Abstract
A Nitinol rod-driven discrete continuum robot with two sections and eight units was developed to support clinicians in performing transoral surgery. The robot measures 120 mm in length, with each unit having a diameter of 15 mm and a height of 20 mm. The distal and proximal sections are designed to bend independently, each with two degrees of freedom (DOF) actuated by four Nitinol rods. To validate the independent controllability of the two sections, two-dimensional bending tests and ANSYS simulations were conducted. For the assessment of clinical feasibility, head and neck CT images from ten patients were manually segmented to reconstruct three-dimensional oral cavity models. Ten fictitious reference passages were generated from the lips to the oropharynx, and planar path-planning simulations were performed using these passages. Verification experiments were carried out on three reference passages employing experimentally derived inverse kinematics. The simulation results demonstrated an average reference path-following error within a root mean square (RMS) of 1.9705 mm at maximum insertion length. Experimental path-planning results showed average absolute angular differences of 5.6 degrees in the distal section and 4.1 degrees in the proximal section when compared with the simulations.