Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile
Abstract
1. Introduction
2. Results
2.1. Seed Characterization
2.2. Nurseries Survey
2.3. Germination Experiment
3. Discussion
3.1. Seed Characterization
3.2. Germination Experiment
3.3. Operational Applicability of Pre-Germination Treatments
4. Materials and Methods
4.1. Species Selection and Locations for Seed Collection
4.2. Seed Characterization
4.3. Pre-Germination Treatments
4.4. Germination Experiment
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armesto, J.J.; Arroyo, M.T.; Hinojosa, L.F. The Mediterranean Environment of Central Chile. In The Physical Geography of South America; Veblen, T., Young, K., Orme, A., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 184–199. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Rundel, P.W. Mediterranean-Climate Ecosystems. Encycl. Biodivers. 2007, 1–15. [Google Scholar] [CrossRef]
- Garfias Salinas, R.; Castillo Soto, M.; Ruiz Gozalvo, F.; Vita Alonso, A.; Bown Intveen, H.; Navarro Cerrillo, R. Remanentes del Bosque Esclerófilo en la Zona Mediterránea de Chile Central: Caracterización y Distribución de Fragmentos. Interciencia 2018, 43, 655–663. [Google Scholar]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; Mcalpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Glob. Planet. Change 2015, 128, 103–119. [Google Scholar] [CrossRef]
- Mandle, L.; Bufford, J.L.; Schmidt, I.B.; Daehler, C.C. Woody exotic plant invasions and fire: Reciprocal impacts and consequences for native ecosystems. Biol. Invasions 2011, 13, 1815–1827. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Schulz, J.J.; Cayuela, L.; Rey-Benayas, J.M.; Schröder, B. Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Appl. Veg. Sci. 2011, 14, 571–582. [Google Scholar] [CrossRef]
- Altamirano, T. Restauración de Los Sistemas Naturales Mediterráneos de Chile Central; Universidad Católica: Santiago, Chile, 2008. [Google Scholar]
- Urrutia-Jalabert, R.; González, M.E.; González-Reyes, Á.; Lara, A.; Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 2018, 9, e02171. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Boisier, J.P.; Rondanelli, R.; Garreaud, R.; Munoz, F. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett. 2016, 43, 413–421. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Pablo Boisier, J.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Ciccarese, L.; Mattsson, A.; Pettenella, D. Ecosystem services from forest restoration: Thinking ahead. New For. 2012, 43, 543–560. [Google Scholar] [CrossRef]
- Lal, R. Offsetting global CO2 emissions by restoration of endangered soils and intensification of world agriculture and forestry. Land Degrad. Dev. 2003, 14, 309–322. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Marquet, P.A.; Altamirano, A.; Arroyo, M.T.K.; Fernández, M.; Gelcich, S.; Górski, K.; Habit, E.; Lara, A.; Maass, A.; Pauchard, A.; et al. Biodiversidad y Cambio Climático en Chile: Evidencia Científica Para la Toma de Decisiones; Comité Científico COP25, Ed.; Ministerior de Ciencias, Tecnología, Conocimiento e Innovación: Santiago, Chile, 2019.
- Becerra, P.; Smith-Ramírez, C.; Arellano, E. Evaluación de Técnicas Pasivas y Activas Para la Recuperación del Bosque Esclerófilo de Chile Central; Corporación Nacional Forestal: Santiago, Chile, 2018. [Google Scholar]
- Sewell, A.; Van Der Esch, S.; Löwenhardt, H. Goals and Commitments for the Restoration Decade; PBL Publishers: The Hague, The Netherlands, 2020. [Google Scholar]
- Cordero, C.; Vasconi, P. Actualización de la Contribución Determinada a Nivel Nacional (NDC) 2020 de Chile; Ministerio del Medio Ambiente: Santiago, Chile, 2020.
