Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptides
2.2. In Vitro Insulin Secretion
2.3. Live Islet Cell Time-Lapse Imaging
2.4. Beta-Cell Proliferation and Cellular Stress Studies
2.5. Animal Experiments
2.6. In Vivo Experiments
2.7. Biochemical Analyses
2.8. Statistical Analyses
3. Results
3.1. GLP-1, but Not GLP-2, Evokes Prominent Insulin Secretion from BRIN BD11 Beta-Cells and Isolated Islets
3.2. GLP-1 and GLP-2 Elevate Cytosolic cAMP Concentrations in Isolated Mouse Islets
3.3. GLP-1 and GLP-2 Promote BRIN BD11 Beta-Cell Proliferation and Protect Against Cytokine-Induced Apoptosis
3.4. GLP-1 and GLP-2 Improve Glucose Tolerance and Supress Appetite in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hein, G.J.; Baker, C.; Hsieh, J.; Farr, S.; Adeli, K. GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: Evidence for predominance of GLP-2–stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 2013, 62, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [PubMed]
- Steiner, D.F.; Smeekens, S.P.; Ohagi, S.; Chan, S.J. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 1992, 267, 23435–23438. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, R.A.; O’Harte, F.P.; Irwin, N.; Gault, V.A.; Flatt, P.R. Proglucagon-derived peptides as therapeutics. Front. Endocrinol. 2021, 12, 689678. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Lupi, R.; Bugliani, M.; Kirkpatrick, C.L.; Sebastiani, G.; Grieco, F.A.; Del Guerra, S.; D’Aleo, V.; Piro, S.; Marselli, L. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 2012, 55, 3262–3272. [Google Scholar] [CrossRef]
- He, W.; Rebello, O.D.; Henne, A.; Nikolka, F.; Klein, T.; Maedler, K. GLP-2 is locally produced from human islets and balances inflammation through an inter-islet-immune cell crosstalk. Front. Endocrinol. 2021, 12, 697120. [Google Scholar] [CrossRef]
- Ostawal, A.; Mocevic, E.; Kragh, N.; Xu, W. Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: A systematic literature review. Diabetes Ther. 2016, 7, 411–438. [Google Scholar] [CrossRef]
- Wilding, J.P.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Drucker, D.J.; Erlich, P.; Asa, S.L.; Brubaker, P.L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 1996, 93, 7911–7916. [Google Scholar] [CrossRef]
- Wallis, K.; Walters, J.R.; Gabe, S. Short bowel syndrome: The role of GLP-2 on improving outcome. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 526–532. [Google Scholar] [CrossRef]
- Bahrami, J.; Longuet, C.; Baggio, L.L.; Li, K.; Drucker, D.J. Glucagon-like peptide-2 receptor modulates islet adaptation to metabolic stress in the ob/ob mouse. Gastroenterology 2010, 139, 857–868. [Google Scholar] [CrossRef]
- Baldassano, S.; Bellanca, A.L.; Serio, R.; Mul, F. Food intake in lean and obese mice after peripheral administration of glucagon-like peptide 2. J. Endocrinol. 2012, 213, 277. [Google Scholar] [CrossRef] [PubMed]
- Baldassano, S.; Rappa, F.; Amato, A.; Cappello, F.; Mulè, F. GLP-2 as beneficial factor in the glucose homeostasis in mice fed a high fat diet. J. Cell Physiol. 2015, 230, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, R.A.; Tanday, N.; McCloskey, A.; Bompada, P.; De Marinis, Y.; Flatt, P.R.; Irwin, N. Peptide YY (1–36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes. Metab. 2020, 22, 404–416. [Google Scholar] [CrossRef] [PubMed]
