21012106(E)-Phytol3.4
21322138Palmitaldehyde, diallyl acetal0.6
Monoterpene hydrocarbons0.3
Oxygenated monoterpenoidstr
Sesquiterpene hydrocarbons67.5
Oxygenated sesquiterpenoids24.1
Diterpenoids3.8
Others2.1
Total identified97.8
a RI = Retention Index determined with respect to a homologous series of n-alkanes on a ZB-5 column. b Retention indices from the databases. c tr = trace (<0.05%).
Table 11. Twenty-four-hour mosquito larvicidal activity (µg/mL) of Callicarpa leaf essential oils from central Vietnam.
Table 11. Twenty-four-hour mosquito larvicidal activity (µg/mL) of Callicarpa leaf essential oils from central Vietnam.
Callicarpa SpeciesLC50 (95% Confidence Limits)LC90 (95% Confidence Limits)χ2p
Aedes aegypti
C. bodinieri53.99 (50.29–58.32)76.61 (69.03–90.35)4.900.086
C. candicans (Nghia Dan)5.337 (4.769–5.961)12.05 (10.38–14.57)10.100.018
C. candicans (Dai Loc)2.695 (2.342–3.051)6.633 (5.685–8.107)70.570.000
C. formosana31.85 (29.39–34.55)48.94 (44.06–56.50)3.740.154
C. longifolia (Nghia Dan)37.44 (34.16–41.05)66.33 (58.53–78.54)3.860.145
C. nudiflora37.51 (33.76–41.79)79.16 (67.91–97.04)9.470.009
C. petelotii19.14 (17.13–21.22)37.87 (32.85–46.26)8.370.015
C. rubella (Nam Giai)24.15 (21.33–27.13)57.15 (48.61–71.14)3.220.200
C. rubella (Tay Giang)26.00 (24.19–28.06)39.42 (34.57–47.24)2.430.297
C. sinuata28.69 (25.87–31.82)58.15 (50.38–70.31)7.430.024
Culex quinquefasciatus
C. candicans (Nghia Dan)2.041 (1.683–2.426)10.43 (8.14–14.46)5.360.252
C. candicans (Dai Loc)1.204 (0.903–1.5107.841 (6.035–11.146)2.010.734
C. nudiflora108.9 (101.2–117.1)75.76 (66.11–85.11)2.340.126
Table 12. Forty-eight-hour mosquito larvicidal activity (µg/mL) of Callicarpa leaf essential oils from central Vietnam.
Table 12. Forty-eight-hour mosquito larvicidal activity (µg/mL) of Callicarpa leaf essential oils from central Vietnam.
Callicarpa SpeciesLC50 (95% Confidence Limits)LC90 (95% Confidence Limits)χ2p
Aedes aegypti
C. bodinieri52.00 (48.39–56.11)74.18 (66.88–87.49)2.430.297
C. candicans (Nghia Dan)3.824 (3.426–4.256)8.165 (7.077–9.813)17.800.000
C. candicans (Dai Loc)2.145 (1.998–2.301)2.891 (2.667–3.211)8.140.012
C. formosana29.04 (26.89–31.49)43.37 (39.04–50.31)9.120.010
C. longifolia (Nghia Dan)35.64 (32.40–39.22)66.15 (58.04–78.86)6.870.032
C. nudiflora27.34 (23.84–31.16)77.02 (63.21–101.27)17.100.000
C. petelotii18.49 (16.52–20.50)36.52 (31.69–44.62)6.650.036
C. rubella (Nam Giai)17.93 (14.85–20.87)54.72 (45.00–72.37)3.610.165
C. rubella (Tay Giang)21.73 (19.75–23.90)37.09 (33.44–43.74)8.480.014
C. sinuata25.86 (23.20–28.77)54.55 (47.03–66.51)5.200.074
Culex quinquefasciatus
C. candicans (Nghia Dan)1.670 (1.425–1.929)5.726 (4.688–7.448)16.780.002
C. candicans (Dai Loc)0.945 (0.742–1.137)3.537 (2.881–4.691)9.680.046
C. nudiflora178.5 (148.3–240.1)170.6 (153.7–198.8)15.720.000
Table 13. Collection details and essential oil yields of Callicarpa species from central Vietnam.