- Bannister, J.R.; Vargas-Gaete, R.; Ovalle, J.F.; Acevedo, M.; Fuentes-Ramirez, A.; Donoso, P.J.; Promis, A.; Smith-Ramírez, C. Major bottlenecks for the restoration of natural forests in Chile. Restor. Ecol. 2018, 26, 1039–1044. [Google Scholar] [CrossRef]
- Acevedo, M.; Álvarez-Maldini, C.; Kasten Dumroese, R.; Bannister, J.R.; Cartes, E.; González, M. Native Plant Production in Chile. Is It Possible to Achieve Restoration Goals by 2035? Land 2021, 10, 71. [Google Scholar] [CrossRef]
- León-Lobos, P.; Bustamante-Sánchez, M.A.; Nelson, C.R.; Alarcón, D.; Hasbún, R.; Way, M.; Pritchard, H.W.; Armesto, J.J. Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: Friendly amendment to Bannister et al. (2018). Restor. Ecol. 2020, 28, 277–281. [Google Scholar] [CrossRef]
- Jiménez, H.E.; Armesto, J.J. Importance of the soil seed bank of disturbed sites in Chilean matorral in early secondary succession. J. Veg. Sci. 1992, 3, 579–586. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Jaksic, F.M. Latencia y banco de semillas en plantas de la región mediterránea de Chile central. Rev. Chil. Hist. Nat. 2004, 77, 201–2015. [Google Scholar] [CrossRef][Green Version]
- Figueroa, J.A.; Teillier, S.; Jaksic, F.M. Composition, size and dynamics of the seed bank in a mediterranean shrubland of Chile. Austral Ecol. 2004, 29, 574–584. [Google Scholar] [CrossRef]
- Rundel, P.W.; Cowling, R.M. Mediterranean-Climate Ecosystems. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 212–222. ISBN 9780123847195. [Google Scholar]
- Ruthrof, K.X.; Bader, M.K.F.; Matusick, G.; Jakob, S.; Hardy, G.E.S.J. Promoting seedling physiological performance and early establishment in degraded Mediterranean-type ecosystems. New For. 2016, 47, 357–376. [Google Scholar] [CrossRef]
- Cabello, A. Estudio Anatómico y de Germinación en Litre (Lithrea Caustica (Mol.) H. et Arn.); Universidad de Chile: Santiago, Chile, 1979. [Google Scholar]
- Silva, S. Ecología Trófica y Nutricional del Zorro Culpeo (Pseudalopex Culpaeus): Restricciones Digestivas y Energéticas Asociadas a la Frugivoría y Sus Efectos Sobre la Dispersión de Semillas; Universidad Católica de Chile: Santiago, Chile, 2001. [Google Scholar]
- León-Lobos, P.; Kalin-Arroyo, M. Germinación de semillas de Lithrea caustica (Mol) H et A (Anacardiaceae) dispersadas por Pseudalopex sp (Canidae) en el bosque esclerófilo de Chile central. Rev. Chil. Hist. Nat. 1994, 67, 59–64. [Google Scholar]
- Silva, S.I.; Bozinovic, F.; Jaksic, F.M. Frugivory and seed dispersal by foxes in relation to mammalian prey abundance in a semiarid thornscrub. Austral Ecol. 2005, 30, 739–746. [Google Scholar] [CrossRef]
- Clewell, A.; Rieger, J.P. What practitioners need from restoration ecologists. Restor. Ecol. 1997, 5, 350–354. [Google Scholar] [CrossRef]
- Broadhurst, L.M.; Jones, T.A.; Smith, F.S.; North, T.; Guja, L. Maximizing Seed Resources for Restoration in an Uncertain Future. Bioscience 2015, 66, 73–79. [Google Scholar] [CrossRef]
- Winer, N. Germination of pretreated seed of mesquite (Prosopis chilensis) under arid conditions in northern Sudan. For. Ecol. Manag. 1983, 5, 307–312. [Google Scholar] [CrossRef]
- Cabello, A.; Valdés, P.; Escobar, D.; Letelier, P. Efecto de la temperatura y de la aplicación de tratamientos pregerminativos sobre la germinación de semillas de Porlieria chilensis I. M. Johnst., guayacán. Rev. Chagual 2013, 11, 61–71. [Google Scholar]
- Cabello, A.; Alvear, A. Efecto de la temperatura sobre la germinación de dos lotes de semillas de espino (Acacia caven (Mol.) Mol.). Ciencias For. 1991, 7, 3–12. [Google Scholar]
- Funes, G.; Venier, P. Dormancy and germination in three Acacia (Fabaceae) species from central Argentina. Seed Sci. Res. 2006, 16, 77–82. [Google Scholar] [CrossRef]
- Mohamed-Yasseen, Y.; Barringer, S.A.; Splittstoesser, W.E.; Costanza, S. The Role of Seed Coats in Seed Viability. Bot. Rev. 1994, 4, 426–439. [Google Scholar] [CrossRef]
- Turner, S.R.; Merritt, D.J.; Baskin, C.C.; Dixon, K.W.; Baskin, J.M. Physical dormancy in seeds of six genera of Australian Rhamnaceae. Seed Sci. Res. 2005, 15, 51–58. [Google Scholar] [CrossRef]
- Hartmann, H.; Kester, D. Plant Propagation. Principles and Practices, 1st ed.; Prentice-Hall: Hoboken, NJ, USA, 1983. [Google Scholar]
- Wyse, S.V.; Dickie, J.B. Taxonomic affinity, habitat and seed mass strongly predict seed desiccation response: A boosted regression trees analysis based on 17,539 species. Ann. Bot. 2018, 121, 71–83. [Google Scholar] [CrossRef]
- Seed Information Database: Royal Botanic Gardens, Kew. Available online: https://data.kew.org/sid/citing.html (accessed on 12 February 2022).
- Salazar, C. Caracterización de Semillas de Quillaja Saponaria Mol., para Distintas Procedencias de la Octava Región; Universidad de Concepción: Concepción, Chile, 1998. [Google Scholar]
- González Ortega, M.P.; García Rivas, E.; Quiroz Marchant, I.; Soto Guevara, H. Estándares de producción de plantas de Quillay (quillaja saponaria mol.). Rev. Chile For. 2011, 353, 43–46. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–1586. [Google Scholar] [CrossRef]
- Donoso Zegers, C.; Cabello Lechuga, A. Antecedentes fenológicos y de germinación de especies leñosas chilenas. Ciencias For. 1978, 1, 31–41. [Google Scholar]
- Benedetti, S.; Delard, C.; Roach, F.; González, M. Monografía de Quillay, Quillaja Saponaria; INFOR: Santiago, Chile, 2000. [Google Scholar]
- Morales-Paredes, C.; Valdivia, C.E.; Sade, S. La frugivoría por cánidos nativos (Lycalopex spp.) y alóctonos (Canis lupus familiaris) reduce la germinación de semillas de litre (Lithrea caustica) en Chile central. Bosque 2015, 36, 481–486. [Google Scholar] [CrossRef][Green Version]
- Franco, E.T.H.; Feltrin, I.J. Quebra de dormencia de sementes de Espinilho (Acacia caven Mol..). Ciência Rural 1994, 24, 303–305. [Google Scholar] [CrossRef][Green Version]
- Plaza, Â.; Castillo, M. Germination rates of four Chilean forest trees seeds: Quillaja saponaria, Prosopis chilensis, Vachellia caven, and Caesalpinia spinosa. F1000Research 2018, 7, 1446. [Google Scholar] [CrossRef]
- Loayza, A.P.; Rios, R.S.; Carvajal, D.E. Estado de Conservación de Porlieria Chilensis: Evaluación a Través de Modelos Poblacionales Matriciales, Ecología y Patrones de Distribución; Corporación Nacional Forestal Santiago: Santiago, Chile, 2015. [Google Scholar]
- Takayashiki, M.; Williams, E.; Schenk, J.; Alvarado, M.; Greau, M. Monografías de Especies Para la Forestación en la Zona Semiárida de Chile. Proyecto Cuencas CONAF-JICA “Control de Erosión y Forestación en Cuencas Hidrográficas de la Zona Semiárida de Chile”; Ministerio de Agricultura Coarparación Nacional Forestal: Santiago, Chile, 1998.
- Cavieres, L.A.; Chacón, P.; Peñaloza, A.; Molina-Montenegro, M.; Arroyo, M.T.K. Leaf litter of Kageneckia angustifolia D. Don (Rosaceae) inhibits seed germination in sclerophyllous montane woodlands of central Chile. Plant Ecol. 2006, 190, 13–22. [Google Scholar] [CrossRef]
- Peñaloza, A.; Cavieres, L.; Arroyo, M.T.K.; Torres, C. Efecto nodriza intra-específico de Kageneckia angustifolia D. Don (Rosaceae) sobre la germinación de semillas y sobrevivencia de plántulas en el bosque esclerófilo montano de Chile central. Rev. Chil. Hist. Nat. 2001, 74, 539–548. [Google Scholar] [CrossRef][Green Version]
- Cavieres, L.A.; Peñaloza, A. Facilitation and interference at the intraspecific level: Recruitment of Kageneckia angustifolia D. Don (Rosaceae) in the montane sclerophyllous woodland of central Chile. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 13–19. [Google Scholar] [CrossRef]
- Arce, P.M.; Medina, C.; Balboa, O. Tolerancia a la salinidad en la germinación de tres especies de Prosopis (P. alba, P. chilensis y P. tamarugo). Cienc. Investig. Agrar. 1990, 17, 71–76. [Google Scholar] [CrossRef]
- Arévalo, J.P. Tratamientos Para Mejorar la Germinación de Semillas de Yerba Mate (Ilex Paraguariensis) y Algarrobo (Prosopis spp.); Escuela Agrícola Panamericana: Zamorano, Honduras, 1998. [Google Scholar]
- Ortega Baes, P.; De Viana, M.L.; Suk, S. Germination in Prosopis ferox seeds: Effects of mechanical, chemical and biological scarificators. J. Arid Environ. 2002, 50, 185–189. [Google Scholar] [CrossRef]
- Vilela, A.E.; Ravetta, D.A. The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). J. Arid Environ. 2001, 48, 171–184. [Google Scholar] [CrossRef]
- Cox, J.R.; De Alba-Avila, A.; Rice, R.W.; Cox, J.N. Biological and physical factors influencing Acacia constricta and Prosopis velutina establishment in the Sonoran Desert. J. Range Environ. 1993, 46, 43–48. [Google Scholar] [CrossRef]
- Pelaez, D.V.; Boo, R.M.; Elia, O.R. Emergence and seedling survival of calden in the semiarid region of Argentina. J. Range Manag. 1992, 45, 564–566. [Google Scholar] [CrossRef][Green Version]
- Ministerio de Medio Ambiente Listado de Especies Clasificadas Desde el 1o al 16o Proceso de Clasificación RCE (Actualizado a Agosto de 2021). Available online: https://clasificacionespecies.mma.gob.cl/wp-content/uploads/2021/09/NominaDeEspeciesSegunEstadoConservacion-Chile_actualizado_16toProcesoRCE_rev04agosto2021_.xlsx (accessed on 25 January 2022).
- Benedetti, S. Monografía de Espino Acacia Caven (Mol.) Mol; Instituto Forestal: Santiago, Chile, 2012. [Google Scholar]
- Alvarado, A.; Levet, O. Manual de Protocolos de Producción de Especies Utilizadas por el Programa de Arborización; Corporación Nacional Forestal: Santiago, Chile, 2014.
- Urbina, A. Análisis de Germinación de una Procedencia de Litre (Lithraea Caustica (Mol.) Hook. et Arn.); Universidad de Concepción: Concepción, Chile, 2019. [Google Scholar]
- Hoffman, A.; Kummerow, J. Estudios anatómicos sobre flor, fruto y testa de Acacia caven (Mol.) Hook, et Arm., y características de la germinación. Phyton 1962, 19, 21–25. [Google Scholar]
- Stoehr, V. Métodos de Reforestación con Espino (Acacia Caven) en la Zona Semiárida de Chile; Universidad de Chile: Santiago, Chile, 1969. [Google Scholar]
- Serrada, M. Especies Arbóreas y Arbustivas Para las Zonas Áridas y Semiáridas de América Latina; FAO, Red Latinoamericana de Cooperación Técnica en Sistemas Agroforestales: Santiago, Chile, 1997. [Google Scholar]
- Hechenletiner, V.; Gardner, M.; Thomas, P.; Echeverría, C.; Escobar, B.; Brownless, P.; Martínez, A. Plantas Amenazadas del Centro Sur de Chile: Distribución, Conservación y Propagación, 1st ed.; Universidad Austral de Chile y Real Jardín Botánico de Edimburgo: Valdivia, Chile, 2005. [Google Scholar]
- Corporación Nacional Forestal Listado de Viveros Forestales. Available online: https://www.conaf.cl/nuestros-bosques/bosques-en-chile/viveros/ (accessed on 25 January 2022).