- McClenaghan, N.H.; Barnett, C.R.; Ah-Sing, E.; Abdel-Wahab, Y.H.; O’Harte, F.P.; Yoon, T.; Swanston-Flatt, S.K.; Flatt, P.R. Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 1996, 45, 1132–1140. [Google Scholar] [CrossRef]
- Pathak, V.; Vasu, S.; Gault, V.A.; Flatt, P.R.; Irwin, N. Sequential induction of beta cell rest and stimulation using stable GIP inhibitor and GLP-1 mimetic peptides improves metabolic control in C57BL/KsJ db/db mice. Diabetologia 2015, 58, 2144–2153. [Google Scholar] [CrossRef]
- Flatt, P.R.; Bailey, C.J. Plasma glucose and insulin responses to glucagon and arginine in Aston ob/ob mice: Evidence for a selective defect in glucose-mediated insulin release. Horm. Metab. Res. 1982, 14, 127–130. [Google Scholar] [CrossRef]
- Draper, M.; Willems, M.; Malahe, R.K.; Hamilton, A.; Tarasov, A.I. Imaging meets cytometry: Analyzing heterogeneous functional microscopic data from living cell populations. J. Imaging 2021, 7, 9. [Google Scholar] [CrossRef]
- Khan, D.; Vasu, S.; Moffett, R.C.; Irwin, N.; Flatt, P.R. Differential expression of glucagon-like peptide-2 (GLP-2) is involved in pancreatic islet cell adaptations to stress and beta-cell survival. Peptides 2017, 95, 68–75. [Google Scholar] [CrossRef]
- Irwin, N.; Frizelle, P.; Montgomery, I.A.; Moffett, R.C.; O’harte, F.; Flatt, P.R. Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes. Diabetologia 2012, 55, 2747–2758. [Google Scholar] [CrossRef]
- Drucker, D.J. Glucagon-like peptide 2. J. Clin. Endocrinol. Metab. 2001, 86, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Amisten, S.; Salehi, A.; Rorsman, P.; Jones, P.M.; Persaud, S.J. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol. Ther. 2013, 139, 359–391. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Meng, K.; Hou, L.; Shang, L.; Yan, J. GLP-2 decreases food intake in the dorsomedial hypothalamic nucleus (DMH) through Exendin (9–39) in male Sprague-Dawley (SD) rats. Physiol. Behav. 2021, 229, 113253. [Google Scholar] [CrossRef]
- Drucker, D.J.; Philippe, J.; Mojsov, S.; Chick, W.L.; Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 1987, 84, 3434–3438. [Google Scholar] [CrossRef] [PubMed]
- Tomas, A.; Jones, B.; Leech, C. New insights into beta-cell GLP-1 receptor and cAMP signaling. J. Mol. Biol. 2020, 432, 1347–1366. [Google Scholar] [CrossRef] [PubMed]
- Kaihara, K.A.; Dickson, L.M.; Jacobson, D.A.; Tamarina, N.; Roe, M.W.; Philipson, L.H.; Wicksteed, B. β-Cell–specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 2013, 62, 1527–1536. [Google Scholar] [CrossRef]
- Kolic, J.; Beet, L.; Overby, P.; Cen, H.H.; Panzhinskiy, E.; Ure, D.R.; Cross, J.L.; Huizinga, R.B.; Johnson, J.D. Differential effects of voclosporin and tacrolimus on insulin secretion from human islets. Endocrinology 2020, 161, bqaa162. [Google Scholar] [CrossRef]
- Gabe, M.B.N.; Gasbjerg, L.S.; Gadgaard, S.; Lindquist, P.; Holst, J.J.; Rosenkilde, M.M. N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction. Br. J. Pharmacol. 2022, 179, 4473–4485. [Google Scholar] [CrossRef]
- Widenmaier, S.B.; Kim, S.; Yang, G.K.; De Los Reyes, T.; Nian, C.; Asadi, A.; Seino, Y.; Kieffer, T.J.; Kwok, Y.N.; McIntosh, C.H. A GIP receptor agonist exhibits β-cell anti-apoptotic actions in rat models of diabetes resulting in improved β-cell function and glycemic control. PLoS ONE 2010, 5, e9590. [Google Scholar] [CrossRef]
- Moon, J.H.; Choe, H.J.; Lim, S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J. Diabetes Investig. 2024, 15, 669–683. [Google Scholar] [CrossRef]