Table 13. Collection details and essential oil yields of Callicarpa species from central Vietnam.
Callicarpa SpeciesVietnamese NameCollection SiteGrowth PeriodVoucher NumberPart% Yield
Callicarpa bodinieri Lév.Tử châu bodinierNgoc Linh Nature Reserve, Quang Nam Province (15°50′16.0″ N, 107°22′54.7″ E, elev. 1341 m)Flowers and young fruitsDND-62Leaf0.1
Callicarpa candicans (Burm.f.) Hochr.Tử châu chồi trắng, Nàng nàngNghia Dan District, Nghe An province (19°22′24.4″ N, 105°25′15.3″ E, elev. 75 m)Flowers, young fruits and ripe fruitsDND-17Leaf0.15
Dai Loc district, Quang Nam province
15°53′16″ N, 107°59′38″ E, elev. 514 m)
Flowers, young fruits and ripe fruitsDND-80Leaf0.18
Hoa Vang district, Da Nang city (16°01′0.6″ N, 108°4′25.6″ E, elev. 28 m)Flowers, young fruits and ripe fruitsNHH-57Leaf
Bark
0.17
0.04
Callicarpa formosana RolfeTử châu đài loanNgoc Linh Nature Reserve, Quang Nam Province (15°50′16.0″ N, 107°22′54.7″ E, elev. 1341 m)Flowers and young fruitsDND-72Leaf0.11
Callicarpa longifolia Lam.Tử châu lá dài, Tu hú lá dàiNghia Dan District, Nghe An province (19°20′6.2″ N, 105°25′58.1″ E, elev. 51 m)Flowers, young fruits and ripe fruitsDND-31Leaf0.13
Callicarpa nudiflora Hook. & Arn.Tử châu hoa trầnSon Tra Peninsula, Da Nang City (16°07′18″ N, 108°18′07″ E, elev. 118 m)Flowers, young fruits and ripe fruitsDND-33Leaf0.14
Callicarpa petelotii DopTử châu petelotTay Giang District, Quang Nam province (15°50′16.0″ N, 107°22′54.7″ E, elev. 1341 m)Flowers, young fruits and ripe fruitsDND-98Leaf0.22
Callicarpa rubella Lindl.Tử châu đỏ, Tu hú hồngNậm Giải Commune, Quế Phong district, Pu Hoat Nature Reserve, Nghe An province (19°41′40″ N, 104°49′29″ E, elev. 671 m)Flowers, young fruits and ripe fruitsDND-709Leaf0.15
Tay Giang District, Quang Nam province (15°50′16.0″ N, 107°22′54.7″ E, elev. 1341 m)Flowers, young fruitsDND-99Leaf0.12
Bach Ma National Park, Phu Loc District, Thua Thien Hue province (16°11′59″ N, 107°51′25″ E, elev. 1376 m)ripe fruitsDND-27Leaf
Bark
0.11
0.06
Callicarpa sinuata Budantzev & PhuongTử châu răng sâuSon Tra Peninsula, Da Nang City (16°06′00″ N, 108°18′24″ E, elev. 124 m)Flowers, young fruitsNHH-84Leaf0.14

Share and Cite

MDPI and ACS Style

Hung, N.H.; Huong, L.T.; Chung, N.T.; Thuong, N.T.H.; Satyal, P.; Dung, N.A.; Tai, T.A.; Setzer, W.N. Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities. Plants 2020, 9, 113. https://doi.org/10.3390/plants9010113

AMA Style

Hung NH, Huong LT, Chung NT, Thuong NTH, Satyal P, Dung NA, Tai TA, Setzer WN. Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities. Plants. 2020; 9(1):113. https://doi.org/10.3390/plants9010113

Chicago/Turabian Style

Hung, Nguyen Huy, Le Thi Huong, Nguyen Thanh Chung, Nguyen Thi Hoai Thuong, Prabodh Satyal, Nguyen Anh Dung, Thieu Anh Tai, and William N. Setzer. 2020. "Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities" Plants 9, no. 1: 113. https://doi.org/10.3390/plants9010113

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop