Technology-Critical Element Exposure Reveals Divergent Toxicity in Different Human Cells Despite Comparable Uptake
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Cell Culture Medium
2.2. Cytotoxicity Assessment
2.3. Cellular Uptake Analysis
2.4. Oxidative Stress and Inflammation Assessment
2.5. Statistical Analysis
3. Results
3.1. Cell Viability
3.2. Cellular Uptake
3.3. Oxidative Stress and Proinflammatory Markers Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADI | Acceptable Daily Intake |
| CAT | Catalase |
| Ce | Cerium |
| DMEM | Dulbecco’s Modified Eagle Medium |
| EDI | Estimated Dietary Intake |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| EU | European Union |
| IC20 | 20% Inhibitory Concentration |
| IC50 | 50% Inhibitory Concentration |
| ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
| IL-1β | Interleukin 1β |
| IL-6 | Interleukin 6 |
| In | Indium |
| La | Lanthanum |
| LDH | Lactate Dehydrogenase |
| MDA | Malondialdehyde |
| REEs | Rare Earth Elements |
| ROS | Reactive Oxygen Species |
| SD | Standard Deviation |
| SOD | Superoxide Dismutase |
| TCEs | Technology-Critical Elements |
| TDI | Tolerable Daily Intake |
References
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Dang, D.H.; Filella, M.; Omanović, D. Technology-critical elements: An emerging and vital resource that requires more in-depth investigation. Arch. Environ. Contam. Toxicol. 2021, 81, 517–520. [Google Scholar] [CrossRef]
- Filho, W.L.; Kotter, R.; Özuyar, P.G.; Abubakar, I.R.; Eustachio, J.H.P.P.; Matandirotya, N.R. Understanding rare earth elements as critical raw materials. Sustainability 2023, 15, 1919. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Chen, M.; Du, W.; Xu, X. Geobiochemistry characteristics of rare earth elements in soil and ground water: A case study in Baotou, China. Sci. Rep. 2020, 10, 11740. [Google Scholar] [CrossRef] [PubMed]
- Wosnick, N.; Curtis, D.; Hauser-Davis, R.A. Managing technology-critical elements from electronic waste in small developing island states: A burden or an opportunity? Front. Mar. Sci. 2024, 11, 1459794. [Google Scholar] [CrossRef]
- Erkmen, A.N.; Ulber, R.; Jüstel, T.; Altendorfner, M. Towards sustainable recycling of critical metals from e-waste: Bioleaching and phytomining. Resour. Conserv. Recycl. 2025, 215, 108057. [Google Scholar] [CrossRef]
- Sims, Z.C.; Kesler, M.S.; Henderson, H.B.; Rios, O.; Sprouster, D.J.; McCall, S.K. How cerium and lanthanum as coproducts promote stable rare earth production and new alloys. J. Sustain. Metall. 2022, 8, 1225–1234. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Macone, A. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. Nat. 2020, 31, 821–833. [Google Scholar] [CrossRef]
- González, N.; Domingo, J.L. Levels of rare earth elements in food and human dietary exposure: A review. Biol. Trace Elem. Res. 2025, 203, 2240–2256. [Google Scholar] [CrossRef]
- Jabłońska-Czapla, M.; Grygoyć, K.; Yandem, G. Assessment of contamination, mobility and application of selected technology-critical elements as indicators of anthropogenic pollution of bottom sediments. Environ. Sci. Pollut. Res. Int. 2024, 31, 49694–49714. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Wang, D.; Huang, L. Toxic effects of rare earth elements on human health: A review. Toxics 2024, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yang, J.; Zhang, X.; Yuan, W.; Jiang, Y. A human health risk assessment of rare earth elements through daily diet consumption from Bayan Obo Mining Area, China. Ecotoxicol. Environ. Saf. 2023, 266, 115600. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Rodríguez-Murillo, J.C. Less-studied TCE: Are their environmental concentrations increasing due to their use in new technologies? Chemosphere 2017, 182, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Albarano, L.; Guida, M.; Tommasi, F.; Libralato, G. Species sensitivity distribution of rare earth elements: A full overview. Sci. Total Environ. 2025, 958, 178079. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Saf. Health Work 2013, 4, 12–26. [Google Scholar] [CrossRef]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements: Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef]
- Tsai, P.K.; Wu, S.W.; Chiang, C.Y.; Kuo, C.Y.; Lin, M.H.; Lee, C.H. Evaluation of cytotoxicity, apoptosis, and genotoxicity induced by indium chloride in macrophages through mitochondrial dysfunction and reactive oxygen species generation. Ecotoxicol. Environ. Saf. 2020, 193, 110348. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Yan, L.; Zhou, Y.; Chen, J.; Yang, G. Adverse effects and underlying mechanism of rare earth elements. Environ. Health 2025, 24, 31. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Mai, Y.; Lin, J.; Chen, J.; Zhou, Z.; Chen, S.; Liang, Y.; Mao, J.; Cai, J. Current advances and future trends of hormesis in disease. npj Aging 2024, 10, 26. [Google Scholar] [CrossRef]
- Blinova, I.; Muna, M.; Heinlaan, M.; Lukjanova, A.; Kahru, A. Potential hazard of lanthanides and lanthanide-based nanoparticles to aquatic ecosystems: Data gaps, challenges and future research needs derived from bibliometric analysis. Nanomaterials 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Kasatkina, E.A.; Shumilov, O.I.; Kirtsideli, I.Y.; Makarov, D.V. Hormesis and low toxic effects of three lanthanides in microfungi isolated from rare earth mining waste in northwestern Russia. Toxics 2023, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Brouziotis, A.A.; Lyons, D.; Oral, R.; Siciliano, A.; Guida, M.; Trifuoggi, M. Hormetic effects of cerium, lanthanum and their combination at sub-micromolar concentrations in sea urchin sperm. Bull. Environ. Contam. Toxicol. 2023, 110, 65. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Gao, J.; Li, S.; Sun, X.; He, J.; Xia, A.; Yan, L.; Wang, F.; Wang, X. Experimental and theoretical study of the effects of rare earth elements on growth and chlorophyll of alfalfa (Medicago sativa L.) seedling. Front. Plant Sci. 2021, 12, 731838. [Google Scholar] [CrossRef]
- Tommasi, F.; Thomas, P.J.; Lyons, D.M.; Pagano, G.; Brouziotis, A.A.; Giarra, A.; Oral, R.; Siciliano, A.; Guida, M.; Trifuoggi, M. Evaluation of rare earth element-associated hormetic effects in candidate fertilizers and livestock feed additives. Biol. Trace Elem. Res. 2023, 201, 2573–2581. [Google Scholar] [CrossRef]
- Zhuang, M.; Xie, H.; Jiang, Y.; Xiao, P.; Wang, K.; Chu, Z.; Zhao, J.; Zhang, T. Probabilistic assessment of dietary rare earth elements intake among people living near a rare earth ore. Sci. Total Environ. 2023, 856, 159141. [Google Scholar] [CrossRef]
- Gaman, L.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Badea, M.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Serum concentration of toxic metals and rare earth elements in children and adolescent. Int. J. Environ. Health Res. 2019, 30, 696–712. [Google Scholar] [CrossRef]
- Yang, D.; Sui, H.; Mao, W.; Wang, Y.; Yang, D.; Zhang, L.; Liu, Z.; Yong, L.; Song, Y. Dietary exposure assessment of rare earth elements in the Chinese population. Int. J. Environ. Res. Public Health 2022, 19, 15583. [Google Scholar] [CrossRef]
- Zhu, W.F.; Xu, S.Q.; Shao, P.P.; Zhang, H.; Feng, J.; Wu, D.L.; Yang, W.J. Investigation on intake allowance of rare earth—A study on bio-effect of rare earth in South Jiangxi. Chin. Environ. Sci. 1997, 17, 63–66. [Google Scholar]
- European Commission. European Critical Raw Materials Act. Available online: https://commission.europa.eu/topics/eu-competitiveness/green-deal-industrial-plan/european-critical-raw-materials-act_en (accessed on 5 January 2026).
- European Medicines Agency (EMA) and International Conference on Harmonisation (ICH). ICH Q3D Guideline for Elemental Impurities (EMA/CH/42317/2011). Available online: https://www.ema.europa.eu/en/ich-q3d-elemental-impurities-scientific-guideline (accessed on 5 January 2026).
- Fujita, Y.; McCall, S.K.; Ginosar, D. Recycling rare earths: Perspectives and recent advances. MRS Bull. 2022, 47, 283–288. [Google Scholar] [CrossRef]
- Ates, G.; Vanhaecke, T.; Rogiers, V.; Rodrigues, R.M. Assaying cellular viability using the neutral red uptake assay. Methods Mol. Biol. 2017, 1601, 19–26. [Google Scholar] [CrossRef]
- Bomhard, E.M. The toxicology of indium oxide. Environ. Toxicol. Pharmacol. 2018, 58, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Forte, A.; Gago, S.; Alves, C.; Braga, S.S.; Gago, J.S.; Santos, M.S.; Ferreira, L.F.V.; Pillinger, M.; Goncalves, I.S. Lanthanide-based organic salts: Synthesis, characterization, and cytotoxicity studies. Molecules 2023, 28, 7152. [Google Scholar] [CrossRef] [PubMed]
- Qvarforth, A.; Augustsson, A.; von Ehr, M.; Lundgren, M.; Borg, D.; Berglund, M.; Engwall, M.; Särndahl, E.; Assunção, R.; Gliga, A.R.; et al. Cytotoxicity and oxidative stress induced by technology-critical elements versus traditional metal contaminants: An in vitro bioassay study. Environ. Sci. Technol. 2025, 59, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Akamp, T.; Pohl, S.; Scholz, K.J.; Meyer-Lueckel, H.; Wierichs, R.J. In-vitro-cytotoxicity of cariostatic agents based on fluorides and lanthanide salts in L-929 fibroblasts. Clin. Oral Investig. 2025, 29, 366. [Google Scholar] [CrossRef]
- Schmidlin, P.R.; Tchouboukov, A.; Wegehaupt, F.J.; Weber, F.E. Effect of cerium chloride application on fibroblast and osteoblast proliferation and differentiation. Arch. Oral Biol. 2012, 57, 892–897. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Xia, A.; Sun, X.; Zhang, H. Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective. Chemosphere 2017, 181, 690–698. [Google Scholar] [CrossRef]
- Blinova, I.; Lukjanova, A.; Muna, M.; Vija, H.; Kahru, A. Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Sci. Total Environ. 2018, 642, 1100–1107. [Google Scholar] [CrossRef]
- Naji, A.; Muzembo, B.A.; Yagyu, K.; Baba, N.; Deschaseaux, F.; Sensebé, L.; Suganuma, N. Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci. Rep. 2016, 6, 26162. [Google Scholar] [CrossRef]
- Benedetto, A.; Bocca, C.; Brizio, P.; Cannito, S.; Abete, M.C.; Squadrone, S. Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines. Toxicol. In Vitro 2018, 46, 9–18. [Google Scholar] [CrossRef]



| Compound | BJ Dermal Fibroblast | HepG2 | ||
|---|---|---|---|---|
| IC20 | IC50 | IC20 | IC50 | |
| Indium Oxide | 23.26 | 69.04 | 247.93 | >400 |
| Cerium Nitrate | 27.60 | 69.53 | Incalculable * | >400 |
| Lanthanum Nitrate | 35.25 | 52.88 | 291.68 | >400 |
| Fibroblast Supernatant | HepG2 Supernatant | |||||
|---|---|---|---|---|---|---|
| Metal | Control (μg/mL) | Treated (μg/mL) | Cell uptake (μg/mL) | Control (μg/mL) | Treated (μg/mL) | Cell uptake (μg/mL) |
| Indium | 0.04± 2.5 × 10−4 | 3.15± 3.33 × 10−2 | 196.84 | 0.098± 4 × 10−3 | 1.63± 8.67 × 10−2 | 198.37 |
| Lanthanum | 0.001 ± 7.21 × 10−5 | 17.31 ± 0.42 | 57.68 | 0.018± 3.51 × 10−3 | 50.52± 0.871 | 149.58 |
| Cerium | 0.002± 3.04 × 10−4 | 12.15± 0.237 | 62.85 | 0.092± 6 × 10−3 | 14.41± 0.79 | 60.58 |
| Fibroblast Sediment | HepG2 Sediment | |||
|---|---|---|---|---|
| Metal | Control (μg/g) | Treated (μg/g) | Control (μg/g) | Treated (μg/g) |
| Indium | 2.79 ± 0.21 | (6.97 ± 0.01) × 104 | 59.47 ± 1.46 | (6.69 ± 0.01) × 104 |
| Lanthanum | (4.5 ± 20) × 10−3 | (3.64 ± 0.08) × 103 | 2.25 ± 0.04 | (5.83 ± 0.05) × 103 |
| Cerium | (7.9 ± 40) × 10−3 | (3.68 ± 0.10) × 103 | 7.71 ± 0.35 | (2.70 ± 0.05) × 103 |
| Treatment | Interleukin-6 (IL-6) (pg/mL) | Interleukin-1β (IL-1β) (OD/mL) | Malondialdehyde (MDA) (nM/mg Protein) | Superoxide Dismutase (SOD) (U/mg Protein) | Catalase (CAT) (U/mg Protein) |
|---|---|---|---|---|---|
| Control | 285.04 ± 10.61 | 0.035 ± 0.001 | 0.429 ± 0.026 | 35.96 ± 1.62 | 19.96 ± 1.01 |
| Indium (In) | 329.66 ± 14.88 | 0.034 ± 0.002 | 0.566 ± 0.025 | 26.51 ± 2.28 | 21.59 ± 1.76 |
| Lanthanum (La) | 269.85 ± 15.67 | 0.040 ± 0.002 | 0.394 ± 0.035 | 30.52 ± 1.91 | 16.95 ± 1.13 |
| Cerium (Ce) | 224.35 ± 10.31 | 0.035 ± 0.002 | 0.336 ± 0.025 | 31.55 ± 2.26 | 24.58 ± 1.41 |
| Treatment | Interleukin-6 (IL-6) (pg/mL) | Interleukin-1β (IL-1β) (OD/mL) | Malondialdehyde (MDA) (nM/mg Protein) | Superoxide Dismutase (SOD) (U/mg Protein) | Catalase (CAT) (U/mg Protein) |
| Control | 144 ± 10.74 | 0.031 ± 0.001 | 0.531 ± 0.056 | 29.46 ± 3.19 | 24.18 ± 1.90 |
| Indium (In) | 89.93 ± 4.83 | 0.037 ± 0.002 | 0.433 ± 0.055 | 46.50 ± 2.44 | 20.65 ± 1.85 |
| Lanthanum (La) | 215.40 ± 10.17 | 0.032 ± 0.001 | 0.681 ± 0.036 | 40.48 ± 1.71 | 19.35 ± 1.40 |
| Cerium (Ce) | 95.33 ± 9.76 | 0.029 ± 0.002 | 0.387 ± 0.041 | 42.06 ± 3.39 | 22.67 ± 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Magdaș, T.-M.; Filip, G.A.; Dehelean, A.; Clichici, S.; Bodolea, C.; Bălan, A.M.; Magdaș, D.A.; Crivii, C.B.; Bâldea, I. Technology-Critical Element Exposure Reveals Divergent Toxicity in Different Human Cells Despite Comparable Uptake. Biomolecules 2026, 16, 113. https://doi.org/10.3390/biom16010113
Magdaș T-M, Filip GA, Dehelean A, Clichici S, Bodolea C, Bălan AM, Magdaș DA, Crivii CB, Bâldea I. Technology-Critical Element Exposure Reveals Divergent Toxicity in Different Human Cells Despite Comparable Uptake. Biomolecules. 2026; 16(1):113. https://doi.org/10.3390/biom16010113
Chicago/Turabian StyleMagdaș, Tudor-Mihai, Gabriela Adriana Filip, Adriana Dehelean, Simona Clichici, Constantin Bodolea, Andrei Mihai Bălan, Dana Alina Magdaș, Carmen Bianca Crivii, and Ioana Bâldea. 2026. "Technology-Critical Element Exposure Reveals Divergent Toxicity in Different Human Cells Despite Comparable Uptake" Biomolecules 16, no. 1: 113. https://doi.org/10.3390/biom16010113
APA StyleMagdaș, T.-M., Filip, G. A., Dehelean, A., Clichici, S., Bodolea, C., Bălan, A. M., Magdaș, D. A., Crivii, C. B., & Bâldea, I. (2026). Technology-Critical Element Exposure Reveals Divergent Toxicity in Different Human Cells Despite Comparable Uptake. Biomolecules, 16(1), 113. https://doi.org/10.3390/biom16010113