| Species | Seed Moisture Content (g g−1) | ||
|---|---|---|---|
| Initial | Soaking in Water 24 h | Soaking in Water 48 h | |
| Quillaja saponaria | 0.139 ± 0.042 b | 0.851 ± 0.108 a | 0.935 ± 0.075 a |
| Lithraea caustica | 0.097 ± 0.023 b | 0.522 ± 0.040 a | 0.536 ± 0.021 a |
| Acacia caven | 0.273 ± 0.056 c | 0.627 ± 0.062 b | 0.903 ± 0.098 a |
| Porlieria chilensis | 0.182 ± 0.077 c | 0.458 ± 0.065 b | 0.626 ± 0.074 a |
| Kageneckia angustifolia | 0.101 ± 0.030 c | 0.867 ± 0.105 b | 1.054 ± 0.089 a |
| Ceratonia chilensis | 0.101 ± 0.027 b | 0.217 ± 0.055 a | 0.262 ± 0.046 a |
| Pre-Germination Treatment | Without Restrictions (%) | Restrictions Due to Capabilities Techniques (%) | Restrictions Due to Infrastructure and/or Equipment (%) | Don’t Know the Benefits (%) |
|---|---|---|---|---|
| Water Soaking (RT) | 100 | - | - | - |
| Plant Hormone (1) * | 67 | 16.5 | 16.5 | - |
| Wet-cold Stratification | 67 | 16.5 | - | 16.5 |
| Physical Scarification (2) | 100 | - | - | - |
| Mechanical Scarification | 50 | 33 | 17 | - |
| Chemical Scarification (3) | 50 | 33 | 17 | - |
| Species | Soaking in Water (%) | Physical Scarification (%) (1) | Chemical Scarification (%) (2) | Soaking in Coke® (%) | Direct Sowing (%) |
|---|---|---|---|---|---|
| Quillaja saponaria | 83 | 0 | 0 | 0 | 17 |
| Lithraea caustica | 0 | 20 | 60 | 20 | 0 |
| Acacia caven | 0 | 20 | 60 | 20 | 0 |
| Porlieria chilensis | 100 | 0 | 0 | 0 | 0 |
| Kageneckia angustifolia | 100 | 0 | 0 | 0 | 0 |
| Ceratonia chilensis | 34 | 33 | 33 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartes-Rodríguez, E.; Álvarez-Maldini, C.; Acevedo, M.; González-Ortega, M.; Urbina-Parra, A.; León-Lobos, P. Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile. Plants 2022, 11, 608. https://doi.org/10.3390/plants11050608
Cartes-Rodríguez E, Álvarez-Maldini C, Acevedo M, González-Ortega M, Urbina-Parra A, León-Lobos P. Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile. Plants. 2022; 11(5):608. https://doi.org/10.3390/plants11050608
Chicago/Turabian StyleCartes-Rodríguez, Eduardo, Carolina Álvarez-Maldini, Manuel Acevedo, Marta González-Ortega, Alejandro Urbina-Parra, and Pedro León-Lobos. 2022. "Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile" Plants 11, no. 5: 608. https://doi.org/10.3390/plants11050608
APA StyleCartes-Rodríguez, E., Álvarez-Maldini, C., Acevedo, M., González-Ortega, M., Urbina-Parra, A., & León-Lobos, P. (2022). Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile. Plants, 11(5), 608. https://doi.org/10.3390/plants11050608