- Drucker, D.J.; Yusta, B.; Boushey, R.P.; DeForest, L.; Brubaker, P.L. Human [Gly2] GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 1999, 276, G79–G91. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, D.; Baldassano, S.; Amato, A.; Picone, P.; Galizzi, G.; Caldara, G.F.; Di Carlo, M.; Mulè, F. Glucagon-like peptide-2 reduces the obesity-associated inflammation in the brain. Neurobiol. Dis. 2019, 121, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Geloneze, B.; Lima, M.M.d.O.; Pareja, J.C.; Barreto, M.R.L.; Magro, D.O. Association of insulin resistance and GLP-2 secretion in obesity: A pilot study. Arq. Bras. De Endocrinol. Metabol. 2013, 57, 632–635. [Google Scholar] [CrossRef]
- Baldassano, S.; Amato, A.; Terzo, S.; Caldara, G.F.; Lentini, L.; Mulè, F. Glucagon-like peptide-2 analog and inflammatory state in obese mice. Endocrine 2020, 68, 695–698. [Google Scholar] [CrossRef]
- Dalvi, P.S.; Belsham, D.D. Glucagon-like peptide-2 directly regulates hypothalamic neurons expressing neuropeptides linked to appetite control in vivo and in vitro. Endocrinology 2012, 153, 2385–2397. [Google Scholar] [CrossRef]
- van Bloemendaal, L.; IJzerman, R.G.; Ten Kulve, J.S.; Barkhof, F.; Konrad, R.J.; Drent, M.L.; Veltman, D.J.; Diamant, M. GLP-1 receptor activation modulates appetite-and reward-related brain areas in humans. Diabetes 2014, 63, 4186–4196. [Google Scholar] [CrossRef]
- De Silva, A.; Salem, V.; Long, C.J.; Makwana, A.; Newbould, R.D.; Rabiner, E.A.; Ghatei, M.A.; Bloom, S.R.; Matthews, P.M.; Beaver, J.D. The gut hormones PYY3-36 and GLP-17-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011, 14, 700–706. [Google Scholar] [CrossRef]
- Irwin, D.M. Variation in the Evolution and Sequences of Proglucagon and the Receptors for Proglucagon-Derived Peptides in Mammals. Front. Endocrinol. 2021, 12, 700066. [Google Scholar] [CrossRef]
- Madsen, M.S.A.; Holm, J.B.; Pallejà, A.; Wismann, P.; Fabricius, K.; Rigbolt, K.; Mikkelsen, M.; Sommer, M.; Jelsing, J.; Nielsen, H.B. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci. Rep. 2019, 9, 15582. [Google Scholar] [CrossRef]
- Won Kim, S.; Yang, S.; Sung, Y. 1874-LB: PG-102, a Bivalent GLP-1R/GLP-2R Agonist, Protects ß-Cell Mass and Enhances Glycemic Control in Obese db/db Mice, Showing Superiority over Semaglutide, Tirzepatide, and Retatrutide. Diabetes 2024, 73, 1874. [Google Scholar] [CrossRef]
- Thulesen, J.; Hartmann, B.; Hare, K.J.; Kissow, H.; Ørskov, C.; Holst, J.J.; Poulsen, S.S. Glucagon-like peptide 2 (GLP-2) accelerates the growth of colonic neoplasms in mice. Gut 2004, 53, 1145–1150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Khan, D.; Dubey, V.; Tarasov, A.I.; Flatt, P.R.; Irwin, N. Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation. Biomolecules 2024, 14, 1520. https://doi.org/10.3390/biom14121520
Ali A, Khan D, Dubey V, Tarasov AI, Flatt PR, Irwin N. Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation. Biomolecules. 2024; 14(12):1520. https://doi.org/10.3390/biom14121520
Chicago/Turabian StyleAli, Asif, Dawood Khan, Vaibhav Dubey, Andrei I. Tarasov, Peter R. Flatt, and Nigel Irwin. 2024. "Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation" Biomolecules 14, no. 12: 1520. https://doi.org/10.3390/biom14121520
APA StyleAli, A., Khan, D., Dubey, V., Tarasov, A. I., Flatt, P. R., & Irwin, N. (2024). Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation. Biomolecules, 14(12), 1520. https://doi.org/10.3390/biom14121520